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Spike-Rate Coding and Spike-Time Coding Are Affected
Oppositely by Different Adaptation Mechanisms
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Spike-frequency adaptation causes reduced spiking during prolonged stimulation, but the full impact of adaptation on neural coding is
far more complex, especially if one takes into account the diversity of biophysical mechanisms mediating adaptation and the different
ways in which neural information can be encoded. Here, we show that adaptation has opposite effects depending on the neural coding
strategy and the biophysical mechanism responsible for adaptation. Under noisy conditions, calcium-activated K � current (IAHP )
improved efficient spike-rate coding at the expense of spike-time coding by regularizing the spike train elicited by slow or constant inputs;
noise power was increased at high frequencies but reduced at low frequencies, consistent with noise shaping that improves coding of low-
frequency signals. In contrast, voltage-activated M-type K � current (IM ) improved spike-time coding at the expense of spike-rate coding
by stopping the neuron from spiking repetitively to slow inputs so that it could generate isolated, well timed spikes in response to fast
inputs. Using dynamical systems analysis, we demonstrate how IAHP minimizes perturbation of the interspike interval caused by high-
frequency noise, whereas IM minimizes disruption of spike-timing accuracy caused by repetitive spiking. The dichotomous outcomes are
related directly to the distinct activation requirements for IAHP and IM , which in turn dictate whether those currents mediate negative
feedback onto spiking or membrane potential. Thus, based on their distinct activation properties, IAHP implements noise shaping that
improves spike-rate coding of low-frequency signals, whereas IM implements high-pass filtering that improves spike-time coding of high-
frequency signals.
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Introduction
Adaptation is ubiquitous in the nervous system and can improve
neural coding (Barlow, 1961; Sharpee et al., 2006; Wark et al.,
2007). However, adaptation occurs through several mechanisms
and neural information is encoded in various ways, which opens
up the possibility that different forms of adaptation may have
disparate effects on neural information depending on how that
information is encoded. Here, we focus on adaptation of neuro-
nal responsiveness, i.e., spike-frequency adaptation or accom-
modation. This adaptation is typically ascribed to the voltage-
activated M-type K� current (IM) or the calcium-activated K�

current (IAHP) (Madison and Nicoll, 1984; Schwindt et al., 1988;
Storm, 1990), although it can occur through other mechanisms
such as sodium-activated K� current (Schwindt et al., 1989) or
cumulative Na� channel inactivation (Fleidervish et al., 1996).
One critical distinction is whether adaptation is spike dependent
or spike independent. IAHP responsible for the medium-duration
afterhyperpolarization is mediated by apamin-sensitive SK chan-

nels (Villalobos et al., 2004) that are activated predominantly by
Ca 2� arriving via high-voltage-activated Ca 2� channels or by
Ca 2� released from intracellular stores, both of which rely on
spike generation (Williams et al., 1997; Bowden et al., 2001;
Yamada et al., 2004; Goldberg and Wilson, 2005); activation of
IAHP is therefore spike dependent. In contrast, IM mediated by
KCNQ channels (Wang et al., 1998) can be activated at voltages
below spike threshold (Adams et al., 1982; Halliwell and Adams,
1982; Gutfreund et al., 1995; Wang and McKinnon, 1995; Wang
et al., 1998); activation of IM is therefore largely
spike-independent.

Neural information can be encoded in diverse ways (Perkel
and Bullock, 1968). Known coding strategies used by single neu-
rons can be divided approximately into rate codes and temporal
codes, but these terms have been used inconsistently and are
prone confusion (Dayan and Abbott, 2001). To distinguish our
usage, we refer to spike-rate coding and spike-time coding. In
spike-rate coding, the number of spikes within a time window or
the reciprocal of a single interspike interval (ISI) (1/ISI � instan-
taneous rate) correlates with some stimulus attribute; in this case,
ISIs must be shorter than the minimum time scale of the stimu-
lus, as explained by the Nyquist theorem (Theunissen and Miller,
1995; Rieke et al., 1997). In spike-time coding, the fine temporal
structure of the spike train (i.e., spike timing) sparsely encodes
information about the temporal structure of the stimulus; in this
case, ISIs are longer than the minimum period of the stimulus

Received April 23, 2008; revised Oct. 15, 2008; accepted Oct. 21, 2008.
This work was supported by the Howard Hughes Medical Institute (T.J.S.) and by a postdoctoral fellowship from

the Human Frontier Science Program (S.A.P.). We thank L. Maler, B. N. Lundstrom, and M. Bonjean for their com-
ments on this manuscript.

Correspondence should be addressed to Steven A. Prescott, Department of Neurobiology, University of Pitts-
burgh, 200 Lothrop Street, Pittsburgh, PA 15213. E-mail: prescott@neurobio.pitt.edu.

DOI:10.1523/JNEUROSCI.1792-08.2008
Copyright © 2008 Society for Neuroscience 0270-6474/08/2813649-13$15.00/0

The Journal of Neuroscience, December 10, 2008 • 28(50):13649 –13661 • 13649



and simply reflect the interval between suprathreshold stimulus
upstrokes (Oswald et al., 2007). Reliable spike timing confers
good spike-time coding whereas reliable ISIs confer good spike-
rate coding.

Based on their distinct activation properties, we hypothesized
that IM and IAHP have different effects depending on how infor-
mation is encoded. Using a minimal model amenable to dynam-
ical systems analysis as well as a more biophysically realistic mul-
ticompartmental model, we demonstrate that these two forms of
adaptation do indeed have opposite effects depending on the
neural coding strategy. The dynamical mechanisms through
which this occurs are explained.

Materials and Methods
Morris-Lecar model and simulations. All data presented in the main study
are based on simulations in a modified Morris-Lecar model (Morris and
Lecar, 1981; Rinzel and Ermentrout, 1998; Prescott et al., 2006) described
by the following:

CdV/dt � IDC � Isignal � Inoise � g�Nam��V��V � ENa� �

g�Kw�V � EK� � gleak�V � Eleak� � g�adaptz�V � EK�

dw/dt � ��w��V� � w�/�w�V�

dz/dt � �1/�1 � e ��z � V�/�z� � z	/�z

m��V� � 0.5�1 � tanh��V � �m�/�m�	

w��V� � 0.5�1 � tanh��V � �w�/�w�	

�w�V� � 1/cosh��V � �w�/�2 � �w��,

with C � 2 �F/cm 2, g�Na � 20 mS/cm 2, ENa � 50 mV, g�K � 20 mS/cm 2,
EK � 
100 mV, gleak � 2 mS/cm 2, Eleak� 
70 mV, � � 0.15, �m � 
1.2
mV, �m � 18 mV, �w � 0 mV, and �w � 10 mV. Magnitude of gleak was
set to replicate the low-conductance state characteristic of in vitro con-
ditions (compare with parameters in Prescott et al., 2006). Adaptation
was modeled after the formalism described by Ermentrout (1998) [see
also Prescott et al. (2006)]. Parameters for IM were g�adapt � g�M � 0.5
mS/cm 2, �z � 100 ms, �z � 
35 mV, and �z � 4 mV unless otherwise
indicated. Parameters for IAHP were g�adapt � g�AHP � 5 mS/cm 2 (or 10
mS/cm 2 for open squares in Fig. 4 F), �z � 100 ms, �z � 0 mV, �z � 4
mV. The critical difference is the voltage at half-maximal activation (con-
trolled by �z): when �z � 
35 mV, the left tail of the activation curve
extends below spike threshold (thus allowing IM to be activated at sub-
threshold voltages), whereas when �z � 0 mV, the activation curve is
shifted to more depolarized potentials and does not extend below thresh-
old (meaning IAHP is activated only during spikes) (see Introduction). In
reality, IAHP is activated by calcium influx driven by suprathreshold de-
polarization but, technically, it is unnecessary to explicitly include this
additional step, which would necessarily increase the dimensionality of
our model and compromise our ability to apply dynamical systems anal-
ysis (see below); calcium-dependent activation of IAHP was explicitly
modeled in the multicompartmental model described in supplemental
data, available at www.jneurosci.org. Equations were integrated numer-
ically in XPPAUT (Ermentrout, 2002) using the Euler method with a
time step of 0.1 ms.

