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Computation of Binocular Disparity by Parallel Relaxation 

Binocular depth perception, or stereopsis, has been intensively studied 
since Wheatstone invented the stereoscope in 1838. More recently it has 
been possible to study stereopsis free from other depth cues using the 
random-dot stereograms introduced by Julesz in 1964. Stereopsis is now 
known to be a difficult computational problem. Despite our much better 
understanding, no completely satisfactory computational solution exists, 
nor is there a consensus about how the problem is solved by the visual 
system (Mayhew and Frisby 1981; Mayhew 1983; Poggio and Poggio 
1984). I 

Many of the issues that arise in studying stereopsis also apply to other 
computational ~roblems in vision; in particular, parallel algorithms for 
stereopsis illustrate some of the generic difficulties of parallel visual algo- 
rithms (Ballard et al. 1983). The first step in seeing depth with two eyes is 
to establish matches between corresponding points on the two retinas. 
Matches are typically ambiguous. especially with random-dot stereograms 
where all local features are identical. One procedure for resolving ambi- 
guities is to implement constraints on possible matches as excitatory and 
inhibitory links between processing units whose values represent depth 
(Sperling 1970; Julesz 1971; Dev 1975; Nelson 1975; Marr and Poggio 
1976). The problem is then reduced to finding the matches that best satisfy 
all the local constraints. 

In the Marr-Poggio (1976) algorithm for random-dot stereograms, each 
unit stands for a binary hypothesis about the correspondence of a particular 
pair of dots and therefore represents the existence of a pakh of surface at 
a particular depth. There are exicitatory interactions between neighboring 
units with the same depth to ensure continuity of surfaces, and inhibitory 
interactions between units that represent different depths at the same 
image location to ensure that depth assignments are unique; if the sum of 
all the inputs to a unit from the two images and from local interactions is 
above threshold, the value of the unit is set to 1, and otherwise it is set 
to 0. Starting from all zeros. the units are iteratively updated: During 
the relaxation, various combinations of depth assignments are tried and 
the network eventually "locks" into a generally consistent solution in a 
way that resembles the human perceptual experience of fusing random-dot 
stereograms (Julesz I97 1). 

In general it is not possible to prove that this algorithm always con- 
verges to the correct depth assignments, partly because small clusters of 
units may form coalitions that are locally optimal but are not the globally 
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best solution (Burt 1977; Marr et al. 1978). Another drawback of this relaxa- 
tion method is the large number of iterations required to reach the final soh- 

tion. If there are only nearest-neighbor interactions between units, then at 
least as many iterations are required as there are units across the image. 
since information must propagate between unib one at a time and a global 
consensus must be reached by all the units. These problems can be 
minimized by the introduction of units with coarser spatial resolution 
(Rosenfeld and Vanderbrug 1977; Marr and Poggio 1979; Terzopoulos 
1984). 

Another computational problem that must be solved if only a sparse set 
of correct correspondences have been found is interpolating a smooth 
surface through the matched positions on the surface. Crimson (1981) has 
shown how this problem can be formulated as a variational principle in 
continuum mechanics by treating the surface as a thin plate. The problem is 
to minimize the energy of deformation of the surface constrained to pass 
through the matched posikions. The discretized equations can be solved 

I using a gradient-descent relaxation algorithm in which the energy is re- 
duced at each step. As in the case of the correspondence problem, a parallel 
realization of the algorithm is possible with locally connected processing 
units. However, because in this problem the energy is a convex function 
possessing only a single opHmum, the relaxation process always converges 
to the correct solution. 

Special care must be taken with interpolation at locations where there 
are depth discontinuities. Decisions must be made either before or during 
the relaxation about where breaks should occur in the surface representa- 
tion so that no attempt is subsequently made to interpolate smoothly 
across the breaks. One possibility is to monitor the local energy of defor- 
mation and "break the thin plate if it exceeds some threshold (Terzopoulos 
1984). However, once a break is made it is no longer possible to backtrack 
and correct for a wrong choice, so a globally optima' solution is no longer 
ensured. Discrete decisions must therefore be made together with the 
estimation of continuous variables. Similar problems occur in many other 
computations of intrinsic surface properties in early vision (Ballard et al. 
1983). 

