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Abstract. Independent component analysis (ICA) of functional magnetso-
nance imaging (fMRI) data is commonly carried out under tb&uanption that
each source may be represented as a spatially fixed pattewtiedtion, which
leads to the instantaneous mixing model. To allow modeliatjepns of spatio-
temporal dynamics, in particular, the flow of oxygenatedblonve have devel-
oped a convolutive ICA approach: spatial complex ICA applie frequency-
domain fMRI data. In several frequency-bands, we identifijnponents pertain-
ing to activity in primary visual cortex (V1) and blood supplessels. One such
component, obtained in thel®-Hz band, is analyzed in detail and found to likely
reflect flow of oxygenated blood in V1.

1 Introduction

The blood oxygenation level dependent (BOLD) contrast meskby fMRI recordings
depends on the change in level of oxygenated blood with haatiaity. ICA has been
successful at finding independent spatial components #rgtin time [1,2], but there
may also be spatio-temporally dynamic patterns in fMRI rdawgs of brain activity.

Convolutive models are a way to account for dynamic flow pasteln convolutive
models, each source process is characterized by the ¢patiaral pattern it elicits
and by the time-course of activation of this pattern. Theaigccounted for by each
source process is obtained by convolving the spatio-teat@murce pattern with its
time-course of activation. The mixed (measured) data atairdd by summing over
the contributions of all source processes. Separation gédnactivity generated by
several of such processes is not possible for instantari@\slgorithms since the
convolutive mixing is beyond the scope of their instantarsamixing assumption.

The convolutive separation problem can be solved by peifay@ll computations
in the frequency-domain since the convolution in the tinoeadin factorizes into a mul-
tiplication in the frequency-domain. Separation is perfed by applying a complex
ICA algorithm to the complex-valued data in each frequebapd.

The use of this procedure for the analysis of electroendeghaphic (EEG) data
has recently been presented elsewhere [3]. Here, we prese@pplication of the
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method to fMRI data. Compared to EEG data, fMRI data are dbaraed by their
high spatial resolution at a low temporal sampling rate. fMBta are commonly ana-
lyzed by spatial ICA decomposition, where time-points espond to input dimensions
and voxels to samples. This is in contrast to temporal ICAIdSeEEG, where sensors
constitute input dimensions and time-points samples. Tdyagpmplex ICA to fMRI
signals, we similarly apply spatial complex ICA to frequegrttomain fMRI data.

2 Methods

Convolutive ICA models have traditionally been in use tofgen blind separation of
acoustically recorded signals into individual sourceg.(eseveral speakers, or speaker
and noise source, [4,5,6]). The convolutive mixing modehes into play through room
acoustics, where the signal of each speaker has to be caeaMolth the room’s impulse
response from the speaker to each of the microphones tndhtasignal at each mi-
crophone. The convolution captures the effects of the dimoersvironment to delay the
sound signal during its propagation from speaker to micooghand to generate echoes
of the direct sound. At the sensor arrays, one speaker’'slsigigeneral arrives earlier
(or later) at one microphone than at other microphones, wmay be interpreted as a
spatial and temporal variability that is introduced inte #ignal by convolution.

In the present contribution, we generalize from the physisderpinnings of acous-
tic wave propagation, and use the convolutive signal prafiag and superposition
model to capture spatial and temporal dynamics in braincesumeasured with a quasi-
instantaneous measuring process. Wendbuse convolution to model the physics of
the electromagnetic wave signal propagation, but to entlewuhderlying source pro-
cesses with the potential for both spatial and temporal alyeg.compatible with the
neuronal and biological substrate of the observed braicgases.

For a toy example, refer to Fig. 1, where a delta-shaped sagtivation is con-
volved with several impulse responses from the source ferdifit voxels. The impulse
responses essentially correspond to a set of differenyslélagether with a temporal
smearing) and give rise to the sensation of a moving pattenhdhanges its spatial
position at the voxels with time: a spatio-temporally dymasource process. Note that
while a single source is sufficient to account for the proegtsa convolution model,
this would not be possible with an instantaneous (i.e., iplidative but not convolu-
tive) model. At best, multiple spatially fixed source prasess with mutually different
spatial foci and shifted temporal activations, could aehia similar goal, however,
sacrificing their independence and artificially inflating tumber of sources.

