In Touretzky, D. S., Lippman, R., (eds.) Advances in Neural Information
Processing Systems 3, San Mateo, CA; Morgan Kaufmann, 1991.

SEXNET: A NEURAL NETWORK
IDENTIFIES SEX FROM HUMAN FACES

B.A. Golomb, D.T. Lawrence, and T.J. Sejnowski
The Salk Institute
10010 N. Torrey Pines Rd.
La Jolla, CA 92037

Abstract

Sex identification in animals has biclogical importance. Humans are good
at making this determination visually, but machines have not matched
this ability. A neural network was trained to discriminate sex in human
faces, and performed as well as humans on a set of 90 exemplars. Images
sampled at 30x30 were compressed using a 900x40x900 fully-connected
back-propagation network; activities of hidden units served as input to a
back-propagation ”SexNet” trained to produce values of 1 for male and
0 for female faces. The network’s average error rate of 8.1% compared
favorably to humans, who averaged 11.6%. Some SexNet errors mimicked
those of humans. '

1 INTRODUCTION

People can capably tell if a human face is male or female. Recognizing the sex of
conspecifics is important. While some animals use pheromones to recognize sex, in
humans this task is primarily visual. How is sex recognized from faces? By and
large we are unable to say. Although certain features are nearly pathognomonic for
one sex or the other (facial hair for men, makeup or certain hairstyles for women),
even in the absence of these cues the determination is made; and even in their
presence, other cues may override.

‘Sex-recognition in faces is thus a prototypical pattern recognition task of the sort
at which humans excel, but which has vexed traditional Al. It appears to follow
no simple algorithm, and indeed is modifiable according to fashion (makeup, hair
etc). While ambiguous cases exist, for which we must appeal to other cues such as
physical build (if visible), voice patterns (if audible), and mannerisms, humans are



fairly good in most cases at discriminating sex merely from photos of faces, without
resorting to such adscititious cues. Can neural networks do the same?
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Figure 1: Preprocessing for all faces. After locating the eyes by hand, the image was rotated such that the
line joining the eyes was horizontal. The distance between the eyes and the perpendicular distance to the
mouth were scaled and the resulting image was cropped. Blocks of pixels were averaged to produce a final
30x30 subsampled image which served as input to the network.

2 METHOD

90 photos of young adult faces (45 male, 45 female), were used (O’Toole, Millward,
& Anderson, 1988). Faces had no facial hair, no jewelry, and apparently no makeup.
A white cloth was draped about each neck to eliminate possible clothing cues. Most
photos were head on, but the exact angle varied. ’

Faces were rotated until eyes were level; scaled and translated to position eyes and
mouth similarly in each image; and clipped to present a similar extent of image
around eyes and mouth. Final faces were 30x30 pixels with 12 pixels between the
eyes, and 8 pixels from eyes to mouth. The 256 gray-level images were adjusted
to the same average brightness. (No attempt was made to equalize higher order
statistics.)

Network processing entailed two stages: image compression and sex discrimination.
Both networks were fully-connected three layer networks with two biases, trained
with simple unadorned back-propagation (Werbos, 1974; Parker, 1986; Rumelhart,
Hinton, & Williams, 1986), with a sigmoidal squashing function and a learning rate
of 0.2, using Bottou and LeCun’s SN2 simulator. Image compression followed the
scheme of Cottrell and Fleming (1989, personal communication), who previously
used compressed faces as an input to a face identity network. The compression
network served to force the 30x30 images (900 inputs units) through a 40 hidden
unit bottleneck, and reconstruct the image at the 900 unit output level. Thus, the
input equalled the desired output. The function of this compression was twofold.
First, use of compressed representations decreases the number of inputs and hence
connections to the sex discrimination portion of the SexNet, allowing for faster
learning and relearning of sex with different subsets of faces. Second, while simple
gray-levels may adequately represent changes in face images for part of a single face
in fixed lighting (Yuhas, Goldstein, Sejnowski & Jenkins, 1990), the representation
of multiple faces benefits from preprocessing which extracts essential properties. In



an encoder network (Cottrell, Munro & Zipser, 1987), the compression performs
a principle components analysis if the hidden units are linear. The 50 leading
components reproduce reasonable likenesses of faces (Kirby & Sirovich, 1990). For
nonlinear hidden units, such as those used here, the compression is more efficient
and fewer are needed. The compression network trained for 2000 runs on each
of 90 faces, yielding output faces that were subjectively distinct and discriminable,
although not identical to the inputs. This procedure served to forge a representation
of each face in the activities of only 40 units, thus providing a more tractable input
(40 units rather than 900) to the sex discrimination network.

The second, sex-discrimination portion, or SexNet had 40 inputs (the activities of
the 40 hidden units of the compression net), 2, 5, 10, 20 and 40 hidden units, and one
output unit. Training consisted of encouraging, by gradient descent (Rumelhart,
et al., 1986) the network to produce a ”1” for men, and a ”0” for women. Values
greater than 0.5 were accounted ”male”, and those less than 0.5 female. In a
control experiment we trained a 900x40x1 backpropagation network directly on the
taw images. This network performed well on the training set but was unable to
generalize.