Figure-Ground Separation 

One of the simplest problems in visual perception where a discrete choice 
at a boundary affects subsequent processing is the organization of figure 
and ground in an image (Weisstein and Wong, this volume). The classic 
drawing that can be interpreted as either a vase or two faces (figure 1) gives 
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Figure 1 

Rubin's (1915) demonstration of visual reversal of figure and ground. The form can be 
seen as a vase or as a pair of  faces. but not both at the same time. 

rise to two percepts depending on whether the figural part of the drawing 
is on the inside or the outside of the closed outline. Humans are remarkably 
good at performing the separation and can report within a few hundred 
milliseconds whether a small spot is inside or outside a briefly flashed 
closed outline (Ullman 1984). The discrimination probably requires two 
steps: a segmentation of the figure and the ground and a subsequent 
decision about whether the spot is located in the figure. 

We briefly summarize here a simple parallel relaxation model of one 
type of process that occurs during figure-ground separation (Kienker et 
al. 1986; for previous work on scene segmentation using relaxation algo- 
rithms see Prager 1980, Zucker and Hummel 1979, and Danker and Rosen- 
feld 1981). The model is designed to mark the inside or the outside of a 
connected figure when given some lines that represent its edges and an 
"attentional spotlight" that provides a bias to either the inside or the 
outside. Examples of these two different types of input are shown in figure 
3. The "bottom-up" input is not the raw image itself but is a highly 
processed version of the image containing the location and orientation of 
edges. as might be found in early visual cortex. The model must tolerate 
missing line segments, and it must be possible for changes in the "top- 
down" attentional spotlight to cause the same set of lines to be segmented 
differently. 

There are two types of binary units in the model: figure units and edge 
units. Figure units correspond to small regions in the image. When a figure 
unit is on. its region is marked as being part of the current figure. To 

Figure 2 
Summary of the weights betwen units in the figure-ground network. Because the pattern 
of connectivity is isotropic, only the weights for a single figure unit (left) and a single 
edcre unit (rieht) are shown. The connections are represented not by conventional lines " - 
but by the presence and shading of other units. A white (open) unit represents an 
excitatory.connection to that unit; a black (filled) unit represents an inhibitory connection 
to that unit. For every connection indicated there is a reciprocal feedback connection 
having the same weight: that is. all the connections are symmetric. Left: All the connec- 
tions to a figure unit (cross-hatched square). The figure unit is connected to each of its 
eight nearestneighbor figure units (squares) with weights of strength + 10. All the 
connections between the central figure unit and the surrounding edge units (arrowheads) 
can be deduced from the pattern (shown at right) for a single edge unit. Right: All the 
connections to  a single vertical edge unit (crosshatched arrowhead). The edge unit is 
connected to the figure unit toward which it is pointing with an excitatory weight of 
+ 12 and to the figure unit it is pointing away from with an inhibitory weight of -12. It 
is also connected to  laterally adjacent figure units with weights of either + 10 or - 10. 
The two types of edge units, which point away from each other, are mutually inhibitory 
with a weight of - 15. The diagram on the left shows the overall pattern of connectivity 
between edge and figure units. 

implement the constraint that figures tend to  be connected, each figure 
supports all eight neighboring figure units, as shown in figure 2. To  imple- 
ment the top-down constraint that the figure should have a particular 
approximate scale and a particular approximate location, figure units re- 
ceive top-down excitatory input from the attentional spotlight. An edge 
unit is used to mark the presence and type of an edge. A line segment 
between two regions can be interpreted in many ways. It could be the 
bounding edge of a region to one side, or the bounding edge of a region 
to the other side, or both if it is a crack. We ignore cracks, shadows, surface 
markings, and edges where two non-coplanar three-dimensional surfaces 
join, and allow only the two alternative bounding-edge possibilities. Be- 
tween any two adjacent figure units there are two edge units corresponding 
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Figure 3 
Two types of inputs to the figure-ground module: bottom-up inputs from the image to 

some of the edge units (arrowheads). which in this case form a 9 x 6 rectanglc. and 

top-down attentional inputs to the figure units (cross-hatched squares). The strengths of 

the inputs to the figures units have a Gaussian distribution centered on the unit just to the 

right of the rectangle's center given by 15e-"n". where d is the Euclidean distance of the 

unit from the center of attention. The figure units that are shown cross-hatched are those 

whose attentional input exceeds 1.  Each figure unit has a threshold of 41, so the top-down 

input is  not enough by itself to turn the Agure units on. The edges composing the outline 

of the 9 x 6 rectangle have external inputs of 60, and all edge units have thresholds of 

45 Thus. there was a strong bias for edge units composing the outline to be on: however, 

both types of edge units at each position of the outline received equal input. 
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to these two interpretations. Each of these supports one of the figure units 
and inhibits the other, and because cracks are not allowed the two edge 
units inhibit each other. 