The modified Morris-Lecar model is ideal for certain analyses (see
below), but building such a simple model requires that one makes several
simplifying assumptions (e.g., regarding calcium-dependent activation
of IAHP; see above). To confirm that these assumptions did not compro-
mise our results, all key analyses were repeated in a more biophysically
realistic, multicompartmental, conductance-based model described in
the legend of supplemental Figure 1, available at www.jneurosci.org as
supplemental material.

Stimulation. Constant stimulation was controlled by IDC. Dynamics

signals and noise were modeled as Ornstein-Uhlenbeck processes
(Uhlenbeck and Ornstein, 1930),

dIsignal(noise)/dt � 
Isignal(noise)/�signal(noise) � D/�dtN(t),

where Isignal(noise) is the random variable, �signal(noise) is a time constant
controlling the rate of drift back toward zero mean (� � 0 ms3 white
noise; � � 0 ms 3 colored noise), N(t) is normally distributed (zero
mean, unit variance) noise source that is scaled by D/�dt, where D
controls noise amplitude (Tuckwell, 1988; Destexhe et al., 2001). The
scaling factor D/�dt accounts for effects of the time step on the ampli-
tude of Isignal(noise) fluctuations and is reported in the text as 	signal(noise)

where 	 � D/�dt. The variance of Isignal(noise) equals 	 2�/2 (see
Gillespie, 1996). �signal(noise) was 5 ms in all cases unless otherwise
indicated.

Autocorrelation and power spectral analysis. Autocorrelation was used
to compare an ISI sequence {Ij} against a lagged version of itself. The ISI
serial correlation coefficient was defined as 
j � �IiIi�j 
 �Ii�

2 � / �IiIi 
 �Ii�
2�

where �…� denotes averaging across index i and j is the lag. Consecutive
ISIs have a lag of 1. Power spectra were measured using routines provided
by Gabbiani and Koch (1998).

ROC analysis. Receiver operating characteristic (ROC) analysis was
used to answer how well an ideal observer can discriminate between two
stimuli on the basis of differences in firing rate (Green and Swets, 1966;
Gabbiani and Koch, 1998). The decision rule is simply whether rate 

threshold (3 IDC x) or rate � threshold (3 IDC y). We plot the proba-
bility of correct detection against the probability of false alarm over a
range of different threshold values. The further the ROC curve lies above
the diagonal (which represents chance performance; probability of false
alarm � probability of correct detection), the better one is able to dis-
criminate between the two stimuli. Firing rate was measured from the
reciprocal of single ISIs or from the running average of two or more ISIs
from the original or shuffled ISI sequence. Shuffling means that ISIs were
re-ordered randomly to destroy whatever correlations existed in the orig-
inally ordered sequence.

Spike-timing reliability. Our measurement of spike-timing reliability
was motivated by the concept of spike-triggered averaging. Here, instead
of using the spike to trigger sweeps of the preceding stimulus, we used
spikes to trigger sweeps from separate responses to the same stimulus.
Specifically, the neuron was stimulated with signal alone (i.e., without
noise) on the first trial and then with signal plus noise on subsequent
trials; the signal remained the same but noise varied from trial to trial.
Spikes at time t in the first “reference” trial (without noise) were used to
trigger voltage sweeps at t � �t in subsequent “test” trials (with noise).
Spikes in the triggered sweeps were detected and their timing relative to
reference spikes was recorded. The resulting histogram of triggered spike
times relative to reference spikes provides information on the impact of
noise: the width of the distribution reflects the reduced precision (jitter)
caused by noise while area under the curve (after normalization by the
number of reference spikes) reflects the reduced reliability caused by
noise. We controlled for coincident spikes occurring by chance, which
varies with firing rate (de la Rocha et al., 2007), by shuffling the ISI
sequence of the reference trial and repeating the analysis. Subtracting this
“baseline” from the uncorrected cumulative probability distribution
gave a corrected probability distribution with a peak 
1 (see Fig. 4 D)
that is referred to as reliability in subsequent plots.

Bifurcation and phase plane analyses. We chose to investigate effects of
adaptation using a modified Morris-Lecar model because such a model is
ideally suited for dynamical systems analysis, which can be used to rig-
orously characterize the effects of adaptation on neuronal spiking, as
explained below. Because adaptation develops slowly relative to other
variables, z (which controls adaptation; see above) can be treated as
constant over some time window (in other words, z is treated as a param-
eter), which allows the model to be reduced from three-dimensional
(3D) to two-dimensional (2D). Unlike more complex models, behavior
of the 2D model can be explained entirely by the interaction between the
fast activation variable V and a slower recovery variable w; that interac-
tion can be visualized on a phase plane. Nullclines represent areas in
phase space where a given variable remains constant, i.e., V� � 0 along
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the V-nullcline and w� � 0 along the w-nullcline. How the nullclines
intersect (i.e., whether the intersection is stable or unstable) determines
whether the system evolves toward a fixed point or toward a limit cycle
(i.e., subthreshold membrane potential or repetitive spiking, respec-
tively). To determine the effects of certain parameters, the parameter of
interest (e.g., z in the 2D model) can be continuously varied to determine
its effects on the system’s behavior including, most importantly, abrupt
transitions (i.e., bifurcations) between quiescence and repetitive spiking.
Simulations in the 3D model (with z treated as a variable) can then be
compared with simulations in the 2D model to see the effects of adapta-
tion. See Rinzel and Ermentrout (1998) for a more detailed discussion of
these methods in the context of neuronal excitability or Strogatz (1998)
for an in-depth explanation.

Results
Effects of adaptation on firing rate
Computational modeling in a Morris-Lecar-type model showed
that IM could terminate spiking elicited by constant stimulation
(IDC) whereas IAHP only reduced firing rate (Fig. 1A). This trans-
lated into distinct modulation of the f–IDC curve (Fig. 1B): IM had
a predominantly subtractive effect, shifting the curve to the right,
which corresponds to increasing the current threshold for sus-
tained spiking or I*; IAHP had a purely divisive effect, reducing the
slope of the curve at low firing rates, notwithstanding saturation
effects at high firing rates. Furthermore, gAHP had pulsatile kinet-
ics, increasing abruptly during each spike and decreasing slowly
between spikes because its activation is spike dependent; in con-
trast, gM remained relatively constant throughout the ISI since it
remains activated at subthreshold voltages (Fig. 1A). The activa-
tion time constants (�z) of IAHP and IM influence the kinetics of
conductance changes (see below), but �z was set equal for all
simulations in the Morris-Lecar model (see Materials and
Methods).