For the separation of several spatio-temporal dynamiccesidifferent source ac-
tivations each with a different set of impulse responsedavbe used. From the sensor
data, it is only possible to reconstruct the source activatip to an unknown convolu-
tion: In our toy example, the “temporal smearing” could beorporated into the source
activation rather than the impulse responses of the semsthrsut changing the voxel
signals. Despite this ambiguity, the pattern each indi&idource evokes at the voxels
is uniquely determined.

Under convolutive ICA, the usual concept of a spatially fixdirce is replaced
by a more abstract source process with spatial and tempgnaintics, and our goal
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is to isolate portions of the recorded data attributablentbvidual source processes.
However, a source process can in any case only be observeddnysrof the signals it

contributes to the measurement, i.e., the spatial and texhpaxel activation patterns

produced by the source process (corresponding in our ac@rstlog to that part of

the acoustic signal recorded at all microphones producednbindividual speaker).

The source activation (e.g., the speaker’s vocal sourcaBignay not have a concrete
biological counterpart in the analysis of brain signals.

We note that the use of convolutive models to extract compisneith spatio-
temporal dynamics should not be confused with the “spatiptral ICA’ method [7],
that extracts static (non-convolutive) components usimigstantaneous mixing model.

Because of the equivalence of time-domain convolution eegliency-domain mul-
tiplication, the convolutive source superposition can kpressed in the frequency-
domain as a multiplication of spectral representations eésured signals, source ac-
tivations, and impulse responses. As spectral transfofradl three quantities are in
general complex-valued, a complex ICA method [3,8] is useddparate the time-
frequency representations of the voxel activations intependent components. The
main steps of the method are illustrated in Fig. 2.

Consider measured signals, wheret denotes time and denotes voxels. Their
spectral time-frequency representatigngf ) are computed using the short-term Fourier
transformation

xri(f) = 3 %(T +1)h(t)e 2/ (1)
T

wheref denotes center frequency, ah) is a Hanning window centered at tinfe
Usually, spectral transforms are computed at a subset efpiaints (T”) of the origi-
nal time-domain data measurements (indicatedyHMence, data of sizgimest x voxelsi]
are transformed into data of sigémesT x voxelsi x frequencied].

For each frequency banfl the signals are modeled to be generated from inde-
pendent sourcesri(f) by multiplication with frequency-specific mixing coefficies
arm(f),

XTi(f):ZaTT’(f)ST’i(f)v (2
T
which in matrix notation reads

X(f) =A(f)S(f). 3)

Complex ICA separates the data into independent compousintg the linear projec-
tion

U(f) = W(F)X(f), i.e., (4)
uni() = 3w (f)xea(1), (5)
T

whereur;(f) andwr (f) represent complex spatial component patterns and the sepa-
rating matrix, respectively.

Hence, as in real-valued ICA for fMRI signals, a spatial IC&cdmposition is per-
formed, where time-points correspond to input dimensigms\exels to samples. For
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each frequency-band, we obtain a set of complex-valueggm#ent components, their
number limited by the number of temporal windoWs Each is characterized by its as-
sociated complex time-coursg: (f) and complex-valued spatial pattesp (f), with

T’ denoting component number.

The complex ICA algorithm employed here is a generalizatibthe real-valued
infomax ICA algorithm [9] and was first derived via a maximuikelihood approach
[10], for a detailed exposition see [3,8]. The resulting afedule was proposed earlier,
albeit without derivation, by [11], and later derived indeplently by [12,13]. Alterna-
tive complex ICA algorithms have been proposed by, e.g,18,46,17].

