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When cerebellar Purkinje cells are depolarized with a constant current 
pulse injected at the soma, complex spike discharge patterns are ob- 
served (Llinas and Sugimori 1980b). A computer model has been con- 
structed to analyze how the Purkinje cell ionic conductances identified 
to date interact to produce the observed firing behavior. The kinetics of 
voltage-dependent conductances used in the model were significantly 
simpler than Hodgkin-Huxley kinetics, which have many parameters 
that must be experimentally determined. Our simplified scheme was 
able to reproduce the complex nonlinear responses found in real Purk- 
inje cells. A similar approach could be used to study the wide variety 
of neurons found in different brain regions. 

1 Introduction 

Neurons have a wide range of shapes, sizes, and intrinsic properties, and 
have correspondingly specialized functions. In particular, dozens of non- 
linear membrane conductances have been characterized that are found 
in different combinations at different spatial locations. These segregated 
nonlinear mechanisms, coupled with complex dendritic morphologies, 
make it possible in principle for single neurons to compute spatiotem- 
poral correlations of very high order. A large network of semilinear 
processing units, familiar in connectionist models, would be needed to 
provide equivalent computational power. 

Cerebellar Purkinje cells have large, complex dendritic trees with a 
variety of active membrane conductances inhomogeneously distributed 
over the dendrites and soma. In vitvo intrasomatic and intradendritic 
recordings have been used to characterize these conductances (Llinas et 
al. 1980b; Llinas and Sugimori 1980a; Hounsgaard and Midtgaard 1988). 
The question of whether these conductances are sufficient to account 
for the observed responses of Purkinje cells can be addressed by in- 
corporating them into compartmental models of reconstructed neurons. 
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Table 1: Rate Constants. 
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C, = lPF/cm2 u, = 225 -cm 
Soma gleak = 1.32 mS/cm2 Dendritic gle,k = 0.0219 mS/cm2 
g ~ ~  = 40 mS/cm2 g ~ d  = 2 mS/cm2 
g ~ ~ ~  = 0.25 mS/cm2 gca = 2 mS/cm2 
g~ = 2 mS/cm2 gc,, = 0.03 mS/cm2 
g ~ ~ ,  = 0.1 mS/cm2 Resting [Ca], = 50 nM 
[Ca], decay rate = 5 msec-' 

Unfortunately, the parameters that characterize Hodgkin-Huxley chan- 
nel kinetics are often incomplete or inadequate. In this paper we adopt 
a simpler kinetic scheme that is much easier to fit to existing data and 
accurately captures the essential intrinsic properties of the channels. 

The simplified kinetic scheme introduced here has the additional ad- 
vantage that it allows accurate simulations of realistic neurons to be 
run much faster than with Hodgkin-Huxley kinetics that have multi- 
ple closed states. This speedup is important when many neurons must 
be simulated simultaneously in model neural networks. 

2 Methods 

The compartmental modeling technique has been well studied and can 
be used to explore the electrotonic properties of morphologically accurate 
neuron models (Rall 1964; Jack et al. 1975; Segev et al. 1989). Our simu- 
lations were based on a single cerebellar Purkinje cell reconstructed by 
Shelton (1985) (Fig. 1). The model consisted of 1089 compartments that 
contained active conductances consistent with data from the literature. 
The passive membrane parameters used in the model were those used 
by Shelton (Table 1). Note that the membrane resistance of the soma was 
60x lower than that of the dendrites. 
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Smooth and spiny dendritic tree 

Smooth dendr~t~c  tree only 

Figure 1: Morphology of rat cerebellar Purkinje cell (reprinted with permission 
from Shelton 1985). (A) Soma and proximal (smooth) dendrites are stippled. 
Spiny dendrites are drawn as lines. (B) Smooth dendritic tree only. Spiny den- 
dritic tree attachments are numbered counterclockwise. Soma is hatched. The 
soma contains potassium and sodium conductances, smooth dendrites contain 
fast calcium and potassium conductances, and spiny dendrites contain slow 
calcium and potassium conductances (see text). 



