
Abstract. Synchronously spiking neurons have been
observed in the cerebral cortex and the hippocampus.
In computer models, synchronous spike volleys may be
propagated across appropriately connected neuron pop-
ulations. However, it is unclear how the appropriate
synaptic connectivity is set up during development and
maintained during adult learning. We performed com-
puter simulations to investigate the influence of tempo-
rally asymmetric Hebbian synaptic plasticity on the
propagation of spike volleys. In addition to feedforward
connections, recurrent connections were included be-
tween and within neuron populations and spike trans-
mission delays varied due to axonal, synaptic and
dendritic transmission. We found that repeated presen-
tations of input volleys decreased the synaptic conduc-
tances of intragroup and feedback connections while
synaptic conductances of feedforward connections with
short delays became stronger than those of connections
with longer delays. These adaptations led to the
synchronization of spike volleys as they propagated
across neuron populations. The findings suggests that
temporally asymmetric Hebbian learning may enhance
synchronized spiking within small populations of neu-
rons in cortical and hippocampal areas and familiar
stimuli may produce synchronized spike volleys that are
rapidly propagated across neural tissue.

1 Introduction

The average firing rate of a neuron is often considered
the primary measure of its activity. Recent studies have
reported that spike synchronization occurs in cortical
neurons with millisecond precision and is modulated by

task conditions (Riehle et al. 1997; Prut et al. 1998; but
see Oram et al. 1999; Steinmetz et al. 2000; Fries et al.
2001; Salinas and Sejnowski 2001). Since several
presynaptic spikes are usually required to produce a
postsynaptic spike, synchronous spikes in postsynaptic
neurons may be elicited by synchronous spikes in a
population of presynaptic neurons (Salinas and Sejnow-
ski 2000). It has been speculated that this sequence is
repeated and that neuron populations can propagate
synchronous spikes (Abeles 1991). A similar hypothesis
was proposed for hippocampal place cells, where spike
synchronization within tens of milliseconds was reported
for place cells that code for the same location of the
animal (Skaggs et al. 1996). Such spike synchronization
occurs in pyramidal place cells of CA3 and CA1 regions
as well as in other stages of hippocampal processing
(O’Keefe and Recce 1993) and seems to be propagated
across these processing stages (Skaggs et al. 1996).
Simulated networks consisting of integrate-and-fire

neurons propagate synchronized spike volleys across
neuron populations without loss of synchrony (Herr-
mann et al. 1995; Diesmann et al. 1999). However, these
networks require exclusive feedforward connections be-
tween neuron populations, which seems to be inconsis-
tent with cortical and hippocampal anatomy. Feedback
and intragroup connections are likely to lead to recur-
rent excitation and would thereby disperse synchronous
activity. In addition, these simulation studies did not
take into account that axonal spike propagation delays
between pyramidal neurons vary considerably, which
would further disperse spike volleys. What mechanisms
could shape neural networks to make propagation of
synchronous spike volleys possible?
We investigate here the role of this temporally

asymmetric Hebbian learning in sharpening spike syn-
chronization. Temporally asymmetric Hebbian learning
is characterized by long-term potentiation (LTP) if a
presynaptic spike precedes a postsynaptic spike within a
brief time window or by long-term depression (LTD)
if the temporal order of the spikes is reversed
(Fig. 1a). These mechanisms for synaptic plasticity have
been observed in connections between cortical and
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hippocampal pyramidal neurons (Markram et al. 1997;
Bi and Poo 1998; Debanne et al. 1998; Feldmann 2000).
To investigate how temporally asymmetric Hebbian
learning affects synchronous spikes, we have simulated
the propagation of spike volleys in a network of inte-
grate-and-fire neurons with feedforward, feedback, and
intragroup connections and with randomly varying
connection delays (Fig. 1b). We then show that the
adaptation of the excitatory conductances produces
spike synchronization within small neuron populations.

2 Methods

2.1 Neuron model

The complete network consists of leaky integrate-and-
fire neurons with excitatory neurons (AMPA synapses)

and inhibitory neurons (GABA-like synapses). The
membrane potential, V(t), of each neuron is computed
with

C
dV
dt

¼ gleakðVrest�V Þ þ IAMPA � IGABA þ Inoise ;

with a resting membrane potential Vrest ¼ �74 mV, leak
conductances gleak ¼ 25 nS for excitatory and 18 nS for
inhibitory neurons, membrane time constants s ¼ 20 ms
(excitatory) and 12 ms (inhibitory), and a membrane
capacity C ¼ sgleak. When the membrane potential V ðtÞ
reaches a threshold of �54 mV, a spike is generated and
the voltage is reset to �60 mV (Troyer and Miller 1997).
The duration of an absolute refractory period is 2 ms.
The term Inoise represents influences of neurons that are
not explicitly simulated and is computed as a shot noise
with a mean value of 408 pA with a standard deviation
of 60 pA (Mainen and Sejnowski 1995). For each
synapse, the time course of the synaptic current is
modeled with