Simulations were repeated in a multicompartmental,
conductance-based model to test whether IM and IAHP had effects
comparable with those described above for the Morris-Lecar
model. As expected, IM and IAHP had the same effects in the more
biophysically realistic model (supplemental Fig. 1, available at
www.jneurosci.org as supplemental material), thus demonstrat-
ing that simplifications inherent in our Morris-Lecar model (see
Materials and Methods) did not compromise the applicability of
our results to biophysically realistic conditions.

Effects of adaptation on other spike-train statistics
Because noise is another ubiquitous feature of the nervous system
with myriad effects on coding (Calvin and Stevens, 1968), our

next step was to characterize how different
forms of adaptation impact spike trains
generated under realistically noisy condi-
tions. Noise disrupted the regularity of
spiking much more in the neuron with IM

than in the neuron with IAHP (Fig. 2A).
Closer analysis revealed that, for a given
steady-state firing rate ( fss), the ISI distri-
bution for the neuron with IAHP was sym-
metrical and narrow compared with that
for the neuron with IM or no adaptation
(Fig. 2B). Over a range of fss, IAHP caused a
large reduction in the coefficient of varia-
tion of the ISI (CVISI) whereas IM caused
only a modest reduction compared with
the model without adaptation (Fig. 2C).
Additionally, in the neuron with IAHP, a
long ISI was typically followed by a short
ISI, and vice versa (Fig. 2D). This was

quantified by autocorrelation, which revealed a strong negative
correlation between immediately consecutive ISIs (lag j � 1) in
the neuron with IAHP, but not in other neurons (Fig. 2E,F). The
negative ISI correlation caused by IAHP has been noted previously
(Wang, 1998) but its functional consequences were not investi-
gated, although other work has shown that a negative ISI corre-
lation improves coding of low-frequency signals through noise
shaping (Chacron et al., 2001, 2004, 2005). Effects of IAHP are also
comparable with those of “threshold fatigue” (Chacron et al.,
2007).

To further investigate noise shaping, we analyzed the power
spectrum of the spike train. Regularity of spiking in the neuron
with IAHP was manifested as reduced power at low frequencies
and increased power near fss when compared with the power
spectra for IM or no adaptation (Fig. 3A). This reshaping of the
power spectrum constitutes noise shaping (Shin, 2001) and is
known to improve coding of signals comprising frequencies
where noise power is reduced (Chacron et al., 2001; Mar et al.,
1999) (see below). The more realistic conductance-based model
with different forms of adaptation exhibited exactly the same
response properties (supplemental Fig. 2, available at www.
jneurosci.org as supplemental material). Destroying the negative
ISI correlation by shuffling the ISI sequence changed the power
spectrum of the neuron with IAHP as predicted (Chacron et al.,
2004), although the power at low frequencies was still less than in
the neuron with IM or no adaptation (Fig. 3B). Thus, although the
negative ISI correlation contributed to noise shaping, the power
spectrum was also shaped by other effects of IAHP, most likely by
its enhancement of the refractory period (Franklin and Bair,
1995). To test this, we varied post-spike refractoriness by varying
the adaptation time constant (�z): a faster time constant allows
gadapt to vary more (i.e., cause greater refractoriness immediately
following a spike) than a slower time constant (Fig. 3C, inset). As
predicted for the neuron with IAHP, increasing refractoriness
(shortening �z) caused greater power reduction at low frequen-
cies, whereas decreasing refractoriness (lengthening �z) caused
less power reduction compared with baseline (Fig. 3C). In con-
trast, varying �z in the neuron with IM caused little change in the
power spectrum (Fig. 3D), consistent with the observation that
gM tends to remain relatively constant throughout the ISI (Fig.
3D, inset).

Based on these results, we conclude that IM contributes rela-
tively constant outward current that increases I* but has only
modest effects on other spike train statistics. In contrast, IAHP

Figure 1. Effects of adaptation on firing rate. A, Sample responses to constant stimulation (IDC in �A/cm 2 indicated on left).
Top traces show voltage response. Bottom traces show gM or gAHP; notice the difference in kinetics and specifically that gAHP is
pulsatile because of its spike-dependent activation. For IDC � 40 �A/cm 2, time-averaged conductance was slightly less for gM

than for gAHP although the former terminated spiking whereas the latter did not; thus, maintenance of outward current (possible
only with spike-independent adaptation mechanisms) is critical for allowing adaptation to terminate repetitive spiking. B, IM had
a predominantly subtractive effect on the steady-state f–IDC curve, whereas IAHP had a divisive effect on the initial slope of the
steady-state f–IDC curve.
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varies during individual ISIs and across consecutive ISIs, which
causes post-spike refractoriness and negative ISI correlations, re-
spectively. This “spike-history dependence” allows IAHP to regu-
larize the spike train, which has important consequences for
spike-rate coding, as explained below.

Effects of adaptation on spike-rate coding
As shown in Figure 2B, the ISI distribution was narrower in the
neuron with IAHP than in other neurons, consistent with IAHP

causing regularization of the spike train (see above). Averaging
across two or more consecutive ISIs caused further narrowing of
the averaged ISI distribution, especially if those ISIs were nega-
tively correlated (Fig. 4A, inset). Reducing overlap of ISI distri-
butions associated with different IDC improves the ability of an
ideal observer to infer IDC from firing rate. This can be shown by
receiver operating characteristic (ROC) analysis wherein proba-
bility of correctly identifying IDC is plotted against the probability
of incorrectly identifying IDC as different thresholds are used to
separate the ISI distributions (Fig. 4A). The further the ROC
curve extends away from the diagonal, the better the performance
or discriminability relative to chance. In the example in Figure

4B, five uncorrelated ISIs needed to be averaged to achieve the
same performance achieved by averaging two correlated ISIs,
while averaging five correlated ISIs allowed near-perfect distinc-
tion between subtly different IDC (i.e., on the order of 1 SD of
Inoise). By reducing the variability of individual ISIs and by intro-
ducing a negative ISI correlation that enhanced the reduction in
ISI variability achieved by averaging across ISIs, IAHP allowed
excellent spike-rate coding at low firing rates; indeed, when firing
rate was averaged across 5 unshuffled ISIs, the neuron with IAHP

achieved nearly the same performance as the neuron with IM (Fig.
4C). The neuron with IM performed better than the neuron with
IAHP when firing rate was averaged over 
5 ISIs, but only because
of the high firing rate in the former. In other words, the neuron
with IM (and the neuron without adaptation; data not shown)
relied on widely separated peaks (i.e., large differences in firing
rate) to separate the ISI distributions associated with different
IDC, whereas the neuron with IAHP relied on narrow distributions
(i.e., reduced ISI variability) (Fig. 4C, inset).