To implement the constraint that lines in the input require interpretation, 
each line segment provides equal excitatory input to the two relevant edge 
units. To implement the constraint that edges are implausible in places 
where there are no lines in the input, edge units have high thresholds that 
normally require excitatory input to overcome them. To  implement the 
constraint that edges tend to be continuous, a figure unit supports the 
colinear neighbors of its bounding-edge units. This was found to work 
better than direct support between the colinear-edge units themselves, 
because it allows edge completion to occur around the figure region but 
not elsewhere. 

The complete set of interactions of a figure unit and an edge unit are 
shown in figure 2. The precise strengths of the interactions were chosen by 
trial and error using a variety of outlines and were guided by the following 

I two considerations: 

. The region within the attentional spotlight should tend to be figure and 
the region outside should tend to be background. 

The discontinuity between figure and background should normally ap- 
pear as a line in the image, and so  there should be a penalty for "open 
frontier" where the figure region ends without there being a line in the 
image. 

Whenever the spotlight of attention does not ~recisely align with the lines 
in the image, these two considerations are antagonistic and it therefore 
becomes necessary to perform a best-fit search. 

One of the simplest updating algorithms consists of choosing a unit at 
random and summing the weighted inputs from all the active interacting 
units together with any external input. If this sum exceeds a fixed thres- 
hold, the unit adopts the I state; otherwise it adopts the O state. This 
algorithm quickly fills in the figure, but it often makes mistakes where 
figure units are incorrectly stabilized by edge units (as shown in figure 4). 

It can be made to perform reliably if the spotlight is strong; however, the 
performance then is very sensitive to the width of the spotlight, and this 
would require the top-down attentional input to already know the exact 
extent of the figure in the image. A more robust algorithm should be 
capable of good performance with a spotlight whose size and position do 
not already encode the exact size and position of the figure. 
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Figure 4 
Final state of  the figure-ground module using the gradient-descent update mle ( T  = 0). 
The simulation was started from a random starting state with approximately one out of 
ten units on. Each iteration consisted of 2,000 updates. For each update one of the 2,000 
units was chosen at random. the weighted inputs from other active units were summed, 
and the binary threshold ~ l e  was applied to determine its new state. The system reached 
the steady-state configuration shown here after 28 iterations. The bottom line of figure 
units has been incorrectly stabilized outside the rectangle. 

Analyzing Convergence 

There is a useful analogy between binary netwonks of hypotheses that im- 
plement constraint-satisfaction ~roblems (such as the figure-ground model 
introduced here) and models of interacting spins in ~ h ~ s i c s .  Our binary 
networks most closely resemble spin glasses (spin systems where both 
positive and negative interactions occur between spins). Because of com- 
peting interactions, spin glasses exhibit a phenomenon called frusfration 
(Kirkpatrick 1977) in which conflicting constraints produce many local 
optima and degenerate ground states. One important difference, however, 
is that in spin glasses the spins interact randomly, whereas in binary 
networks that solve particular constraint-satisfaction problems the inter- 
actions are highly ordered. 

The binary networks in the models of stereopsis and figure-ground 
separation previously discussed have the property that the connections 
(considered a matrix) are symmetric. A large class of constraint-satisfaction 

t problems can be implemented with symmetric weights, including ones 
that require asymmetric constraints between hypotheses. For example, two 
hypotheses related by implication can be implemented by two units con- 
nected by symmetric weights and having different thresholds (Hinton and 
Sejnowski 1983). Symmetric connectivity has the significant advantage 
that optimization techniques and variational principles can be used to 
analyze the perfomance of the network (Hummel and Zucker 1983). In 
particular, Hopfield (1982) has shown that one can define an "energy" for 
a symmetric network of binary hypotheses that can be used to analyze its 
convergence. Each state is assigned an energy according to 

where si is the state of unit i, wi, is the strength of connection between the 
units i and j, qi is the input to unit i, and 8, is the threshold of unit i. A 
simple asynchronous algorithm for finding the combination of hypotheses 
that has' a local energy munimum is to choose asynchronously a unit at 
random and set its state to the one with the lowest energy. Because of the 
symmetric weights, this updating mle requires that the unit be set to I if 
the "energy gap" 

is positive, and to 0 otherwise. This is the familiar rule for binary threshold 
units that was used in describing the updating of units in the stereo 
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algorithm and the figure-ground algorithm. Spin models for neural net- 
works have been studied (Cragg and Temperley 1954; Little and Shaw 
1975; Choi and Huberman 1984). However, the asynchronous updating 
rule we have used ensures convergence, whereas the synchronous updating 
rule in other models may produce oscillations and more complex dynamics. 
Synchronous models are more closely related to cellular automata (von 
Neumann 1966; Wolfram 1983). 