The derivation of the complex infomax algorithm employediiefly summarized
below. Sources are modeled as complex random variablesawgticular symmetric,
super-Gaussian probability density function. Becauserotiar symmetry, the proba-
bility density corresponding to the complex source vaukepends only on the (real-
valued) magnitudés| of s,

s(s) = g(Is))- (6)

The assumption of a super-Gaussian pdf results in the rehlnaaginary parts of
not being independent of each other. Analysis of the statisifcEequency-domain
fMRI data exhibits a positive kurtosis and strongly indesathat these assumptions are
fulfilled.

MatricesW (f) are found by maximizing the log-likelihodd W (f)) of the mea-
sured signalX(f) givenW(f), which in terms of the source distributiag is

L(W(f)) = (log2x(X(f)|W(F))); = logdetW(f)) + (logzs (W(f)X(f)));, (7)

where(-); denotes expectation computed as the sample average ovexalsi. We
perform maximization by complex gradient ascent on thdilik®d-surface. ThE€T, T')-
elemen®dwr () of the gradient matrix]IW(f) is defined as

0 . 0
aDWTT/(f) +16|:|W-|-T/(f)

By ()= ( JLow(0), ®
whered/00wr1/(f) andd/d0wr 1 (f) denote differentiation with respect to the real
and imaginary parts of matrix elemewg 1 (f), respectively. Using natural gradient
optimization [18], this results in

AW(F) = OW(HW(HOFW(F) = (1 - V(U w(F), (9)

whereV(f) is a non-linear function of the source estimatid ):

vri(f) = sign(uri(f)) g(luri(f)[), (10)
signz) = {g/|z| :: Z gj a1

| denotes the identity matrix and the functigin) : R — R is a real-valued non-linearity,
chosen ag(x) = tanh(x).
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3 Results

The experimental data were from a 250 s experimental sessiwisting of ten epochs
with stimulus onset asynchrony (SOA) of 25 s. An 8-Hz flickgrcheckerboard stim-
ulus was presented to one subject fd¥ 8 at the beginning of each epoch. The subject
was requested to fixate a red cross in the center of the viglbfetween stimulations.
500 time-points of data were recorded at a sampling rate af 2TiR=0.5) with reso-
lution 64x 64 x 5 voxels, field-of-view 25 250 mn¥, slice thickness 7 mm, 5 slices.
fMR images were recorded with a 3 tesla Medspec 30/100 scgBmneker Mediz-
intechnik GmbH, Ettlingen, Germany) at the Integrated Bfaesearch Unit (IBRU)
of Taipei Veterans General Hospital, Taipei, Taiwan. A gnwal T1-weighted image
with a resolution of 256 256 voxels was recorded with the same slice positions as the
functional images.

In a preprocessing step, the recorded images were subjecséide timing adjust-
ment, which compensated for the recording time differeretevben individual slices.
Off-brain and low-intensity voxels were identified and remd by thresholding inten-
sities of the structural image, reducing the number of v@ielthe functional images
by about 86% (from 20480 to 2863). For more experiment detailer to [19]. The
data of this experiment and the preprocessing routineseeg/favailable as part of the
FMRLAB toolbox for ICA analysis of fMRI data [20].

Spectral decomposition was performed using the windowsctelie Fourier trans-
formation (1) with a Hanning window of length 40 samples, adaw shift of 1 sample,
and frequency-bands@, 0.10, ..., 1.00 Hz. This resulted in data split into 20 bands,
each with 461 time-points and 2863 voxels.

Spatial complex ICA decomposition was performed withinretlequency-band.
In a preprocessing step, input dimensionality in each bassineduced from 461 to 50
by retaining only the subspace spanned by the (complexhesgtors corresponding
to the 50 largest eigenvalues of the data maxtfx). Complex ICA decomposed this
subspace into 50 complex independent components per band.

Motivated by previous results of real-valued infomax ICAtbe same data [19],
we were interested in components with a region of activi@fAR near primary visual
cortex V1. One such component was found in several low-faqy spectral bands,
with a time-course of activation that reflected the SOA ofutseial stimulus.