324 P. C. Bush and T. J. Sejnowski 

The soma contains a fast, inactivating sodium conductance, g ~ , ,  re- 
sponsible for the upstroke of the action potential, a fast potassium con- 
ductance, g ~ d ,  responsible for AP repolarization, and a low-threshold, 
slow, plateau sodium conductance, g ~ ~ ~ .  There are large, fast calcium 
conductances, gc, on the proximal (smooth) dendrites that cause dis- 
crete dendritic calcium spikes. These calcium spikes are repolarized by 
large potassium conductances, g ~ .  The spiny dendrites contain smaller, 
slower calcium conductances, gc,,, and a slow calcium-dependent potas- 
sium conductance, g ~ ~ , .  See Table 1 for conductance values, g,. 

The Hodgkin-Huxley model of the squid axon is the starting point 
for most biophysical models of neurons (Hodgkin and Huxley 1952). 
The time- and voltage-dependent kinetics of the ionic conductances can 
be depicted as a Markov process (Hille 1984) (Fig. 2a). The following 
equations describe the transitions between the open/closed states, m, 
and the active/inactive states, h. 

In the Hodgkin-Huxley system the inactivation of the channel is inde- 
pendent of its activation. It is generally assumed that the rate constant 
of channel activation, a, is much larger than that of inactivation, y. That 
is, channel opening is fast and channel closing (inactivation) is slow, so 
the decay of the macroscopic current is governed by y. However, single 
channel patch clamp data from mammalian sodium channels (Aldrich et 
al. 1983) indicates that inactivation follows activation after a very short 
latency in a voltage-independent step. Thus, inactivation is coupled to 
activation, y is not dependent on voltage and is much larger than the 
activation rate constant. The decay of the macroscopic current is gov- 
erned by a (slow activation). These changes are incorporated into the 
model kinetics (Fig. 2b). Note that the same macroscopic current can 
be produced by different microscopic kinetics (Hille 1984; Kienker 1989). 
In our model it is assumed that there are no transitions from the inacti- 
vated to the open state or from the closed to the inactivated state. For 
conductances that do not inactivate the kinetics are reduced to a two- 
state system with two voltage-dependent rate constants. The following 
equations describe the state transitions of our model kinetics. 

as shown in Figure 2b. 
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A HODGKIN - HUXLEY 

B SIMPLIFIED 

C = closed 0 = open X = inactivated 

Hodgkin-Huxley 

Lvm VrVe V, linear 

Figure 2: (A) Hodgkin-Huxley kinetics for the spike sodium conductance rep- 
resented as a Markov process. Activation and inactivation are independent 
processes. (B) The simplified kinetics used in our model (derived from Aldrich 
et al. 1983). Inactivation is coupled to activation with a voltage-independent 
step. There are no transitions from the inactivated state to the open state nor 
from the closed to the inactivated state. See text for the equations describing 
the voltage-dependent transitions between the states. These kinetics were used 
for all conductances in the model. (C) The voltage dependence of the Hodgkin- 
Huxley activation rate constant is shown above, and the linear simplification 
used in our model is shown below. 
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In the traditional Hodgkin-Huxley model of the sodium channel the 
rate constants a, p, 7, and S are determined empirically by fitting voltage- 
clamp data with equations of the form 

Where the constants A, B, C, D, and F are different for each rate 
constant. A very accurate fit to current clamp data can be obtained 
provided complete voltage clamp data are available for the conductance 
in question. If complete data are not available then it is difficult to modify 
an existing set of Hodgkin-Huxley conductance parameters to obtain 
even slightly different behavior. In our model the rate constants are 
directly or inversely proportional to voltage, V m  (Fig. 2c). 

0 if V m  5 V o  
(V,  - Vo)R,  if Vm > V o  

where voltages are in millivolts. The rate constants P and S were con- 
strained to be less than or equal to Rp,& at all times. Since the threshold 
V s  for each conductance is fairly easy to establish from current clamp 
data, adjusting the rate constants is just a matter of varying the slope 
of their voltage dependence, R, (Table 1). Thus it is easy to fit the be- 
havior of the conductance to any desired form. a is the most important 
parameter as it is the primary determinant of the activation and decay 
rates of the conductance transient. A large P reduces the activation rate 
and steady-state conductance, while a large S prolongs the duration of 
an inactivating conductance transient. An inactivating conductance with 
a small S takes a long time to recover after activation, and so does not 
function well at high frequencies. 