IsynðtÞ ¼ �gðtÞðVsyn � V ðtÞÞ
X

k

expð�ðt � tkÞ=ssynÞ ;

where tk denotes the arrival time of the kth presynaptic
spike. A synaptic reversal potential Vsyn is set to zero for
excitatory and to �75 mV for inhibitory synapses. A
time constant ssyn is set to 3 ms for all synapses
(Spruston et al. 1995). The variable gðtÞ represents the
maximal conductance of a connection. For the chosen
parameters, a conductance of 2 nS for an excitatory
connection provides, for one presynaptic spike, a voltage
increase of about 1 mV in the postsynaptic neuron. The
values of the initial conductances are set similar to
measured values and tuned in exploratory simulations.
The initial conductances, gðtÞ, for excitatory connections
are selected from a Gaussian distribution with a mean of
1.8 nA and a standard deviation of 0.6 times the mean
conductance (Markram et al. 1998). The conductances
are limited to values below 2.7 times the mean conduc-
tance (Markram et al. 1998). For inhibitory connections,
the conductances are set to 8 nS (Gupta et al. 2000).
Long-term adaptation of connection conductances

according to a temporally asymmetric Hebbian rule
appears to occur between excitatory cortical and striatal
neurons (Markram et al. 1997; Bi and Poo 1998; Deb-
anne et al. 1998; Feldmann 2000; but see Tao et al. 2000)
and is implemented by adapting the connection con-
ductances according to experimental findings in the
hippocampus (Selig et al. 1999). As in previous work
(Song et al. 2000; Rubin et al. 2000; van Rossum 2000),
the amplitude of LTP or LTD depends on the time
difference between presynaptic and postsynaptic spike
arrivals and is computed using the modification func-
tions

FLTPðtÞ ¼
X

k

expð�ðt � tkÞ=sLTPÞ

FLTDðtÞ ¼ �
X

m

expð�ðt � tmÞ=sLTDÞ

Fig. 1. a Temporally asymmetric Hebbian learning. A synapse is
potentiated if the presynaptic spike precedes the postsynaptic spike
ðtpre � tpost > 0Þ and depressed if the presynaptic spike follows the
postsynaptic spike ðtpre � tpost < 0Þ. Modification functions FLTP and
FLTD are shown versus the arrival time difference between the
presynaptic and the postsynaptic spike. b Network architecture. The
networks consist of 45 excitatory and 9 inhibitory integrate-and-fire
neurons that are subdivided into three groups with 15 excitatory and 3
inhibitory neurons within each group (not all neurons are shown). The
axonal propagation delays between groups randomly vary between 4
ms and 14 ms, and the axonal propagation delays within groups are 4
ms. The excitatory projections to excitatory neurons are adapted
according to temporally asymmetric Hebbian learning (Sect. 2)

441



where tk and tm denote the arrival times of the kth
presynaptic and mth postsynaptic spike, respectively
(t � tk � 0; t � tm � 0). Decay times sLTP = 20 ms and
sLTD = 60 ms are estimated from experimental data
measured in the cortex (Feldman 2000) and hippocam-
pus (Bi and Poo 1998; Debanne 1998).
Following Rubin et al. (2000), we assume that a

postsynaptic spike induces a change in the conductance
that is proportional to the difference between the current
conductance and the maximal conductance:

DgðtÞ ¼ gððgmax � gðtÞÞFLTPðtÞÞ ;

whereas a presynaptic spike induces a change

DgðtÞ ¼ ggðtÞFLTDðtÞ :

The learning rate, g, is set to a value of 0.18.

2.2 Network connectivity

The complete network model consisted of repeated
neuron populations with each group containing 15
excitatory and three inhibitory neurons (Fig. 1b). To
guarantee propagation of the first input volley, all
excitatory neurons in a group projected to all neurons in
the following group. The probability for feedback and
intragroup connections between excitatory neurons was
18%. All connections between excitatory neurons were
adaptive, whereas the other connections were not
adaptive. As the distance between neuron populations
is thought to be larger than that within neuron
populations, the transmission delays of feedforward
and feedback connections were randomly selected from
a uniform distribution between 4 and 14 ms, and the
connection delays within populations were set to 4 ms.
The selected transmission delay range is similar to that
of delays between spikes of CA3 neurons and EPSP
onsets in CA1 neurons (Debanne et al. 1996). For
cortical horizontal axons with transmission velocities
in the order of 0.1 mm/ms (Bringuier et al. 1999),
transmission delays correspond to axons of up to about
1 mm length. To be consistent in each of the repeated
neuron populations, the input axons were given the same
delays and adaptation properties as the other feedfor-
ward projections.
Inhibitory neurons project to all excitatory neurons