Spatial and temporal activation patterns associated visihaV stimulation are dis-
played in figures 3—10 for frequency band@8®Hz, 010 Hz and 015 Hz. Being derived
by complex ICA, both spatial and temporal bases are comyaéxed. The spatial pat-
terns are displayed with separate magnitude and phaselptothe temporal activation
patterns, magnitude is the most informative part and diguldere.

As can be seen from the spatial pattern magnitude plots é&g8ir4, 6, 8), all com-
ponents include activation of the primary visual area, nofistious in slices 3 and 4
of each component. This is best seen in Fig. 3, where theituradtimage of com-
ponent IC2 in the 0-Hz frequency band (cf. Fig. 6) has been interpolated gbeni
resolution and superimposed on the structural image. ThesR®all three frequency
bands coincide remarkably well, even though complex ICA wasindependently in
each frequency band. Phase in the visual areas (figures Yexhi®its smooth changes
(“gradients”), investigated in more detail below. It shebdde noted that smoothness



6 Anemdller, Duann, Sejnowski, Makeig

of the phase- and magnitude-variation across space is ndt-it’ to the complex
ICA algorithm, which rather allows arbitrary variationsptiase and magnitude across
neighboring voxels.

Magnitude of the complex-valued activation time-courdéeots the sequence of
visual stimulation in intervals of 25 s. The temporal stiatidn pattern is best captured
by the component in the. D0-Hz band (Fig. 10, center), which has component number
2, i.e., it is the second-largest component in this spetiald in terms of the signal
variance it explains. This component remarkably well ceggtiexclusively the pattern
of visual stimulation. The components in thédB8-Hz and 015-Hz frequency bands
(component numbers 16 and 9, respectivley) reflect the &ion sequence with a
lower degree of reliability, possibly a result of the smadirength in terms of variance
accounted for (Fig. 10, left and right).

Because of its ROA near V1, its strength and its reliable fioo&ing of component
activity to stimulus presentation, we chose component rargi{IC2) in the 010-Hz
band for more detailed examination. Figures 3 and 6 displayritagnitude of the com-
plex spatial component map of IC2 in the ROA of the five reaogdilices. The ROA
was determined fromrscores of the component map by transforming each component
map to zero mean and unit variance, and setting a heuriséishbld of 15. The extent
of IC2 from the centrally located main blood vessels to priymasual cortex is clearly
visible, in particular in slices 3 and 4. The complex compisephase in the ROA is
displayed in Fig. 7. Slices 3 and 4 display a phase shift froenupper left border of
the component ROA image towards the lower right border. Theese shift indicates
a time lag in the activation of the component voxels whendi@med back into the
time-domain which will be further investigated below. Fig) shows magnitude of the
component’s time-course of activation. Component mageittiearly reflects the pat-
tern of visual stimulation with an SOA of 25 s, with peaks ingitude that follow
stimulation with a time lag of about 9 s, and a high dynamigeabetween component
activity and inactivity.

Complex voxel activity induced by the component may be olst@iby backproject-
ing the complex time-course to the complex spatial map, by forming the product
ar(f)sr(f), whereT’ denotes component numbes, (f) the corresponding column
of the mixing matrixA(f), andsy (f) the corresponding row of the source masX ).
Transforming the complex frequency-domain voxel actitiythe real time-domain
reduces—in the case of a window-shift of one sample and desiregjuency-band—to
taking the real-part. We performed these steps to analyze-diomain voxel activity
induced by the component near the largest component magrpeek between 179s
and 1870 s of the experiment. Fig. 11 displays the activity withinagh of 24 vox-
els located in recording slice 4, marked by a blue squaregnFiFollowing stimulus
presentation at 178 s, activity in the patch started to increase with a time liagbout
4.5 s, first in the voxels most centrally located in the breop ¢ow of voxels in each plot
of Fig. 11), and propagating within about 1 s to the postesinels of to primary visual
cortex (bottom row in each plot of Fig. 11). Analogously, gbactivity decreased first
in the top row of voxels before decreasing in the bottom rows.