To further illustrate the last point and to also consider encod-
ing of nonconstant stimuli, we applied a 5 Hz sine wave stimulus
whose amplitude was either the same in the neuron with IM or

Figure 2. Effects of adaptation on other spike-train statistics. A, Responses to stimulation with and without weak noise (	noise � 0.5 �A/cm 2) simulated as an Ornstein-Uhlenbeck process (see
Materials and Methods). Spiking in the neuron with IM was noticeably less regular than spiking in the neuron with IAHP. Both neurons spiked at�25 spikes/s when stimulated with IDC �43 �A/cm 2;
this is the stimulus intensity at which the f-I curves cross (see also Fig. 1 B) and was therefore chosen as the comparison point for subsequent panels. The neuron without adaptation (data not shown
here) was stimulated with IDC � 37 �A/cm 2 in order for it to spike at �25 spikes/s. B, ISI distribution was noticeably skewed and much wider with IM or no adaptation than with IAHP. C, Coefficient
of variation of the interspike interval (CVISI � SDISI/AvgISI) was least in the neuron with IAHP for all firing rates. The same trends existed when noise amplitude was increased 10� (inset). D, Sample
responses showing a long ISI followed by a short ISI, and vice versa, which is typical in a neuron with IAHP and results from gAHP trying to remain within its preferred operating range (gray shading).
E, F, Autocorrelation confirmed that IAHP caused a strong negative correlation between immediately consecutive ISIs (lag j � 1) over a broad range of firing rates. That correlation was absent without
adaptation, and was very modest with IM. With faster spiking, 
j�1 became positive because of positive correlations within the stimulus itself. The same trends existed when noise amplitude was
increased 10� (inset).
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IAHP, or was reduced in the former so that firing rate modulation
caused by the sine wave stimulus was the same in both neurons.
With equivalent stimulation, the signal-to-noise ratio (SNR) was
6.8 in both neurons, but, with equivalent modulation of firing
rate, the SNR dropped to only 1.3 in the neuron with IM (Fig. 4D).
The high SNR in the neuron with IAHP was therefore the result of
reduced noise rather than enhanced signal. It is precisely this
noise reduction that allows a neuron with IAHP to accurately en-
code constant or low-frequency inputs with small changes in
firing rate.

Effects of adaptation on spike-time coding
The same noise reduction that benefits efficient spike-rate coding
of slow signals is liable to impair spike-time coding of fast signals.
For example, inserting an extra “noise” spike in a neuron with
IAHP could disrupt, over the next several hundred milliseconds,
the timing of spikes elicited by the signal; that disruption was
minimal in the neuron with IM (Fig. 5A). This disruption was
even more evident when continuous noise was superimposed on
the signal (Fig. 5B). To quantify the reliability of spike timing, we

compared the timing of spikes elicited
with noise (Fig. 5C, red rasters) with the
timing of reference spikes elicited without
noise (black raster); histograms in Figure
5C show timing of triggered spikes (red)
relative to reference spikes (black). Cumu-
lative probability of a triggered spike in-
creased as spikes were counted at increas-
ing times relative to reference spikes (Fig.
5D, top), but so too did the chance of ran-
domly coincident spikes as determined by
repeating the analysis after shuffling the
reference spike train (Fig. 5D, middle);
subtracting the latter cumulative probabil-
ity distribution from the former gave a
corrected distribution (Fig. 5D, bottom)
whose peak height is a metric of spike-
timing reliability.

All neurons in Figure 5D were stimu-
lated with a constant offset (IDC) plus a
dynamic signal (	signal � 1 �A/cm 2). Neu-
rons with IM and IAHP both responded at
�12 spikes/s to 40 �A/cm 2 IDC, but the
former exhibited higher reliability that was
equivalent to that in the neuron without
adaptation stimulated with 36 �A/cm 2

(which also spiked at �12 spikes/s). Given
the increase in I* caused by IM (Fig. 1B), 40
and 36 �A/cm 2 are just below I* for neu-
rons with IM or no adaptation, respectively
(Fig. 1B); therefore, the dynamic signal
was solely responsible for eliciting spikes
under those stimulus conditions. In con-
trast, 40 �A/cm 2 stimulation in the neu-
ron without adaptation (which is well
above I*) drove fast but unreliable spiking.
These comparisons suggest that spike-
time coding is improved by responding se-
lectively to stimulus fluctuations (i.e., by
operating in the subthreshold or peri-
threshold regimen rather than in the su-
prathreshold regimen), which is consis-
tent with previous investigations (Gutkin

et al., 2003; Prescott et al., 2006) and the inverse relationship
between spike-timing reliability and spike rate (Tang et al., 1999).
Reliability of responses to different IDC and SNR is summarized
in Figure 5E. Similar results were found in the more realistic
model (supplemental Fig. 3, available at www.jneurosci.org as
supplemental material). As predicted, neurons with IAHP per-
formed worse than neurons with IM or no adaptation when reli-
ability was compared at the same firing rate. When g�M was in-
creased to prevent repetitive spiking for all IDC 
 70 �A/cm 2,
reliability remained high across a broad range of IDC; in contrast,
increasing g�AHP worsened reliability at low IDC while causing only
marginal improvements at high IDC (Fig. 5F; see below).

Effects of combining both forms of adaptation
If IAHP improves spike-rate coding at the expense of spike-time
coding, and IM improves spike-time coding at the expense of
spike-rate coding, what happens when both forms of adaptation
co-occur? We tested this by adding both forms of adaptation to a
single cell and repeating the analysis described above (supple-
mental Fig. 4, available at www.jneurosci.org as supplemental

Figure 3. Effects of negative ISI correlation and refractoriness on power spectra. A, Power spectral analysis of the spike train
showed that IAHP reduced noise power at low frequencies. Inset shows power spectrum of stimulus over same frequency range. B,
Destroying the ISI correlation by shuffling the ISI sequence affected only the power spectrum of the neuron with IAHP, consistent
with the lack of ISI correlation in other neurons (see also Fig. 2). Despite shuffling, power at low frequencies was still less in the
neuron with IAHP than in other neurons. C, Shortening the IAHP time constant �z caused increased post-spike refractoriness
(because of the larger increase in gAHP; see inset), which translated into reduced power at low frequencies according to the power
spectrum. Lengthening �z had the opposite effect. Comparing power spectra from the original and shuffled ISI sequences (top and
bottom panels, respectively) shows that negative ISI correlations and refractoriness had distinct effects on the shape of the
spectrum. Arrow in inset here and in D show timing of spike onset. D, Because gM remains activated at subthreshold potentials, it
remains relatively constant throughout the ISI (inset; compare with C); consequently, varying �z had little effect on refractoriness
or on the shape of the power spectrum in the neuron with IM.
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material). IM continued to function to pre-
vent repetitive spiking driven by constant
or slow inputs, thus encouraging fast stim-
ulus fluctuations to elicit isolated, well
timed spikes for IDC 
 I*; under those con-
ditions, IAHP had no effect on the reliability
of fluctuation-driven spiking. For IDC �
I*, IAHP reduced reliability at a given firing
rate but extended the range of IDC over
which reliability remained high (because
of the reduction in firing rate caused by
IAHP). For spiking driven by slow or con-
stant inputs, IAHP continued to function to
regularize the spike train, thus improving
spike-rate coding; IM had no significant ef-
fect other than increasing I* and thereby
shifting the stimulus range over which
spike-rate coding occurs. In short, benefits
of IAHP and IM do not simply cancel out;
instead, effects of one or the other form of
adaptation predominate depending on the
operating regimen (i.e., perithreshold vs
suprathreshold). Thus, combining IAHP

and IM produces net benefit for both
spike-rate and spike-time coding.

