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Recurrent neural networks (RNNs) based on model neurons that communicate via
continuous signals have been widely used to study how cortical neural circuits perform
cognitive tasks. Training such networks to perform tasks that require information
maintenance over a brief period (i.e., working memory tasks) remains a challenge.
Inspired by the robust information maintenance observed in higher cortical areas such
as the prefrontal cortex, despite substantial inherent noise, we investigated the effects
of random noise on RNNs across different cognitive functions, including working
memory. Our findings reveal that random noise not only speeds up training but
also enhances the stability and performance of RNNs on working memory tasks.
Importantly, this robust working memory performance induced by random noise
during training is attributed to an increase in synaptic decay time constants of inhibitory
units, resulting in slower decay of stimulus-specific activity critical for memory
maintenance. Our study reveals the critical role of noise in shaping neural dynamics
and cognitive functions, suggesting that inherent variability may be a fundamental
feature driving the specialization of inhibitory neurons to support stable information
processing in higher cortical regions.

recurrent neural network | working memory | neural dynamics

The brain is hierarchically organized, with higher cortical areas responsible for complex
cognitive functions and lower areas managing more basic sensory processes. Previous
studies suggest that this hierarchical organization reflects a corresponding gradation in
neural processing timescales (1-4). For instance, higher cortical regions, such as the
prefrontal cortex, exhibit slower synaptic dynamics, facilitating sustained information
processing crucial for tasks that involve working memory and decision-making. These
regions can maintain information over extended periods, enabling the integration of
complex cognitive processes. In contrast, lower cortical areas operate with faster dynamics,
allowing for rapid sensory processing. This gradient in synaptic dynamics across the
cortical hierarchy supports a seamless flow of information.

Prior studies suggest that seemingly noisy activities and neuronal variability tend
to increase along the cortical hierarchy (5, 6). In particular, neuronal responses in
the prefrontal cortex demonstrate significant modulation of variability, driven by task
demands (6). Despite such increased variability and pervasive “noisy” processes from
various sources, higher cortical areas are still able to maintain information robustly.
Whether the slower synaptic dynamics associated with these higher cortical regions
observed in previous studies act as a compensatory mechanism for the inherently higher
variability present in these areas remains an open question. This relationship between
synaptic dynamics and neuronal variability may hold key insights into the specialized
functions of higher cortical areas.

There is growing evidence from computational and modeling studies that introducing
noise during the training process can lead to improved stability and robustness of neural
networks. Specifically, several studies have demonstrated that injecting Gaussian noise
during the training process of multilayer perceptron (MLP) and recurrent neural networks
(RNNis) can improve their performance (7-9). For example, ref. 9 examined the impact
of injecting noise into the hidden states of vanilla RNNs and found that it contributed to
stochastic stabilization through implicit regularization (10). Additionally, ref. 8 studied
the regularization effects induced by Gaussian noise in MLPs and showed that the explicit
regularization provided several benefits, including increased robustness to perturbations.
Despite the demonstrated benefits of noise injection in vanilla RNNs and MLPs, it
is not yet clear whether these findings extend to more biologically plausible RNNs
that incorporate neuronal firing rate and synaptic dynamics. It is also unclear whether
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introducing noise consistently results in slower synaptic dynamics
or if this phenomenon is specific to cognitive demands.

In this study, we propose a systematic approach to address
these questions. Specifically, we investigate the impact of noise
during training of firing-rate RNNs to perform tasks that
require different cognitive functions, such as decision-making
and working memory. We show that the introduction of noise
during training significantly enhances the RNN performance on
tasks that specifically require working memory. By dissecting
the networks trained with noise and employing stability analysis
methods, we further show that noise induces slow dynamics in
inhibitory units and forces these units to be more active, resulting
in more stable memory maintenance. These findings aligned with
recent experimental and theoretical studies that place specific
subtypes of inhibitory neurons at the center of working memory
computations (11-15). Therefore, our study illustrates how
seemingly random noise could give rise to slow dynamics specific
to working memory, elucidating that the enhanced stability of
memory maintenance associated with higher cortical areas could
be the result of increased “noise” inherent to these regions.

Results

Biologically Plausible RNN Model and Task Overview. Even
though recent advances in deep learning and Al have greatly
increased the functionality and capability of artificial neural
network models, it is still challenging to train a network of
model neurons to perform cognitive tasks that require memory
maintenance. Models based on RNNs of continuous-variable
firing rate units have been widely used to reproduce previously
observed experimental findings and to explore neural dynamics
associated with cognitive functions including working memory,
an ability to maintain information over a brief period (16-19).