To investigate whether similar time lag effects can be fowitdout|CA processing,
we also computed the D0-Hz band activity of the recorded data at the 24 voxels that
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have been investigated in Fig. 11, using the same spectahg®osition that has been
used for the complex ICA decomposition. Activity accounfizdby recorded data and
by IC2 was separately averaged within each voxel row, sgawtiith row 1 for the most
centrally located voxels, and up to row 6 for the voxels in plosterior position. The
resulting averages are plotted in Fig. 12 for recorded dadfer component induced
activity. Since the signals are band-limited, we obtairiltzgory activity with positive
and negative swings. The analysis of relative time lags anplifudes near the peak
of component magnitude (at 184.5 s) is not influenced by #gt 1n the component
induced activity, the more centrally located voxels arévated between@sand 10 s
prior to the posterior voxels. The time lag increases mamatsly with more posterior
voxel position. This gradient of posterior voxels beinghaded later than the central
voxels is also reflected in the activity of the recorded vesainals. However, the voxels
in row 3 form an exception since their extremal activationws even after the poste-
rior voxels are activated. The analysis of activation atagks in Fig. 12 gives similar
results: The component induced amplitude increases monaogty towards more pos-
terior voxel position. Overall, this tendency is also foundhe recorded signals, but
some exceptions occur, e.g., amplitude in row 2 is smalkan th row 1.

To compare the complex ICA results with those obtained bypdsted ICA, real-
valued infomax ICA as implemented in the FMRLAB toolbox [184s applied to the
same data in the time-domain. Among the resulting indeparaemponents, we found
one (and only one) component whose ROA (Fig. 13) highly medd¢he ROA of the
complex ICA components accounting for visual area actiagypresented in Figures 3
to 9. The same vision-related physiological process is neadey the different algo-
rithms, albeit the spatio-temporal dynamics necessagilyeiglected in the model ob-
tained with standard ICA. This example indicates that caxpbnvolutive ICA is not
only a generalization of standard ICA in terms of the undagymathematics. It may
also be regarded as a generalization in terms of resulténebtérom real-world data
where complex ICA identifies similar underlying processas models them at greater
detail.

A component obtained by complex ICA pertaining a non-visiglated process is
displayed in Fig. 14. The component ROA in the 0.05-Hz bardnty reflects activity
related to cerebrospinal fluid (CSF) in ventricular areaenéé, complex ICA success-
fully isolates flow artifacts from CSF activity into a sep@@raomponent. Similar com-
ponents are often observed in standard ICA decompositibinRl data and are also
presentin the decomposition of this dataset with reale@ICA (data not shown here),
reinforcing the view that complex ICA finds components gatet by the same physi-
ological processes that are extracted by real-valued |Gyais. Any residual overlap
of the previously discussed vision-related components véntral areas is attributed to
a partial volume effect of the brain voxels surrounding valrdireas and to the spatial
resolution of the fMR image acquisition.

4 Discussion and conclusion

We analyzed fMRI signals using a convolutive ICA approaclciienabled us to model
patterns of spatio-temporal dynamics. Parameters fomtloidel were efficiently esti-
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mated in the frequency-domain where the convolution famggrinto a product. Our

method consists of three processing stages: 1) Computimgftequency representa-
tions of the recorded signals, using short-term Fouriardfi@mation. 2) Separation
of the measured signals into independent components ugatgkscomplex infomax

ICA in each frequency-band. 3) Computing the correspondymgmic voxel activation

pattern induced by each independent component in the toneaih.

From data of a visual stimulation fMRI experiment we obtaim@mplex compo-
nents in the M5-Hz, Q10-Hz and 015-Hz bands with component map ROAs extend-
ing across primary visual cortex and its blood supply vesSéhe spatial extent of the
components was remarkably similar across frequenciegjisgdhat these components
captured a single physiological source’s properties ifetéht spectral bands.