within the same population. Since the modeled inhibi-
tory neurons are assumed to project only locally, they
did not project outside of their neuron group. Therefore,
excitatory responses to an input volley should arrive
several milliseconds before inhibitory responses to the
same volley as is consistent with experimental findings
(Volgushev et al. 1993).

2.3 Newtwork input

The input axons are activated with 20 spike volleys at a
frequency of 10 Hz. For each input volley, spike times
are randomly selected from a Gaussian distribution with

a standard deviation of 10 ms. The maximal dispersion
of input spike volleys is then limited by setting spike time
variations exceeding 25 ms to this maximal value. One
spike is presented to each input axon per volley. In
addition to these spike volleys, input axons are activated
at random times with an average frequency of one spike
per second to mimic background activity.

2.4 Computation of number of spikes per volley
and volley dispersion

Two measures are defined to characterize spike volleys:
the number of spikes per volley and the volley disper-
sion. Both measures are computed using a time interval
of 100 ms duration that begins with the earliest possible
response to an input volley. The earliest possible
response is computed with the maximal variation of
the input spike volley and the minimal propagation
delay time for each successive group. The sum of all
spikes in a neuron group during this interval is called the
number of spikes per volley. To compute the volley
dispersion, the background activity is eliminated by
subtracting a 500 Hz baseline from the spike histogram
of all neurons in a group. From this net histogram, the
volley dispersion is computed as the standard deviation
of the spike times.

2.5 Simulations

The values of several model parameters are tuned in
exploratory simulations within physiologically plausible
limits. The mean value of the initial conductances and
the probability for feedback and intragroup connections
are set to achieve propagation of the first input volley
across all neuron populations. Furthermore, the value of
the maximal excitatory conductance is set to stabilize the
average number of spikes per volley during learning. The
value of the learning rate, g, guarantees small conduc-
tance changes per volley and sufficient changes for 20
volley presentations.
The equations are integrated using time steps of 2 ms

and the results confirmed with 1 ms time steps. The
source code, written in the MATLAB programming
language, is available at www.cnl.salk.edu/�suri/
Suri_Sejn.

3 Results

To investigate the propagation of spike volleys across
neuron populations, the 15 input axons of the simulated
network were stimulated with 20 spike volleys presented
at a frequency of 10 Hz (Sect. 2). Due to repeated input
volley presentations, propagation across neuron popu-
lations synchronized spike volleys (Fig. 2a). Since tem-
porally asymmetric Hebbian learning depends on the
time difference between presynaptic and postsynaptic
spikes, it was investigated whether the connection con-
ductances depend on the arrival times of the presynaptic
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spikes within the 20th spike volley. For each synaptic
connection, the conductance was computed as a func-
tion of the spike arrival time respective to the center of
the 20th input spike volley. For all three neuron
populations, learning significantly strengthened synaps-
es transmitting early presynaptic spikes as compared to
those transmitting late presynaptic spikes (group 1:
correlation coefficient =�0:49, probability for nonzero
correlation coefficient tð305Þ ¼ 9:8, p < 0:001; group 2:
correlation ¼ �0:74, tð279Þ ¼ 18, p < 0:001; group 3:
correlation ¼ �0:36, tð265Þ ¼ 6:3, p < 0:001). Without
learning, there were no correlations between the arrival
times and the conductances (not shown), since the initial
conductances were randomly selected (Sect. 2). Spikes
transmitted by feedforward connections should usually
precede spikes transmitted by feedback and intragroup
connections because each connection adds an additional