We study the RNN model composed of excitatory and
inhibitory rate units governed by Eq. 1.

dx;
Tl'd —&—Zu@d)ag

Z nolse)

) =
Z ) + &i(2) [1]

In Eq. 1, 7; and x; refer to the synaptic decay time-constant and
synaptic current variable, respectively, for unit 7. The synaptic
current variable is converted to the firing-rate estimate via a
nonlinear transfer function (¢(+)). Throughout this study, we
employed the standard sigmoid function for ¢. w; is the synaptic
strength from unit j to unit 7, and ( ) is the task-specific input
data given to the network via wi (Matemzls and Methods).
Each neuron in the model received external noise (£(¢)). In
contrast to conventional rate-based RNN models, our model
incorporated what we referred to as inherent noise, where a set
of independent noise signals sampled from a standard Gaussian
distribution uncorrelated in time (y(#)) were introduced to the

network through aw(noise) (Materials and Methods). The trainable
parameters of the model included w, ("), , () and b. It

is important to note that the noise input weights (w(“‘)ise)) were
replaced by a standard Gaussian random matrix during testing
(Materials and Methods).

The above firing-rate RNN model was trained using backprop-
agation through time (BPTT; 20) to perform a task that involves
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maintaining information over a brief period (i.e., working
memory task). The task is a delayed match-to-sample (DMS)
task that requires the model to match the signs of the two
sequential input stimuli (Fig. 14; see Materials and Methods).
While the model has shown success in various cognitive tasks (16—
19), training the model with important biological constraints to
perform the DMS task with a long delay period between the
two input stimuli remains challenging. Notably, the training
time increases exponentially as a function of the delay duration.
As shown in Fig. 1B, the model required more trials to achieve
successful training on the DMS task as the delay interval increased
from 50 ms to 250 ms (all Ps < 0.001, two-sided Wilcoxon rank-
sum test). Moreover, when the synaptic decay time constants ()
for all the units in the model were fixed at a small constant
(20 ms), the training process failed to converge.

Noise Improves Learning and Enhances Network Resilience
on Working Memory Tasks. In order to study the effects of
noise on the dynamics of the firing-rate RNNs and their
performance on the DMS task, we introduced noise in the
form of random Gaussian currents injected into the units during
the training process (Fig. 1C; see Materials and Methods). For
each noise level (C; see Materials and Methods), we trained
50 RNNs to perform the DMS task with a delay interval of
250 ms. Specifically, there were four stimulus conditions (s €
{(+1,4+1), (+1,=1), (=1, +1), (=1, =1)}). For the matched
cases (stimulus conditions 1 and 4), the model had to generate
an output signal approaching +1. For stimulus conditions 2 and
3 where the signs of the two sequential stimuli were opposite,
the model had to produce an output signal approaching —1.
As shown in Fig. 1D, the training success rate for the baseline
model (i.e., no inherent noise; C = 0) was 66% (33 out of
50 RNNs were trained within the first 20,000 trials). As the
number of the noise channels (C) increased, the training success
rate also increased (Fig. 1D). When C = 10, all 50 RNNs
were successfully trained to perform the task (dark green in
Fig. 1D). For the networks successfully trained, we did not see
any significant difference in the number of training trials/epochs
required among the four different noise conditions (Fig. 1E).
We observed a similar trend for a DMS task involving two
delay intervals (Materials and Methods and SI Appendix, Fig. S1).
Varying the number of noise signals and their variance values
revealed that adding more noise signals with smaller variance
was more beneficial than adding fewer noise channels with
higher variance (SI Appendix, Comparison of Different Structures
of Inherent Noise and Fig. S2).

As shown in Fig. 1 D and E, the noise condition of C = 10
yielded the highest training efficiency. Importantly, the RNNs
trained with this optimal noise structure were more robust
to perturbations of internal dynamics compared to the RNNs
trained without any injection of inherent noise. Specifically, the
RNNSs trained with noise exhibited robust performance in the
DMS task even when subjected to randomly generated inherent

noise introduced via randomly generated w(noise)

(noise)

, as opposed

to the optimized w used during training (Fig. 1F). In
addition, the networks trained with noise demonstrated superior
performance in the DMS task with a longer delay duration
compared to the networks trained without noise (Fig. 1F).
Interestingly, making w("°5¢) nontrainable led to similar results:
All 50 RNNs were successfully trained to perform the DMS
task, and the number of trials required was not significantly
different from the trials required to train RNNs with tunable
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Fig. 1. Delayed match-to-sample (DMS) task and model schematic. (A) A schematic diagram of a delayed match-to-sample (DMS) task with two sequential
stimuli separated by a delay interval (Top). Timeline illustrating the stimulus presentation and model response in a DMS task with a delay interval of 250 ms
(Bottom). (B) The number of trials/epochs needed to train continuous-variable RNNs increases exponentially as the delay interval increases. For each delay
duration condition, we trained 50 firing-rate RNNs to perform the DMS task shown in (A). The maximum number of trials/epochs was set to 20,000 trials for
computational efficiency (all Ps < 0.001, two-sided Wilcoxon rank-sum test). (C) A schematic diagram illustrates the paradigm used to train our RNN model
on the DMS task in which one delay was present. We introduced and systematically varied the amount of noise in the RNN to study the effects of noise on
memory maintenance in a biologically constrained neural network model. The model contained excitatory (red circles) and inhibitory (blue circles) units. The
dashed lines represent connections that were optimized using backpropagation. (D) Training performance of the RNN models on the DMS task. RNN models
with varying amount of noise (i.e., 0, 1, 5, and 10 noise channels) were trained to perform this task. Training success rate was measured as the number of
successfully trained RNNs (out of 50 RNNs). (E) The average number of trials required to reach the training criteria. (F) Testing performance of the RNN models
on the DMS task. RNNs successfully trained either without noise (0 noise channels; n = 33) or with 10 noise channels (n = 50) were tested on the DMS task
in which both inherent noise and noisy input signals (external noise) were introduced. We also varied the delay duration of these testing trials to range from
250 ms, 750 ms, and 1,250 ms. For each testing condition, average accuracy of the trained RNN models is shown. Across all conditions, RNNs trained with no
noise had lower accuracy than those trained with 10 noise channels (all Ps < 0.01, two-sided Wilcoxon rank-sum test). Boxplot: Central lines, median; Bottom