In-depth analysis focused on the component obtained in.tt@& 8z band. By re-
constructing the spatio-temporal activation pattern anted for by this component,
we identified a time lag of about 1 s between activation of re¢r@nd posterior vox-
els. A related time lag, but distributed less regularly,Iddue observed in the.0-Hz
frequency-band of the measured signals. The amplituderapooent-induced voxels
activations increased in the posterior direction. Alse tinend could be seen in the
recorded signals, but it was less systematic than for thepgf@aessed signals.

Both observations are compatible with the physiology ulyitey generation of the
fMRI signal. The posterior voxels in the component ROA are dimes closest to the
posterior drainage vein. The convergence of over-suppligdenated blood towards
the drainage vein may therefore result in the large ammgufdr these voxels. The
temporal delay between activation of central and posteogels is consistent with the
propagation of over-supplied oxygenated blood from thetredip located arteries to
the posterior drainage vein. Similar temporal delays haenkobserved from optical
recordings of intrinsic signals, related to blood oxyg@ratin monkey visual cortex
[21].

These results may indicate that frequency-domain compliexriax ICA can cap-
ture patterns of spatio-temporal dynamics in the data. iééssuring that similar dy-
namics could also be observed in the recorded (mixed) signadking the possibility
of the complex ICA results being mere processing artifaogslausible. On the other
hand, the spatio-temporal dynamics emerged with a highgredeof regularity and
physiological plausibility from the complex ICA resultsath from the measured data.
Separation of the stimulus evoked activity from interfgriongoing brain activity by
the complex ICA method appears as the natural explanatichifobservation.

Here, we have focused on the analysis of individual frequdrands. Combining
the extracted information across several frequency-bandéich components have
been found near V1 should allow us to reconstruct the fuktslomain spatio-temporal
dynamics associated with visual stimulation.

In conjunction with previous results reported on modelimg $patio-temporal dy-
namics in EEG signals with complex ICA [3], the results presd here are a further
indication that convolutive models may be useful for an@lgza wide range of data.
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delta-shaped source activation (left) is convolved witbesal impulse responses (“IR”, center)
which project the source activation to different fMRI vax@lrranged on a line (right). Different
time-lags and the temporal “smearing” introduced by thelilsg responses result in the mea-
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may easily be generated.
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Fig. 2. Schematic representation of the processing steps of thelegrfrequency-domain ICA
algorithm. Voxel time-courses are recorded with an fMRInsex (“fMRI”). The corresponding
time-frequency representation is computed for each vosielgua (temporal) short-term Fourier
tranformations (“spec”). In order to apply the complex ICAatial (as opposed to temporal)
decomposition mode, the data is rearranged (“transposdtf)ag number of short-term temporal
windows determines input dimenationality and number ofel®xietermines samples. Complex
ICA is performed within each spectral band (“cICA"). Theré#don steps of the complex ICA
algorithm are depicted on the right.

Fig. 3. Magnitude map of the component region of activity (ROA) fongplex component IC2
obtained by complex ICA in the.D-Hz frequency-band. The ROA extends over visual area V1
and blood supply vessels. Colors indicate component madmin the ROA. The structural image
of the recorded areas is plotted in darker gray tones. Theoonent ROA is interpolated to the
higher resolution of the structural scan for better viszalon. (Note: The electronic version of
this document contains color figures for better visual@atnd can be obtained from the first
author.)
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Fig. 4. Magnitude map of the component ROA for complex component6i@lthe 005-Hz
band. Colors indicate component magnitude in region of/égtiNote that in contrast to Fig. 3
the information is displayed at the lower spatial resolutid the functional recordings.

Fig. 5. Phase map of the component ROA for complex component IC16erQ05-Hz band,
corresponding to the magnitude map displayed in Fig. 4. Gdludicate component phase in
region of activity.
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Fig. 6. Magnitude map of the component ROA for complex component iiCthe Q10-Hz
frequency-band. Colors indicate component magnitudeerR®A. The plot contains the same
information as displayed in Fig. 3, but shown at the loweoh&#on of the functional scans and
with a different colormap.