In the case of the stereo algorithm, the search space is fairly well 
behaved (Nishihara 1984; Prazdny 1985; Szeliski and Hinton 1985). How- 
ever, the global minimum in the figure-ground problem is shallower and 
the search space has many local minima within which to get trapped. Many 
problems in vision (such as grouping and line labeling) that require the 
global organization of discontinuities (Waltz 1975; Zucker and.Hummel 
1979; Zucker 1983) have energy landscapes similar to that of the figure- 
ground problem. In the next section we will introduce a general technique 
for finding good solutions to problems of this type. 

The Metropolis Algorithm and Simulated Annealing 

The problem of being trapped in local energy minima can be circumvented 
by altering the deterministic decision rule. A simple way to escape from a 
local minimum is to occasionally allow jumps to states of higher energy. 
An algorithm with this property was introduced by Metropolis et al. 
(1953) for the purpose of studying the average properties of thermo- 
dynamic systems (Binder 1978). This algorithm has recently been applied 
to problems of constraint satisfaction (Kirkpatrick et al. 1983; Hinton and 
Sejnowski 1983; Smolensky 1983; Geman and Geman 1984; Bienenstock 
1985). Boltzmann machines (Fahlman et al. 1983) are networks of binary 
processors that use as their update rule a form of the Metropolis algorithm 
that is suitable for parallel co.mputation: If the energy gap between the I 
and 0 states of a unit is AE,, then-regardless of the previous state-set 
the unit to I with probability 

where T is a parameter that acts like temperature (figure 5). As T ap- 
proaches zero, equation 3 approaches a step function: the deterministic 
update rule for binary threshold units already introduced. 

Our analysis of Boltzmann machines is based on the statistical mechanics 
of physical systems (Schroedinger 1946). The probabilistic decision rule in 
equation 3 is the same as the equilibrium probability distribution for a 

-- -- 
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Energy gap AE 

Figure 5 
Probability for a unit to be on as a function of the energy gap AE plotted for T = I 
(equation 3). As the temperature decreases, the sigmoid approaches a step function: 
at T = 0 it becomes the decision rule for a binary threshold unit. As the temperature 
increases, the sigmoid becomes very broad and approaches a probability of 0.5 regardless 
of the energy gap. In this limit the effect of the weights between units becomes negligible 
in comparison with the thermal noise. 

system with two energy states. A system of particles in contact with a heat 
bath at a given temperature will eventually reach thermal equilibrium, and 
the probabilities of finding the system in any global state will then obey a 
Boltzmann distribution. Similarly, a network of units obeying this decision 
rule will eventually reach a "thermal equilibrium" in which the relative 
probability of two global states of the network follows the Boltzmann 
distribution: 

where pa is the probability of being in the global state a and Ea is the 
energy of that state. 

At low temperatures there is a strong bias in favor of states with low 
energy, but the time required to reach equilibrium may be long. At higher 
temperatures the bias is not so  favorable but the equilibrium is reached 
sooner. This occurs because temperature enters as a scale factor for the 
energy difference in equation 4 and therefore scales the amount of discrim- 
ination between different energy states. The difficulty of breaking out of 
a local energy minimum depends on the heights and the degeneracies of 
saddle-shaped energy barriers separating them from other minima. At high 
temperatures these barriers are easily jumped, but lowering the temperature 
increases the time required to make the jump. 

Kirkpatrick et al. (1983) introduced a way to find the global energy 
minimum using simulated annealing, a procedure derived by analogy from 
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the annealing of solids. The system is started at a high temperature to reach 
equilibrium quickly, and the temperature is gradually reduced. As the 
temperature is lowered, the search space is explored, first at a coarse grain 
and then at successively finer grains. This search ~rocedure is effective at 
solving some difficult combinatorial problems such as graph partitioning, 
and it ~erforms well on a large class of problems (Johnson et al. 1986). 
However, simulated annealing is not a panacea; there are many problems 
where the search space is not suitably structured. For example, it does 
poorly at finding a very deep and narrow energy minimum, and it would 
d o  poorly at golf (Andrew Witkin, personal comrnunicatioh). It is therefore 
not at all clear whether simulated annealing would be useful in trying to 
satisfy multiple weak constraints such as those found in visual algorithms. 