Effects of adaptation dynamics on
spike initiation
Data presented thus far indicate that IAHP

improves spike-rate coding whereas IM

seems to improve spike-time coding (see
below). Our next goal, therefore, was to
determine how these two forms of adapta-
tion produce their dichotomous effects.
Spike-rate coding requires the neuron to
spike repetitively at a rate proportional to
IDC or other slow signals (where “slow”
must be judged relative to the ISI) and is
improved by reducing ISI variability (see
Fig. 4). IAHP reduced ISI variability in two
ways: on a spike-by-spike basis, by increasing the refractory pe-
riod after each spike, and across spikes, by causing a negative ISI
correlation (see Figs. 2,3). Spike-time coding, however, benefits
from the neuron not spiking repetitively in response to IDC, lest
the timing of spikes elicited by fast signals be corrupted by repet-
itive spiking associated with slow signals. Maintained activation
of IM at subthreshold potentials can prevent repetitive spiking,
thereby allowing the neuron to spike selectively in response to
those signals that drive voltage changes that are too fast for IM to
cancel out (see below). The functional importance of kinetic dif-
ferences between gM and gAHP (see Fig. 1) is clear: sustained acti-
vation of gM below threshold helps prevent repetitive spiking
whereas the pulsatile kinetics of gAHP help enforce the regularity
of repetitive spiking.

To explore these issues further, we used bifurcation analysis to
demonstrate how differences in the activation properties of IM

and IAHP affect spiking. A bifurcation refers to an abrupt, quali-
tative change in the behavior of the system (e.g., transition be-
tween quiescence and repetitive spiking) as a parameter (e.g., IDC

or gadapt) is varied. Our Morris-Lecar model is three-dimensional
because it has conductances that operate on three time scales.
Since gM and gAHP are slower than conductances responsible for
spike generation, the model can be reduced from 3D to 2D by

treating z (which controls activation of gadapt) as a parameter (see
Materials and Methods). Bifurcation diagrams in Figure 6A,B
were generated by systematically varying z in the 2D model to
determine how strong IM and IAHP must be to terminate spiking
for a given IDC. In turn, simulations in the 3D model (i.e., with z
treated as a variable) revealed how strongly IM and IAHP were
activated, and whether that was sufficient to terminate repetitive
spiking; results of those simulations are superimposed in black on
the bifurcation diagrams. With weak stimulation, IM activated
strongly enough to drive the system through the bifurcation and
terminate spiking (Fig. 6A, left panel); with strong stimulation,
IM was not sufficiently activated and repetitive spiking persisted
(Fig. 6A, right panel). In contrast, IAHP activated strongly enough
to force the system through the bifurcation at both stimulus in-
tensities, but, instead of stopping the neuron from spiking, the
system invariably drifted back across the bifurcation as IAHP

waned during the ISI (Fig. 6B).
According to the above analysis, IAHP forced the system to

straddle its bifurcation whereas IM caused the system to operate
on one or the other side of that bifurcation depending on IDC. The
consequences of this are evident on the V-w phase plane, which
shows the interaction between V (voltage) and w (activation of
IK,dr) (Fig. 6C–E). In the neuron with IM, the V- and w-nullclines

Figure 4. Effects of adaptation on spike-rate coding. A, Inset shows that a negative ISI correlation causes narrowing of the
distribution of ISIavg2 (i.e., running average of two consecutive ISIs) plotted here as normalized counts per bin fitted with a
Gaussian curve. 	noise �0.5 �A/cm 2 in A–D. Recall that ISI distribution was much narrower in the neuron with IAHP even without
averaging (Fig. 2 B). Narrower distributions overlap less, making it easier for an ideal observer to discriminate ISIs associated with
subtly different IDC (i.e., on the order of 1 SD of Inoise) as shown here using ROC analysis (see Results). Thick lines show fitted curves
( y � x/(a � bx) where a � b � 1). B, Averaging across multiple ISIs improved performance, especially when ISIs were
correlated: five uncorrelated (shuffled) ISIs needed to be averaged to achieve the same performance as averaging two correlated
ISIs. C, In neuron with IAHP, averaging across correlated ISIs rapidly improved discriminability of responses to 50 versus 51 �A/cm 2

with 	noise � 0.5 �A/cm 2; performance is reported as area under the ROC curve, which varies from 0.5–1.0 (chance to perfect,
respectively). Without averaging, neuron with IM performed better than neuron with IM but only by firing at much higher rates
(inset). D, A 5 Hz sine wave stimulus whose amplitude was adjusted to give � 1 spike/s modulation around a 25 spikes/s baseline
was clearly encoded in the neuron with IAHP (SNR � 6.8) but not in the neuron with IM (SNR � 1.3). Applying the same amplitude
sine wave in both neurons caused 4.4 spikes/s modulation in the neuron with IAHP (because of its steeper f–I curve) but, despite
increasing the signal, the SNR only reached 6.8 because of the strong noise. SNR was calculated as the ratio of power at 5Hz for the
response with the 5 Hz signal vs without that signal but with equivalent noise.
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either intersected (and thus prevented repetitive spiking for IDC


 I*) or did not intersect (and thus allowed repetitive spiking for
IDC � I*) (Fig. 6D). In the neuron with IAHP, however, phase
plane geometry changed over the course of the ISI: V- and
w-nullclines intersected early in the ISI (thus making the neuron
refractory while gAHP was strong), but they did not intersect later
in the ISI (once gAHP had waned) (Fig. 6E). Using the 3D model,
IDC was systematically varied to determine the stimulus ranges in
which the neuron operated in these different regimes. The neu-
ron with IM stabilized its voltage just below threshold over a

reasonably broad range of IDC (Fig. 6F); this corresponds to sus-
tained, subthreshold activation of IM preventing repetitive spik-
ing, as in the left panel of Figure 6D. In contrast, the neuron with
IAHP could not stabilize its voltage in this perithreshold regimen
and instead straddled threshold (Fig. 6G), as in Figure 6E.