The linear simplification of the rate constants inevitably reduces the 
accuracy of the model kinetics. However, the original Hodgkin-Huxley 
model was formulated to describe the conductances underlying the action 
potential, an invariable event produced by conductances unchanged from 
cell to cell. Conductances with longer time constants, responsible for 
determining the excitability and interspike intervals of the cell, are much 
more variable between cells and even within the same cell over time. 
In practice, the general behavior of each conductance in our model was 
well captured by a system with linear rate constants, a system that is 
computationally both simple and fast. 

The calcium-dependent potassium conductance is not voltage depen- 
dent. The activation rate constant for this conductance in our model 
was proportional to intracellular calcium concentration rather than volt- 
age. Calcium entry into a compartment was calculated from the calcium 
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current. Intracellular calcium decayed exponetially to the resting value 
(Table 1). 

Under voltage clamp the activation of many ionic currents is sig- 
moidal with respect to time. To model this in the Hodgkin-Huxley sys- 
tem, the activation state variable (m) is raised to a power when calculating 
the ionic current (I), simulating closed-state transitions. 

where E, is the reversal potential and g, is the maximum conductance of 
the ionic current. 

This could be accomplished in our model by adding extra closed 
states, but this would add an extra step to the calculations, and would 
add extra rate constants that would be hard to constrain with existing 
physiological data. Consequently, in our model the ionic current is cal- 
culated as follows. 

We simulated this compartmental model using CABLE, written by 
Michael Hines (Hines 1989) and further modified by Jack Wathey and 
William Lytton. The simulations were run on a MIPS RC3240. Simulation 
of 100 msec of model time required about 5 min of computation. 

3 Results and Discussion 

As a preliminary test of our simplified channel kinetics, we compared 
data from mammalian sodium current transients in response to various 
voltage steps (Aldrich et al. 1983) with the simulated sodium current 
transients of our model (Vg = -50 mV, R, = 0.04 msec-' mV-', Rp = 
0 msec-', R6 = 0.05 msec-', y = 10 msec-I). The model reproduced the 
physiological data except for the slow rise phase of the current at low 
depolarizations (Fig. 3). This slow (sigmoidal) rise is due to transitions 
between closed states not included in the model, as discussed in the 
methods. However, leaving multiple closed states out of the model did 
not prevent us from achieving a close fit between the model Purkinje cell 
responses and the in vitvo data (see below). 

Figure 4A shows an intracellular recording from the soma of a turtle 
cerebellar Purkinje cell in response to a somatically injected depolarizing 
current (Hounsgaard and Midtgaard 1988). Although the dendritic mor- 
phology of the turtle Purkinje cell is not as complex as that of mammalian 
Purkinje cells, the firing pattern is not significantly different (Llinas and 
Sugimori 1980b). This indicates that the firing pattern is not dependent 
on the exact morphology of the neuron. 
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Figure 3: Voltage clamp responses of mammalian and model sodium spike con- 
ductances. (A) Averaged single channel currents for steps to different command 
voltages (shown as millivolts above threshold on the right) (reprinted with per- 
mission from Aldrich et al. 1983). (B) Responses of model sodium conductance 
to same voltage steps as in (A). The increased peak height and faster decay of 
the current transient with depolarization are common to both the model and 
the physiology, as is the decrease of the peak height as the command voltage 
approaches the sodium reversal potential (last two traces). The model, however, 
does not show the slow rise of the current transient seen at low depolarizations 
by the real cell. The slow rise is due to voltage-dependent transitions between 
closed states, which are not included in the model. Time scale bar is 7.5 msec 
for all traces except top trace, for which it is 15 msec. 