As a test case we have applied the Metropolis algorithm and simulated 
annealing to the parallel algorithm for separating figure from ground intro- 
duced above.'(A more detailed account can be found in Kienker et al. 
1986.) At high temperatures the figure and edge units make a structureless 
pattern (figure 6a). As the temperature is exponentially reduced, the figure 
units around the center of attention tend to remain on, and these on 
average support those edge units whose orientation is consistent with 
them (figure 6b). As the temperature is further reduced, local inconsisten- 
cies are resolved and the entire network "crystallizes" to the correct solu- 
tion. In a series of 1,000 annealings from random starting configurations, 
every trial reached the correct solution. as is shown by figure 7. A single 
iteration consisted of 2,000 updates in which one of the 2,000 units in the 
problem was chosen at random. Similar results have been obtained for a 
variety of simple figures, including ones where the outline is incomplete. 
The performance of the algorithm on spirals using the same annealing 
schedule is very poor; however, with a much slower annealing schedule the 
algorithm reliably finds the correct $ohtion. Humans also have great diR- 
culty with spirals. 

The model of figure-ground separation presented here is clearly much 
too simple to explain how the problem is solved in the human visual 
system. A more realistic model would need to take into account multiple 
levels of resolution (Terzopoulos 1984) and a greater range of orienta- 
tions, and it would have to introduce distinctions between low-level edge 
labeling and higher-level attentional phenomena (Crick 1984). However, 
general features of more sophisticated models are probably reflected in this 
simple example. More complex representations in networks of locally 
interacting units may also benefit from stochastic parallel search as long as 
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Figure 6 
Simulated annealing applied to the figure-ground network shown at three temperatures- 
(a) T = 16.2 after three iterations, (b) T = 7.7 after ten iterations, and (c) T = 3.3 after 28 
iterations-using the probabilisti~c update rule of equation 3. The annealing schedule was 
piecewise exponential: T, = p * TI-,, where To = 20, p = 0.9 for T, > 4, and p = 0.99 for 
T, < 4. 
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NUMBER OF ITERATIONS 

Figure 7 
Histogram of the number of simulated annealing trials that properly filled the inside of the 
rectangle as a function of the number of iterations required. The annealing schedule given 
in figure 6 was used in 1.000 trials, each starting from a different random state. The fastest 
solution took 14 iterations and the longest took 55 iterations: the median was 21 iterations. 

the best-Fit solutions can be expressed as the minima of a cost function. 
Geman and Geman (1984) have independently used a similar approach to 
the Bayesian restoration of images after degradation due to blurring, non- 
linear deformations, and noise. 

The model of Figure-ground separation used only information from the 
outlines of Figures. Other cues, such as optical flow, may also provide 
information for separating figure from ground, which would require other 
modules. We can analyze the performance of several modules working 
together in parallel by simply adding together their cost functions. One of 
the consequences of this additivity is that different sources of evidence are 
weighed together linearly. It has been shown that several factors affecting 
the perception of depth in a rotating wire cube, including proximity lu- 
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minance and perspective, are linearly additive (Dosher et al. 1985). This 
result is in agreement with our approach and suggests that linear additivity 
of evidence may be a general property of perceptual systems (Speriing et 
al. 1983). 

Relationship between Boltzmann Machines and Neural Models 

The energy gap for a binary unit has a role similar to that ~ l a y e d  by the 
membrane ~otential  for a neuron; both are sums of the excitatory and 
inhibitory inputs, and both are used to determine the output state through 
a nonlinear transformation. However, a neuron produces action potentials 
(brief spikes that propagate down its axon) rather than a binary output. 
When the action potential reaches a synapse, the signal it ~roduces in the 
postsynaptic neuron rises to a maximum and then decays with the time 
constant of the membrane (typically around 5 msec for neurons in cerebral 
cortex). The effect of a single spike on the postsynaptic cell body may be 
further broadened by electrotonic transmission down the dendrite to the 
spike-initiating zone near the cell body. 