Effects of operating regimen on neural coding
Analysis described above showed that IAHP caused transient post-
spike refractoriness whereas that relative refractory period was
completely absent from neurons with IM or those without adap-

Figure 5. Effects of adaptation on spike-time coding. A, In neuron with IAHP, timing of “signal” spikes (elicited by signal of interest) could be disrupted for several hundred milliseconds by “noise”
spikes (elicited by pulses indicated by red arrows); degree of disruption depended on timing of noise spikes (compare panels). By comparison, noise spikes caused minimal disruption in neuron with
IM. B, The same effects were seen more dramatically when continuous noise (	noise � 0.5 �A/cm 2) was superimposed on a dynamic signal (	signal � 1 �A/cm 2). C, Rasters (top) show spike times
in neuron stimulated by signal with or without noise that varied across trials (red and black spikes, respectively). Black reference spikes were used to trigger voltage sweeps from trials with noise;
timing of spikes in those triggered sweeps were compared with timing of reference spikes, as shown in the histogram. D, In top panel, cumulative probability of triggered spikes is plotted against
�t relative to reference spikes. Middle panel shows same analysis after shuffling the reference spike train, which provides a necessary control for coincident spikes based on chance (which varies with
spike rate) rather than response to a common dynamic signal. Bottom panel shows corrected measure (top panel minus middle panel). Corrected curves consistently exhibited a peak beyond which
the probability of triggered spikes increased more because of chance coincidence than because of elicitation by a common signal. Maximal cumulative probability of triggered spike (i.e., peak of
corrected curves) is denoted reliability and plotted in E and F for different signal-to-noise ratios (	 in �A/cm 2). For a given firing rate, neuron with IM or no adaptation exhibited the same reliability
whereas neuron with IAHP consistently exhibited lower reliability. Increasing g�M to a value that prevented the neuron from firing repetitively to IDC as high as 70 �A/cm 2 improved reliability for IDC


70 �A/cm 2 (compare open squares with filled squares), whereas increasing g�AHP did not uniformly improve reliability.
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tation. To measure how this refractoriness impacted spike-rate
coding, we applied a “noise” pulse at different phases of the ISI
and measured disruption of the ISI (Fig. 7A). In all cells, the pulse
could shorten or lengthen the ISI (i.e., advance or delay the next
spike) depending on the phase at which the pulse occurred. How-
ever, maximal disruption was far smaller in the cell with IAHP than
in other cells, and there was little or no disruption if the pulse
occurred in the first half of the ISI (Fig. 7A, right panel), during

which strong activation of IAHP makes the neuron refractory (see
above). Thus, in the neuron with IAHP, effects of high-frequency
noise were actively minimized during much of the ISI, leaving a
relatively short interval during which effects of noise could accu-
mulate and affect timing of the next spike. To investigate how
adaptation dynamics impact spike-time coding, we applied a
“stimulus” pulse at different phases of the ISI and measured the
influence of phase on latency between the pulse and the spike

Figure 6. Dynamical changes in strength of adaptation and their consequences for spiking. Strength of adaptation[IM (A), IAHP (B)] was systematically varied in the 2D model (with z treated as
a bifurcation parameter; gadapt � g�z) to determine the strength of adaptation required to prevent repetitive spiking. Bifurcation diagrams (top) show voltage at the fixed point (i.e., subthreshold
voltage) and at the max/min of the limit cycle (i.e., spike). Voltage dependency of z is represented by a thin red line, which intercepts the stable fixed point (solid orange line) only in the neuron with
IM, and only for weak stimulation (left panel of A). This predicts that the neuron with IM will stop spiking when stimulated weakly, but will continue spiking when stimulated more strongly, whereas
the neuron with IAHP will never stop spiking on account of adaptation. Simulations in 3D model (with z treated as a variable) are superimposed in black and confirmed our prediction. Notice that gAHP

increased high enough to force the system through its bifurcation but waned during the ISI, thus allowing the system to drift back across the bifurcation (B), unlike gM, which stabilized at a constant
(or nearly constant) value (A). Bottom panels show steady-state firing rate ( fss) as a function of gadapt; f can be extrapolated based on how high gadapt increases in the 3D model simulations (gray
arrows). C, Typical phase plane showing fast activation variable V plotted against slower recovery variable w. V-nullcline (color) and w-nullcline (gray) show where V� and w� � 0, respectively.
Circles show V and w at each time point over the course of one spike. Yellow boxed region is shown enlarged in D and E. D, With weak stimulation (left), neuron with IM settled at the intersection
between the V- and w-nullclines (arrowhead). With stronger stimulation (right), neuron spiked repetitively because nullclines did not intersect. V-nullcline is shown for maximum (red) and
minimum (green) activation of gM during steady-state spiking; the difference is negligible because fluctuation in gM is small (see A). E, In contrast, V- and w-nullclines intersected when gAHP was
strongly activated (red), but not when it was weakly activated (green); strengths of gAHP correspond to labels on left panel of B. Large red and green circles on right show diagram representation of
refractory and excitable conditions, respectively. (F, G) For these bifurcation diagrams, IDC was systematically varied in the 3D model; unstable solutions are not shown. Colored regions show
conditions below I* (subth., white), above I* (suprath., yellow), or within 1 SD of I* (perith., green) based on Isignal fluctuations when 	signal � 1 �A/cm 2 (SD � 1.6 �A/cm 2). I* was determined
by simulations in the 2D model in which z was held constant at different values while IDC was systematically varied to determine at the lowest IDC at which the neuron spiked repetitively. F, IM

produced sustained outward current that offset increases in IDC so that the neuron operated in the perithreshold regimen over a relatively broad range of IDC (arrow). G, IAHP did not increase until IDC

exceeded I*; thereafter, fluctuations in gM straddled I*, consistent with analysis in B and E.
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(Fig. 7B). As expected, pulses applied earlier in the ISI elicited
spikes with longer latencies in all cells, although that effect was
most pronounced in the neuron with IAHP. This is a natural con-
sequence of the noise reduction mechanism described above: the
same mechanism that reduces effects of “noise” on the ISI will
reduce responsiveness to fast “signals.”

Unlike the transient refractoriness caused by IAHP, IM could
stabilize voltage below threshold and thus terminate spiking
driven by IDC (see above). This ability to place the neuron in a
perithreshold operating regimen depends on how strongly IM is
activated below threshold; therefore, to investigate how opera-
tion in the perithreshold regimen affects spike-time coding, we
varied the strength and activation properties of IM (Fig. 8A) to
change the range of IDC over which the neuron operates in the
perithreshold regimen. Increasing subthreshold activation of IM

caused the predicted widening of the range of perithreshold op-
eration (Fig. 8B). Expanding the range of perithreshold opera-
tion allowed spike timing reliability to be maintained at a high
level over an increasing broad range of IDC (Fig. 8C, left panel),
but it did not affect the relationship between reliability and firing
rate (Fig. 8C, right panel), consistent with Figure 5E. Figure 8D
shows that increasingly strong subthreshold activation of IM

caused progressively larger shifts in I* (dashed curves), but the
neuron was nonetheless able to spike at low rates (solid curves)
because average voltage remained so close to threshold (see Fig.
8B) that even weak dynamic stimulation caused fluctuation-
driven spiking. It is precisely these fluctuation-driven spikes that
are so reliable; thus, IM improves spike-time coding by encour-
aging the neuron to operate in the perithreshold regimen in
which spikes are generated by fast stimulus fluctuations.