delay. Since learning led to a negative correlation
between spike arrival times and connection strengths,
conductances of feedforward connections were strength-
ened while those of intragroup and feedback connec-
tions were weakened. For the same reason, feedforward
connections with short connection delays became sig-
nificantly stronger than those with long connection
delays (Fig. 2b). The simulation shown in Fig. 2a was
repeated 500 times with different seeds of the pseudo-
random number generators. Figure 3 depicts the
computed average firing rates. As shown in Fig. 2a,
propagation across neuron populations progressively
synchronized spike volleys due to learning (dispersion �
standard error in volley 20 was for input 6:8� 0:1 ms;
group one 4:3� 0:1 ms; group two 3:3� 0:1 ms; group
three 2:7� 0:07 ms). This synchronization was not
related to a change in the number of spikes per volley
(input 16:51� 0:05 spikes; group one 14:9� 0:1; group
two 15:7� 0:2 spikes; group three 16:9� 0:3 spikes).
Without temporally asymmetric Hebbian learning
(learning rate g ¼ 0), firing rates in 72 simulations
increased to high and sustained values, which led to a
progressively increasing baseline of the average firing
rate. Even after removing these 72 simulations with high
firing rates as outliers (criterion: more than 75 spikes in
the last 100 ms of the simulation), propagation across
neuron populations did not synchronize spike volleys
(for 500 simulations dispersion � standard error in
volley 20 was for input 6:8� 0:1 ms; group one 6:1� 0:2
ms; group two 7:1� 0:2 ms; group three 6:2� 0:3 ms).
The numbers of spikes per volley remained unchanged
(input 16:5� 0:05 spikes; group one 16:8� 0:2 spikes;
group two 18:5� 0:5 spikes; group three 17:9� 0:6
spikes). To quantify synchronization, we defined a
criterion for each simulation to determine whether it
synchronized input volleys after learning. In group
three, we required that volley 20 consisted of at least

Fig. 2. a Propagation across neuron populations synchronized spike
volleys due to repeated input volley presentations. The 15 input axons
were activated with 20 spike volleys (top line) that were propagated
across neuron populations one (line 2), two (line 3), and three (line 4).
For each neuron group, spikes of the 15 excitatory neurons are shown
in 15 successive lines. Spike volleys became progressively synchronized
for successive groups and for successive volley presentations. Since all
time constants of the network are much smaller than the intervolley
interval, this synchronization appears to be caused by temporally
asymmetric Hebbian learning. b Connection strength after 20 volley
presentations depends on connection types and connection delays.
Synaptic conductances of feedforward connections (mean 2.1 nS)
became much larger than those of feedback (mean 0.26 nS) and
intragroup connections (mean 0.76 nS). Furthermore, conductances
of feedforward connections with short delays became larger than
those with long delays (correlation ¼ �0:57; tð673Þ ¼ 18; p < 0:001Þ

Fig. 3. Average spike frequencies of the input axons and the
excitatory neurons within groups with learning (red lines) compared
to without learning (blue lines). The simulation shown in Fig. 2a was
repeated 500 times for different seeds of the pseudo-random number
generators. As in Fig. 2a, propagation across neuron populations
progressively synchronized spike volleys due to temporally asymmet-
ric Hebbian learning. Learning led to rapid propagation of these
synchronized volleys. Without learning, the average baseline firing
rate progressively increased because for 72 out of the 500 simulations
recurrent activity led to high and sustained firing rates
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10 spikes with a maximum of 3.5 ms dispersion and that
the simulation was not an outlier due to high firing rates.
According to this criterion, 65� 2% of the simulations
synchronized with learning and only 17� 2% synchro-
nized without learning.
To investigate how adaptation in each connection

type contributes to propagation of synchronous spike
volleys, three variants of the network were studied: a
variant without adaptations in intragroup connections, a
variant without adaptations in feedback connections,
and a variant without adaptations in feedforward con-
nections. For two of the three variants, dispersions after
learning were larger than those of the standard network
(in volley 20 of group three: no adaptation within
groups, dispersion 4:4� 0:07 ms, 29:5� 0:5 spikes;
without adaptation in feedback connections, dispersion
4:2� 0:2 ms, 14:4� 0:5 spikes; without adaptation in
feedforward connections, dispersion 2:3� 0:07 ms,
11:2� 0:2 spikes). Furthermore, all three model variants
synchronized spike volleys significantly less frequently
than the standard network (17:5� 2%, 30� 2%, and
45:2� 2%, respectively), indicating that synchroniza-
tion was caused by adaptations of all connection types.
Since the size of neuron populations may influence
propagation of synchronous spikes, the number of
neurons in each group was doubled in an additional
network variant. Consequently, the number of input
axons and the number of spikes per input volley were
also doubled. This resulted in a network of 36 neurons
per group activated with 30 input spikes per volley. To
avoid network instability, the initial values of all syn-
aptic conductances were set to half of their standard
values. We found that the dispersions of the 20th volley
in the three neuron populations were slightly smaller
than those of the standard network and that the number
of spikes per volley decreased slightly (input 7:9� 0:07
ms, 33:0� 0:07 spikes; groups one 4:8� 0:08 ms,
25:8� 0:2 spikes; group two 3:3� 0:08 ms, 24:8� 0:4
spikes; group three 2:4� 0:05 ms, 25:2� 0:6 spikes).
Furthermore, synchronization of spike volleys was more
frequent than for the standard network (75� 2%),
suggesting that temporally asymmetric Hebbian learning
also synchronizes spike volleys for larger neuron popu-
lations.