Figure 4Q shows the response of the model to a simulated somatic 
injection of depolarizing current, recorded at the soma. The pattern of 
spikes is similar to that displayed by real Purkinje cells in response to 
depolarizing current (Fig. 4A): A slow depolarization due to sodium 
and calcium plateau currents causes an accelerating train of sodium- 
dependent action potentials at the soma. A high-threshold calcium- 
dependent spike is triggered in the dendrites just at the point of in- 
activation of the sodium spike train. Voltage- and calcium-dependent 
potassium currents then produce a large hyperpolarization, which dein- 
activates the sodium spikes, allowing the cycle to begin again. After the 
depolarizing current is turned off there is an "afterdischarge" of spikes 
due to residual activation of the plateau currents. 
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Figure 4: Intracellular recordings from a turtle cerebellar Purkinje cell in re- 
sponse to a somatically injected constant depolarizing current pulse are shown 
on the left (reprinted with permission from Hounsgaard and Midtgaard 1988). 
(A) Recording from the soma. Somatic sodium spikes ride on a slow depolar- 
ization due to plateau currents. When sodium spikes are voltage inactivated 
the membrane potential reaches the threshold of the dendritic calcium spike 
conductance. The resulting calcium spike is repolarized by potassium conduc- 
tances, which resets the sodium spiking. (C,E) Recordings from proximal and 
distal dendrites, respectively. The small size of the sodium spikes and rela- 
tively large calcium spikes reflect their respective sites of generation. (B,D,F) 
Model responses from soma and proximal and distal dendrites, respectively, are 
shown on the right. The model replicates all the essential features of Purkinje 
cell behavior. The duration of the stimulus is shown beneath each trace. Firing 
continues after the stimulus is turned off due to the continued activation of 
plateau currents, as seen in real cells (Llinas et al. 1980b). 
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Figure 4C, D and E, F show comparisons between intracellular record- 
ings and model recordings in a proximal dendrite and a distal dendrite, 
respectively. The sodium spikes become smaller as they passively prop- 
agate into the dendrites, confirming their somatic origin. The calcium 
spikes are much larger in the dendrites than the soma, reflecting their 
site of generation. The calcium spikes of the model are not the "doublets" 
seen in real cells. It is possible that these multiple spikes are the result 
of inhomogeneities in the density of calcium channels over the proximal 
dendrites (Llinas and Sugimori 1980b). The calcium channels responsible 
for the spiking in the model were homogeneously distributed over the 
proximal dendrites. Our model was not designed to address questions 
concerning the detailed spatial localization of channels or the subtleties of 
intradendritic calcium dynamics. Instead it is aimed at developing "unit 
cells" for use in physiologically realistic network models. If some of these 
properties are later found to be important for information processing (as 
they are likely to be) then the model can be modified appropriately. 

We expect that the spiking pattern displayed by our model could 
be reproduced by a geometrically simplified neuron (Bush and Douglas 
1991), though not if the model were reduced to just a single compartment. 
Such a simplification would significantly increase the speed of the model, 
which would be important for network simulations incorporating many 
such neurons. 

Although no "A'-like potassium conductance was explicitly included 
in the model, we found that to allow the depolarization to continue to 
calcium spike threshold after inactivation of the sodium spikes, it was 
necessary to make the delayed rectifier potassium conductance inactivate 
slowly with depolarization. This is the essential characteristic of the "A" 
conductance (Connor and Stevens 1971). Thus the model predicts that 
the Purkinje cell delayed rectifier responsible for repolarization after a 
sodium spike has "A"-like properties. 

4 Conclusion 

Our model builds on previous models of Purkinje cells (Shelton 1985; 
Segev et al. 1991). The model demonstrates that the conductances char- 
acterized to date are sufficient to produce the cyclical firing pattern gener- 
ated by Purkinje cells in response to constant depolarizing current input. 

The channel kinetics used in the model, differing significantly from 
Hodgkin-Huxley kinetics, are useful in fitting complex response func- 
tions due to many incompletely characterized conductances. These sim- 
plified kinetics can be rapidly and easily tuned to simulate the intrinsic 
behavior of any neuron. Such single neuron models can then be in- 
corporated into model networks where speed and simplicity of opera- 
tion are more important characteristics of the component neurons than 
the detailed performances of their ionic conductances. These models 
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would also be easier to analyze with phase planes than would full-scale 
Hodgkin-Huxley models. 
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