Our final step was to demonstrate how
IM encourages reliable fluctuation-driven
spiking. Figure 8D reveals that not only
does subthreshold activation of IM cause a
shift in I*, it also causes the f–IDC curve to
become discontinuous, meaning spiking
driven by constant input cannot be main-
tained below a certain rate. This switch
from continuous to discontinuous f–IDC

curve reflects conversion of the neuron
from class 1 to class 2 according to
Hodgkin’s classification of intrinsic excit-
ability (Hodgkin, 1948). This conversion
is also evident from bifurcation analysis in
which IDC was systematically varied in the
3D model (Fig. 9A) and from the shape of
the steady-state I–V curve (Fig. 9B) (Rinzel
and Ermentrout, 1998). In the neuron
without adaptation, spike threshold corre-
sponds to the peak of the steady-state I–V
curve, which means net steady-state cur-
rent becomes inward as IDC exceeds I*
(Fig. 9B, top); this is similarly true in the
neuron with IAHP (data not shown). In
contrast, subthreshold activation of IM

means that steady-state current is outward
at threshold (Fig. 9B, bottom). In the latter
case, fast-activating inward current must
outrun slow-activating IM in order for
spikes to be generated (this is the basis for
spike generation through a Hopf bifurca-
tion in class 2 neurons); in the former case,
no such time-dependent competition oc-

curs between inward and outward current because steady-state
current is inward (this is the basis for spike generation through a
saddle-nose on invariant circle or SNIC bifurcation). See Prescott
et al. (2008a) for additional details on the dynamics of spike
initiation in class 1 and 2 neurons.

For purposes here, the important point is that subthreshold
activation of IM causes the neuron to spike selectively in re-
sponse to those stimulus fluctuations that cause voltage to
change faster than IM can counteract; this selectivity depends
on IM activation kinetics relative to stimulus kinetics. To illus-
trate this, Figure 9C shows that many more spikes were gen-
erated when activation of IM (blue trace) could not keep up
with fast Isignal fluctuations (red trace) than when Isignal fluc-
tuations were slow enough that activation of IM could keep up
(compare top and bottom panels). Power spectral analysis of
voltage responses confirmed that IM reduced voltage changes
driven by low-frequency input (Fig. 9C, right). As shown pre-
viously (Mainen and Sejnowski, 1995), slow signals drive un-
reliable spiking (Fig. 9D, gray curve); it is, therefore, signifi-
cant that slow signals were prevented from driving
(unreliable) spiking in the neuron with IM (see above). In fact,
for the neuron without adaptation, reliability of spiking
driven by fast signals was degraded more by slow noise than by
fast noise (compare solid red and black curves on Fig. 9D); the
opposite was true for the neuron with IM (dotted curves on
Fig. 9D). Overall, these results show how IM implements a
high-pass filter that prevents the neuron from generating un-
reliable spikes to slow signals; this obviously compromises the
ability of a neuron with IM to encode slow signals with a spike-

Figure 7. Effects of refractoriness on spike-rate coding and spike-time coding. A, To investigate effects of refractoriness on
spike-rate coding, a biphasic “noise” pulse was applied at different phases of the ISI. The 0.5 �A/cm 2 pulse comprised a 5-ms-long
up phase and a 5-ms-long down phase (therefore giving 0 �A/cm 2 mean) and was tested in both orientations (up-down and
down-up). IDC was adjusted to elicit 10 spikes/s in each neuron. Bottom graphs show percentage change in ISI caused by the pulse.
ISIs in the neuron with IAHP (right) were disrupted much less than in other cells and were unaffected by pulses applied early in the
ISI, when the neuron was refractory. Top traces show voltage and gadapt during one ISI. Circles are diagram representations of each
dynamical condition, as explained in Figure 6 E. B, To investigate effects of refractoriness on spike-time coding, a monophasic
“signal” pulse (amplitude indicated on figure) was applied at different phases and latency from stimulus onset to the spike was
measured. Latency was much more sensitive to phase in the neuron with IAHP, and was longer at all phases than in other neurons.
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rate code, but it clearly improves encod-
ing of fast signals using a spike-time code.

Discussion
Results of this study indicate that spike-
frequency adaptation has opposite effects
on neural coding depending on the bio-
physical mechanism responsible for adap-
tation. Adaptation mediated by IAHP im-
plements noise shaping that improves
spike-rate coding of constant or low-
frequency signals, but which compromises
spike-time coding. Conversely, adaptation
mediated by IM implements high-pass fil-
tering that improves spike-time coding of
high-frequency signals, but which com-
promises spike-rate coding. Despite their
opposite effects, coexistence of IAHP and
IM within a single neuron produces net
benefit for both spike-rate and spike-time
coding, although which form of adapta-
tion has the predominant effect depends
on the neuron’s preferred coding strategy
as reflected by its operating regimen.

We propose that spike-rate coding is
best achieved when the neuron fires repet-
itively (or oscillates, to use dynamics ter-
minology) at a rate proportional to a con-
stant or low-frequency signal. To
accurately encode the signal amplitude
with as few spikes as possible, variability of
the ISI (oscillation period) should be min-
imized; recall that instantaneous firing
rate is the reciprocal of the ISI. Spike-time
coding, however, is best achieved when the
neuron generates well timed, isolated
spikes; by “isolated” we mean that the gen-
eration of one spike is independent from
the preceding spike. Fluctuation-driven
spikes produced when the neuron is oper-
ating in the perithreshold regimen are gen-
erated independently of one another,
whereas spikes generated as part of an on-
going oscillation are not generated independently since the oscil-
lation period dictates the time of the next spike based on time
since the last spike. Furthermore, if the neuron is oscillating
(spiking repetitively), the timing of a spike elicited by a rapid
stimulus upstroke is confounded by the phase of the oscillation
during which that stimulus occurs (Fig. 7). Thus, spike-time cod-
ing is improved when IM causes the neuron to operate in the
perithreshold regimen (by discouraging repetitive spiking and
encouraging fluctuation-driven spiking), whereas spike-rate
coding is improved when IAHP regularizes the repetitive spiking
associated with operation in the suprathreshold regimen (by re-
ducing the effects of noise on ISI variability).

IM and IAHP thus work toward antithetical goals, namely, dis-
couraging or encouraging regular spiking, respectively. Achiev-
ing these different goals relies on the distinct activation properties
of each current. As outlined in the Introduction, IAHP is activated
during the spike, which leads to its pulsatile kinetics: gAHP in-
creases abruptly after each spike, but because its activation can-
not be sustained, gAHP invariably decreases until the next spike
occurs. Pulsatile kinetics would be reduced if IAHP was signifi-

cantly activated via Ca 2� channels activated at subthreshold volt-
ages or if Ca 2� kinetics were particularly slow, either of which can
occur in some neurons (Pineda et al., 1999; Wolfart and Roeper,
2002); indeed, unlike IAHP, sodium-activated potassium channels
are activated via persistent sodium currents activated at sub-
threshold potentials (Schwindt et al., 1989; Sanchez-Vives et al.,
2000) and would therefore be predicted to have effects more like
IM (see below). In any case, activation of IAHP is spike dependent
and pulsatile in most neurons, including pyramidal neurons
whose medium-duration AHP is mediated by SK channels
(Schwindt et al., 1988;Villalobos et al., 2004). Previous experi-
mental studies have shown that IAHP affects the slope of the f–I
curve (Lorenzon and Foehring, 1992; Schwindt et al., 1988; Miles
et al., 2005) and the regularity of spiking (Miles et al., 2005),
consistent with our results (Figs. 1, 2). By comparison, IM has
been shown to terminate repetitive spiking (Cole and Nicoll, 1983)
and to subtractively modulate the f–I curve (Alaburda et al., 2002)
(Fig. 1), while its involvement in phenomena like subthreshold res-
onance (Hu et al., 2002; Prescott et al., 2008b) attests to the func-
tional significance of its activation at subthreshold voltages.