4 Discussion

Our simulation results show that temporally asymmetric
Hebbian learning leads to progressive synchronization
of spike volleys as they are propagated across neuron
populations. Weight adaptation strengthens the synaps-
es that are activated by the first spikes in a volley and
weakens those that are activated by the latter spikes.
Therefore, feedforward connections with short axonal
delays are strengthened as compared to feedforward
connections with long axonal delays, feedback, and
intragroup connections. These adaptations cause the
synchronization of spike volleys within several tens of
neurons that share equal propagation delays to input
volleys. These findings suggest that temporally asym-

metric Hebbian learning facilitates rapid propagation of
synchronous spike volleys across cortical and hippo-
campal areas. Since this learning rule synchronizes spike
volleys only after repeated volley exposure, synchroni-
zation may help to distinguish between familiar and
unfamiliar sensory experiences.
These findings are specific for rhythmic input spike

patterns. For each neuron, the postsynaptic spike oc-
currence shifts during learning to the first spikes of the
presynaptic volleys, as these first spikes ‘‘regularly pre-
cede’’ or ‘‘predict’’ the occurrences of the presynaptic
spike volleys. The situation is quite different for non-
rhythmic or sequential spatiotemporal input patterns
such as those that occur to moving visual stimuli in the
visual cortex (Rao and Sejnowski 2000). Under these
circumstances, the recurrent connections may take on a
dominant role and temporally asymmetric Hebbian
plasticity may favor the lateral flow of synchronous ac-
tivity between cortical columns. The balance between
recurrent, feedback and feedforward synchronous flow
will depend on the nature of the input patterns as well as
the timing of spikes generated in populations of neurons
at each level of the hierarchy.
For some values of the model parameters, substantial

firing rate changes hamper the emergence of synchronous
spikes. For large initial values of excitatory conduc-
tances, input volleys trigger sustained firing (Fig. 3).
Otherwise, if conductances of excitatory feedforward
connections are small, the learning rule prevents any
further adaptations of the conductances once a neuron
ceases to fire. Although stabilization of firing rates can be
achieved with some implementation variants of tempo-
rally asymmetric Hebbian learning (Song et al. 2000; van
Rossum et al. 2000), the variant chosen here does not
have such normalization properties (Rubin et al. 2000).
The current network model simplifies several cortical

and hippocampal mechanisms that may hamper the
propagation of spike volleys. It is possible that local
inhibitory neurons may themselves generate synchro-
nous activity that entrains populations of pyramidal
neurons (Tiesinga et al. 2001). Furthermore, the network
does not take into account that frequency-dependent
depression and facilitation influences connection con-
ductances between pyramidal neurons (Markram 1996;
Selig et al. 1999). Although our simulations with de-
pressing excitatory synapses led to similar results as
those presented here (not shown), effects of learning
were not clearly distinguishable from those of synaptic
depression because the time constants of synaptic de-
pression are usually longer than the duration of the
chosen intra-trial interval.
For a single neuron, a previous simulation study

suggested that temporally asymmetric Hebbian learning
enhances the synaptic conductances with matching ax-
onal spike transmission delays (Gerstner et al. 1996).
Our results suggest that, in a population of neurons, the
connection conductances activated by the first volley
spikes become greatly enhanced. Therefore, feedback
and intragroup connections become negligibly small
during learning. Sustained recurrent activity within
neuron populations, which is believed to be the physio-
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logical basis of short-term memory, seems to diminish
due to temporally asymmetric Hebbian learning
(Figs. 2b and 3). Similar to previous simulation results
(Levy et al. 2001), our results suggest that sustained
short-term memory activity would persist if synchronous
spike volleys were propagated in a loop consisting of
several neuron populations. In such loops connection
conductances become substantially large because their
activation predicts spike volley arrivals (Levy et al.
2001). Comparing simulated feedforward connections
with cortical bottom-up projections and simulated
feedback connections with cortical top-down projections
suggests that spikes carried by top-down connections
predict spiking of neurons in lower areas by using high-
level information about future sensory input. The hy-
pothesis that top-down connections carry predictions or
explanations of their target neurons activity was used to
simulate extra-classical receptive-field effects (Rao and
Ballard 1999) and binocular rivalry (Dayan 1998). The
current study suggests that such top-down predictions
result from differences in connection delays and tem-
porally asymmetric Hebbian learning.
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