This suggests a neural interpretation for the binary pulses in a Boltz- 
mann machine: If the average time between updates is identified with the 
average duration of a postsynaptic potential, then the binary pulse between 
updatcs can be considered an approximation to the postsynaptic potential. 
Although the shape of a single binary pulse differs significantly from a 
postsynaptic potential, the sum of a large number of pulses stochastically 
impinging on a processing unit is independent of the shape of the individ- 
ual pulses. Thus, for networks having the large fan-ins typical of cerebral 
cortex (several thousand), the energy gap of a binary unit should behave 
like the membrane potential of a spike-producing neuron. 

In addition to the nonlinear membrane currents in axons that produce 
action potentials, active m~embrane currents have also been found in the 
dendrites of some neurons that could support nonlinear processing (Perkel 
and Perkel 1985; Miller el  al. 1985; Shepherd et at. 1985). This suggests 
that a single processing unit might be identified not with an entire neuron 
but with a patch of membrane. The interaction between two active mem- 
brane patches owing to electrotonic conduction on the same dendritic branch 
is approximately symmetrical and is always excitatory. With nonlinear 
interactions in dendrites, many more processing units are available; how- 
ever, this advantage is partially offset by the limited topological con- 
nectivity of dendritic trees. 
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Noise in the Nervous System 

How can the probabilistic decision rule in equation 3 be implemented by 
neurons? In particular, how can the temperature be controlled? The mem- 
brane potential of a neuron is graded; however, if it exceeds a fairly sharp 
threshold, an action potential is produced, and this potential is followed by 
a refractory period of several milliseconds during which another action 
potential cannot be elicited. If Gaussian noise is added to the membrane 
potential, then even if the total synaptic input is below threshold there is a 
finite probability that the membrane potential will reach, threshold. The 
amplitude of the Gaussian noise will determine the width of the sigmoidal 
probability distribution for the neuron to fire during a short time interval, 
and it therefore plays the role of temperature in the model. Surprisingly, a 
cumulative Gaussian is a very good approximation to the required prob- 
ability distribution (equation 3), never differing by more than 1 percent 
over the entire range of inputs. 

lntracellular recordings in the central nervous system reveal stochastic 
variability in the membrane potentials of most neurons, which is due in part 
to fluctuations in the transmitter released by presynaptic terminals. Other 
sources of noise may also be present and could be controlled by cellular 
mechanisms (Verveen and Derksen 1968; Holden 1976). If some sources of 
noise in the central nervous system are gated or modulated, it should be 
possible to experimentally identify them. For example, the noise could be 
regularly cycled, and this would be apparent in the massed activity. klter- 
natively, noise may always be present at a low level and be increased 
irregularly whenever there is an identified need. 

In the visual cortex of primates, single neurons respond to the same 
visual stimulus with different sequences of action potentials on each trial 
(Sejnowski 1981). In order to measure a repeatable response, spike trains 
are typically averaged over ten trials. The result, called the poststimulus 
time histogram, gives the probability for a spike to occur as a function of 
the time after the onset of the stimulus. However, this averaging procedure 
removes all information about the variance of the noise, so that there is 
no way to determine whether the noise varies systematically during the 
response to the stimulus or perhaps on a longer time scale while the 
stimulus is being attended. Such measurements of the noise variance over - 
a range of time scales could provide evidence that this parameter has an 
active role in neural processing. 

There are two ways to view the sigmoidal probability rule used to 
update units (figure 5). Over a short time interval, it represents the proba- 

bility for a single unit to "fire"; over longer time intervals, in equilibrium, it 
represents the average "firing rate" of a unit. The average firing rate of a 
neuron is generally regarded as the primary neural code in the brain; 
however, it cannot be accurately measured over short time intervals, par- 
ticularly during nonstationary conditions. The probability for a spike to 
occur can be defined for intervals as short as a few milliseconds and is 

! 
routinely measured by ensemble-averaging spike trains, as in the post- 
stimulus time histogram. The probabilistic interpretation of spike firing as 

I 
an information code may be of more general usefulness than the average 
firing rate. 

Symmetry, Simultaneity, and Time Delays 

In a Boltzmann machine all connections are symmetrical. It is very unlikely 
1 I .  that this assumption is strictly true of neurons in cerebral cortex. However, 

if the constraints of a problem are inherently symmetrical and if the net- 

I work on average approximates the required symmetrical connectivity, then 
random asymmetries in a large network will be reflected as an increase in 
the Gaussian noise in each unit, in effect raising the temperature (Hopfield 
1982). Systematic asymmeltries that would lead to oscillations in the net- 
work would invalidate the qualitatively important feature of settling to a 
stable state of equilibrium. 