Fig. 7. Phase map of the component ROA for complex component |IC2dr0ttD-Hz band,
corresponding to the magnitude map displayed in Fig. 6. Gatmlicate component phase in the
ROA. The voxels marked by a blue square in slice 4 are invatgtifurther in Fig. 11.
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Fig. 8. Magnitude map of the component ROA for complex component ilC¢éhe Q15-Hz
frequency-band. Colors indicate component magnitudedrROA.

Fig. 9. Phase map of the component ROA for complex component 1C9er0ttb-Hz band,
corresponding to the magnitude map displayed in Fig. 8. Gafmlicate component phase in the
ROA.
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Fig. 10. Time-course of component magnitude of complex componed6 @ the 005-Hz
frequency-band (left), component IC2 al0 Hz (center) and component IC9 atB Hz (right).
Note the time-locking of amplitude and phase to stimulus@néation in 25 seconds intervals, in
particular in component IC2 atT0 Hz. The first and last 10 seconds of the experiment are not
shown because computation of the spectral components o@sest when the analysis window
(length 20 s) reached the edges of the recording. The titeeved from 179.5 s to 187.0 s around
the largest component magnitude peak of IC2 (center) istiyated further in figure 11.
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Fig. 11. Backprojected component activity from complex compon€#.IComplex component
time-course was backprojected to corresponding activitha voxels and transformed to the
time-domain. Shown is the activity of 24 voxels in visualaa¥él, the position of which is marked
by a blue box in slice 4 of Fig. 7. The flickering-checkerbostichulus was presented for 3.0 s at
experiment time 175.0 s (not shown). Activation startechtwéase with a time lag of about 4.5 s,
with first increase occuring at the centrally-located vexX&bp rows), and propagated to the pos-
terior voxels (bottom rows) within approximately 1 s. Trisompatible with over-supplied oxy-
genated blood propagating in the posterior direction amagoeashed out through the drainage
vein from area V1.
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Fig. 12. Left: Average time-courses near largest component powak &t 184.5 s) for each
row of 0.1-Hz band time-domain backprojected componerivatains displayed in Fig. 11. Row
1 corresponds to the most centrally located voxels, row Gé¢oposterior ones. Right: Corre-
sponding average time-courses computed from the recorct@tions in the 0.1-Hz band of
the same voxels. For the average IC activation (left), theekoows are activated in the order
1-(2,3) — (4,5,6) with row 6 being activated with a time lag of about 1 seconchwéspect
to row 1. This lag is compatible with blood supply propaggtatross the patch in the posterior
direction. In the average recorded activations (right}, ¥bxel-rows are activated in the order
1-2-4-(5,6) — 3. With the exception of row 3, this also indicates a postedicection of
propagation. The most posterior voxel-row of backprojg¢cemponent IC2 shows strongest ac-
tivation which is plausible since it is closest to the drg@aein. The same tendency is found in
the recorded signals, but ordering of amplitude of vox@lsgds not as monotonous as for IC2.
Backprojected IC activations may represent a cleanerngctfithe stimulus related process with
respect to phase- and amplitude-gradient, because waiviither ongoing brain processes is
canceled out.
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Fig. 13.Comparison with results from standard ICA. ROA of compori@&& obtained with real-
valued infomax ICA, superimposed on the structural imagk ROA interpolated to the higher
resolution of the structural scan. Similar to the composdérdm complex ICA, this component
extends over visual area V1 and blood supply vessels. The tarerlap between the real-valued
component and the complex-valued components shown in &Figs9 shows that they model the
same physiological (visual) process, although the relaleescomponent cannot take into account
the spatio-temporal dynamics reflected in the complex ICs.



18 Anemdller, Duann, Sejnowski, Makeig

Fig. 14.Complex ICA component reflecting cerebro-spinal-fluid (E&€tivity in ventral areas.
Magnitude map of the component ROA for complex componentihQtie 0.05-Hz band, super-
imposed on structural image and interpolated to its higbsolution.