Figure 8. Effects of perithreshold operation on spike-time coding. A, Maximal conductance (g�M) and voltage dependency (�z

and �z) were varied to adjust how strongly IM was activated at voltages below threshold. Voltage threshold (V*) can vary but its
approximate value is indicated on the graph. B, Increasing subthreshold activation of IM extended the range of IDC over which the
neuron operated in the perithreshold regimen, as indicated by arrows. Arrows are shown again on left panel of C, together with
arrow from Figure 6 F. Bifurcation diagrams shown here were generated as explained in Figure 6 F, G. C, Extension of the range of
perithreshold operation demonstrated in B was paralleled by an extension of the range of IDC over which spike-timing reliability
remained high (left); relationship between reliability and firing rate remained unchanged (right), consistent with results in Figure
5E. D, Increasing subthreshold activation of IM resulted in increased shifting of I*, which is seen most clearly when comparing f–I
curves generated by constant stimulation (dashed gray curves). Notice also that increased activation of IM caused dashed curves to
become discontinuous, i.e., curves did not extend to 0 spikes/s; the implications of this are discussed in Figure 9. Inclusion of
high-frequency noise/signal caused fluctuation-driven spiking that was manifested on f–I curves as a leftward tail (solid curves).
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The distinct activation properties of IAHP and IM explain the
different effects of these two forms of adaptation (see Fig. 6). As
firing rate increases, so too will spike-dependent activation of
IAHP, which means IAHP will increase high enough to force the

system through its SNIC bifurcation (notwithstanding saturation
effects). This would terminate spiking were it not for the fact that
activation of IAHP invariably wanes during the ISI, eventually
allowing another spike to occur, but not without influencing

Figure 9. Effects of IM on spike initiating dynamics. A, Top panels shown bifurcation diagrams generated by varying IDC in the 3D model (i.e., with z treated as a parameter). Diagrams show voltage
at the fixed point (i.e., subthreshold voltage) and at the max/min of the limit cycle (i.e., spike). Neuron with IM initiated spikes through a Hopf bifurcation whereas the neuron without adaptation
or the one with IAHP initiated spikes through a saddle-node on invariant circle or SNIC bifurcation (see Results). Bottom panels show corresponding f–I curves. Notice that f–I curve for neuron with
IM is discontinuous, which is consistent with the distinct bifurcation mechanism in this cell. For all data on this figure, g�M � 0.5 mS/cm 2, �z �
40 mV, and �z � 2 mV. B, Unlike neuron without
adaptation (top) or with IAHP (data not shown), steady-state I–V curve from neuron with IM had a positive slope at threshold (bottom), meaning steady-state current was outward because of
subthreshold activation of IM. Circles indicate threshold as determined in A. Iinstantaneous � INa � Ileak; Isteady-state � INa � Ileak � IK � Iadapt. C, Sample traces show voltage (black) and activation
of IM (zM, blue) in response to Isignal (red). Fast-varying Isignal (top) elicited many more spikes than slow-varying Isignal (bottom) despite equivalent IDC and Isignal having equivalent SD (see Materials
and Methods). Power spectra on right confirmed that IM attenuated voltage changes driven by low-frequency input. Insets show power spectra of stimuli. D, Reliability of spike timing is shown after
correction based on the methodology explained in Figure 5D. In neuron without adaptation (solid lines), spiking driven by slow signal was severely disrupted by fast noise (gray), while spiking driven
by fast signal was disrupted more by slow noise (red) than by fast noise (black). In contrast, neuron with IM (dotted lines) did not respond to slow signal, and the spiking driven by fast signal was
disrupted less by slow noise (red) than it was by fast noise (black). Parameters for fast and slow signals were as in C; SNR was 0.5 in all cases. IDC was 36 �A/cm 2 for neuron without adaptation and
44 �A/cm 2 for neuron with IM to give �12 spikes/s in both based on fast signal/fast noise stimulation.
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when that spike occurs relative to the last spike (which serves to
reduce the effects of noise on ISI variability) (Fig. 7A). Time-
averaged voltage is not linearly related to firing rate (Holt and
Koch, 1997) (data not shown), with the effect that voltage-
dependent activation of IM does not keep pace with increases in
firing rate; consequently, IM may fail to force the system through
the SNIC bifurcation depending on stimulus intensity. However,
when IM is activated strongly enough to force the system through
the bifurcation, its sustained activation prevents the system from
drifting back across that bifurcation, thus ensuring sustained ter-
mination of repetitive spiking driven by slow input and, instead,
selectively allowing spikes driven by fast stimulus fluctuations
(see below). In short, these two forms of adaptation encourage
the neuron to operate in very different regimes: IAHP encourages
regular, repetitive spiking whose rate is proportional to how
much IDC exceeds I* whereas IM modulates I* so that that neuron
operates in the perithreshold regimen in which well timed spikes
are elicited independently by fast stimulus fluctuations.

Furthermore, although both IAHP and IM modulate neuronal
excitability through a negative feedback mechanism, that feed-
back targets different aspects of responsiveness. Spike-dependent
activation of IAHP means that IAHP mediates feedback directly
onto firing rate; effects include reducing average firing rate as well
as reducing the variability of firing rate via post-spike refractori-
ness and negative ISI correlations. These effects benefit spike-rate
coding, as already explained, and may explain effects of IAHP on
firing rate gain modulation by noise (Higgs et al., 2006) insofar as
increasingly strong noise will more readily overcome the noise
reduction mechanism implemented by IAHP (Fig. 7A). However,
subthreshold voltage-dependent activation of IM means that IM

mediates feedback onto membrane potential. Because IM has rel-
atively slow kinetics, its feedback implements a high-pass filter
(Benda et al., 2005) that minimizes voltage changes caused by
low- frequency signals, thereby accentuating the capacity of high-
frequency signals to drive rapid voltage changes that elicit well
timed spikes (Fig. 9). This has obvious benefits for spike-time
coding, consistent with previously reported effects of sustained
outward currents on spike-timing reliability (Schreiber et al.,
2004; Billimoria et al., 2006; Prescott et al., 2006). Similarly,
spike-independent activation of the sodium-dependent potas-
sium current (see above) is consistent with the ability of that
current to decorrelate the spiking response to temporally corre-
lated input (Wang et al., 2003).

To conclude, detailed quantitative analysis reveals that adap-
tation mediated by different currents has opposite effects de-
pending on the neural code: IAHP improves spike-rate coding at
the expense of spike-time coding, whereas IM improves spike-
time coding at the expense of spike-rate coding. These dichoto-
mous effects arise from the distinct activation properties of IAHP

and IM, as revealed by dynamical systems analysis of our simple
model. Investigating how adaptation impacts neural dynamics
and, in turn, how neural dynamics impact neural coding repre-
sents a useful stepwise approach for relating biophysical mecha-
nisms with neural coding. Overall, these results clearly indicate
that spike-frequency adaptation is not a generic process, and that
greater care should be taken in identifying the type of adaptation
and its specific effects.
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