The decision rule used in the simulations presented here was asyn- 
chronous, and updates were instantaneous. In the brain, several connected 
neurons may spike simultaneously within an interval of a few milliseconds. 
The time required for the transmission of a spike down the axon to the 
nerve terminal, for the release of neurotransmitter, and for postsynaptic 
integration can delay the signal's arrival in the spike-initiating zone of the 
target neuron by several milliseconds. In some simulations both simul- 
taneous updates and transmission delays were included, and these appear 
to increase the noise in the system, effectively increasing the temperature 
(Sejnowski et al. 1985; Venkatasubramanian and Hinton 1985). At low 
temperatures these effects are less pronounced because the rate of flipping 
is lower; thus, simultaneous decisions and time delays contribute noise 
that could mimic annealing even without an explicit temperature control 
(Francis Crick, private communication). Time delays are especially effective 
at introducing noise. and a delay of one iteration (t.000 updates in these 
simultations) starting from a random state and running at 7 = 1 was 
almost as effective as the standard exponential annealing. 
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Learning in Cerebral Cor tex  a n d  Boltzmann Machines 

The values of  weights between units for the t w o  examples of networks 
discussed in this paper were chosen as much by trial and error as by  plan. 
It would be desirable to  have an automated ~ r o c e d u r e  for incorporating the 
constraints from a given task domain in the weights. The evolution of  
cerebral cortex is closely linked t o  the ability of mammals to  learn from 
experience and adapt t o  their environments; this adaptability may be the 
consequence of  rules for modifying the strengths of cortical synapses. 

A single weight between two units can be considered a "microscopic" 
variable in comparison with the "macroscopic" performa&e of the net- 
work. In general it is not possible in a network of nonlinear processing 
units t o  predict how changing a single weight will affect the overall 
performance. However, in a Boltzmann machine that has relaxed t o  equi- 
librium the we.ights between units and the probabilities of their global 
states are related by the Boltzmann distribution given in equation 4. Because 
each weight contributes independently t o  the energy. each weight also 
conIributes indrpcndenlly in determining the relative probabilities of glc~bal 
states (I  linton and Sejnowski 1983). This simple probabilistic relationship 
makes possible a simple "microscopic" learning rule that automalically 
improves the "macroscopic" performance. The learning rule is similar to  but 
different from the llebb learning rule and has been successfully dernons- 
trated for several small problems (Ackley et  al. 1985; Hinton et al. 1984; 
Sejnowski et al. 1986). 

Unlike the bulk of the brain, which is composed of many morphologi- 
cally different nuclei, the cerebral cortex is relatively uniform in structure. 
Different areas of cerebral cortex (e.g. visual cortex, auditory cortex, and 
somatosensory cortex) are spetialized for processing information from 
different sensory modalities, and other areas are specialized for motor 
functions; however, all these cortical areas are similar in anatomical organi- 
zation. and they are more similar in cytoarchitecture t o  one another than to 
any other part of the brain. 

The similarity between different areas of cerebral cortex suggests that 
massively parallel searches may also be performed in other cortical areas. 
Many problems in speech recognition, associative retrieval of information. 
and motor control can be formulated as searches. However, there is a 
serious obstacle that appears t o  prevent symmetric modules from modeling 
sequential information processing: At thermal equilibrium there can be  n o  
consistent sequences of states. It is tempting to use asymmetrical weights 
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to  produce sequences, but this would be incompatible with the central idea 
of performing searches by  settling t o  equilibrium. 

An alternative that w e  are exploring is sequential settlings in a hierarchy 
of asymmetrically connected modules. The result of each search could be 
considered a single step in a strictly serial process, with each search setting 
up boundary conditions for the next. An  attractive possibility for speeding 

I 
up sequential settlings is t o  cascade partial settlings s o  that an approximate 
solution for one module c~ould b e  used t o  start the search for the next one 
up the line (McClelland 1979). Although there are some similarities be- 
tween the organization of cerebral cortex and parallel stochastic search in 
Boltzmann machines, more experience with larger problems and a wider 
range of applications are needed before the general usefulness of this 
approach can b e  properly assessed (Fahlman e t  al. 1983). 
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