Since the proper measure of performance of the network is human performance on
the same faces, a pseudorandomized face order was established, by which even vs
odd sequential digits of pi coded male vs female for 45 faces, and, to equalize males
and females, the order was repeated with reverse parity for the second 45 faces.
No visual reference to the faces influenced the order. 5 humans were tested on
these 90 faces, with two binary decisions for each face: sex and certainty (sure vs
unsure). Subjects had unlimited time, and could scrutinize faces in any manner.
For comparison, 8 tests of the SexNet were undertaken, each training on a different
80 faces, leaving a distinct set of 10 untrained faces for testing.
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Figure 2: Two-stage network for discrimating sex from faces. The compression network encodes the
normalized faces into 40 hidden units, which are then used as inputs to a sex network. The 30x30 input
image has 256 gray levels per pixel. The output of the sex network is 1 for male and 0 for female.



3 RESULTS

Psychophysical studies of 5 humans on the 90 faces revealed errors of 8, 10, 12, 8
and 14, corresponding to 8.9, 11.1, 13.3, 8.9 and 15.5%, with an average error of
11.6%. The SexNet with 10 hidden units gave errors on test faces of 15, 0, 20, 0,
20, 10, 0 and 0%, for an average of 8.1%.

Similar errors seemed to affect the net and humans. One male face gave particular
trouble to the SexNet, being mis-sexed when a test face, and taking long to train
when a training face. This same face was (erroneously) judged ”female”, ”sure” by
all 5 human observers.

On one preliminary trial the SexNet correctly assigned all ten test faces, but mis-
judged two of the 80 training faces: the problematic male hitherto noted, to which
it assigned the androgynous value of 0.495, and another male on which it performed
wretchedly, with a value between 0.2 and 0.3, despite copious training. The SexNet
proved right: The face was a clear female whose sex value had been mistranscribed.

4 DISCUSSION

Gender can be recognized by humans even when lesions of cerebral cortex in humans
cause prosopagnosia, a selective impairment in the ability to recognize individual
faces (Tranel, Damasio & Damasio, 1988; Damasio, Damasio & Van Hoesen, 1982).
Thus, gender recognition in humans, as in our network, does not depend on the
ability to identify individuals. Single neurons in the superior temporal sulcus of
visual cortex, as well as the amygdala, respond selectively to faces and such neurons
may participate in facial discrimination tasks similar to those of the SexNet (Rolls,
1984;Baylis, Rolls & Leonard, 1985).

We have shown that the complex visual pattern recognition task of recognizing the
sex of human faces can be adequately performed by a neural network without prior
feature selection and with minimal preprocessing. Human performance was matched
by a using a 900x40x900 Cottrell-style back-propagation image compression net-
work, the activities of whose hidden units served as inputs to a back-propagation
SexNet; no efforts to optimize the network were needed to match human perfor-
mance.

The SexNet performance was similar to humans’ not just by percent errors. Not
only did it correctly sex previously unseen faces as can we, but it had difficulties on
faces which also posed difficulties for humans. Indeed the SexNet correctly sexed
one female face despite being labeled male during training. It had evidently done a
fine job of abstracting what distinguishes the sexes.

Failure of humans and the network on the same face suggests a means by which to
handle the net’s difficulty, in analogy with human strategies. When a face persists
in being wrongly judged (say female) long after others seem stably correct, one
shouldn’t emend male-female categories too drastically to accommodate it; the face
could be a fluke, and one may encounter another nearly identical face which is in
fact female. The human strategy confronted with a ”training face” (one for which
sex is known by other criteria) would consist in making a special category for the
individual; and having that provide input to overrule the facial information. This



would permit outliers to be correctly identified without adverse consequences to
generalization. :

Although the SexNet task has limited utility of itself — after all, humans sex hu-
man faces fine — extensions of this work have application. For instance, it is not
known whether faces differ for male and female rhesus monkeys. By training a
neural network to discriminate the sex of a monkey, then comparing the network’s
performance on untrained faces, better than chance performance would imply that
there exist facial sex differences in rhesus monkey faces — answering a question of
some ethological significance.

Another important area of application is to the recognition of facial expressions.
Some emotional states, such as anger, surprise, and happiness are associated with
facial expressions that are stable across cultures (Ekman, 1989). Our approach to
recognizing sex can also be used to recognize human emotion from facial expression.
Indeed, we have devised a preliminary ExpressioNet, which capably distinguishes
among (both training and test examples of) 8 different facial expressions, a precursor
to network automation of Ekman and Friesen’s facial action coding system (Ekman
& Friesen, 1975).

A variety of congenital medical disorders (such as Down syndrome) are accompanied
by craniofacial anomalies (Dyken, & Miller, 1980), resulting in distinctive ”facies”,
or facial appearances. Some are subtle or rare, and not often recognized by physi-
cians. It may be possible to to screen normal from affected infants or children using
special purpose neural networks. We hope to extend our work to include neural nets
for diagnosing William’s syndrome, or infantile hypercalcemia, in which children’s’
faces are ”elfin-like” (Bellugi, Bihrle, Trauner, Jernigan, & Doherty, 1990; Trauner,
Bellugi, & Chase, 1989). Williams’ faces compare to normals in a manner which
recalls the male/female distinction in that no isolated well described features occur
in all of one but none of the other. Early diagnosis is important because these
children often have associated cardiac defects requiring surgical correction.

On a final, more frivolous note, the same strategy, using personality indices rather
than sex for the second phase of the net, could, at last, scientifically test the tenets of
anthroposcopy (physiognomy), according to which personality traits can be divined
from features of the face and head.
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