and Top edges, Lower and Upper quartiles; whiskers, 1.5x interquartile range; outliers are not plotted.

w(noise) (10,747 = 3,122 trials for 50 DMS RNNs with tunable
w(n0i5) v 11,425 & 2,436 trials for 50 DMS RNNGs with fixed
w(“"ise), mean + SD; no significant difference by the two-sided
Wilcoxon rank-sum test). These results suggest that the injected
noise facilitated contextualized sensory encoding and led to a
more robust representation of the input stimuli.

To further investigate the impact of inherent noise on the
RNN dynamics, we applied the Potential of Heat-diffusion
for Affinity-based Transition Embedding (PHATE; 21) to the
internal state trajectories of one example RNN realization from
the baseline (C = 0) and noise (C = 10) conditions (Materials
and Methods). When only external noise (€ in Eq. 1) was
present, both models performed the DMS task with a delay
of 250 ms equally well (Fig. 2 4 and B). However, applying
PHATE to these two models revealed distinct differences in the
dynamics and representations of the four stimulus conditions
(Fig. 2 C and D). In the RNN trained without noise, the
neural representations of distinct stimulus conditions were
found to intermingle in the lower-dimensional embedding
space (Fig. 2C). However, in the RNN trained with noise
(Fig. 2D), the dynamical structures corresponding to the four
conditions were clearly demarcated, indicating a more distinct
representation of the stimuli. Notably, these neural trajectories
exhibited meaningful and informative bifurcations that were
driven by the temporal structure of the DMS task (as indicated
by the black arrows in Fig. 2D). Specifically, the first bifurcation
occurred after presentation of the first stimulus (at 250 ms),
followed by a second bifurcation at the onset of the second
stimulus (at 750 ms). These distinct bifurcations observed in the
trajectories over time highlight the role of inherent noise in fa-
cilitating contextualized sensory encoding and working memory
computation.

PNAS 2025 Vol. 122 No.3 2316745122

Noise Modulates Cell-Type Specific Dynamics Underlying Work-
ing Memory Computation. Next, we investigated how the noise
facilitated stable maintenance of stimulus information by ex-
amining the optimized model parameters. Given the previous
studies highlighting the importance of inhibitory connections for
information maintenance (11, 13-15), we hypothesized that the
inherent noise enhances working memory dynamics by selectively
modulating inhibitory signaling. To test this, we first compared
the inhibitory recurrent connection weights of the RNNs across
different noise conditions (C = 0, 1, 5, 10). We did not observe
any significant differences in the inhibitory weights (S/ Appendix,
Fig. S4). Similarly, the excitatory recurrent weights were also
comparable across the noise conditions (S/ Appendix, Fig. S4).
As we did not observe any noticeable changes in the recurrent
weight structure induced by the noise, we next analyzed the
distribution of the optimized synaptic decay time constants (7).
First, we extended our analyses to include a wider range of C by
training 50 RNNs for the DMS task with C = 20 and C = 50.
For the C = 20 case, 48 out of 50 RNNs were successfully
trained within the first 20,000 trials (12,844.7 & 2,878.9 trials,
mean *+ SD). In contrast, for the C = 50 case, only 8 out of
50 RNNs were successfully trained (16,763.5 & 1,952.2 trials,
mean *+ SD). Investigating the synaptic decay time constants
across the 6 noise levels (C € {0, 1, 5, 10, 20, 50}) revealed that
the inhibitory synaptic decay time constant values (Ti,h) were
strongly modulated by the number of the noise channels (C):
Increasing C led to slower inhibitory synaptic dynamics (Fig. 3).
We also observed that the average excitatory synaptic constants
(Texc) started to increase notably when C > 10 (Fig. 34).
Plotting the difference between the inhibitory and excitatory time
constants (Tj,h — Texc) revealed that the difference was maximized
when C = 10 (Fig. 3C). Introducing a greater number of noise
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Fig. 2. Neural representations of each stimulus condition on the DMS task. (A) Network output of a sample RNN model successfully trained without noise to
perform the DMS task with a delay of 250 ms. For match cases (s € {(41,+1), (-1, —1)}), the network accurately generated an output signal approaching +1
(dark green and dark purple tracings). For nonmatch cases (s € {(+1, —1), (=1, +1)}), the network produced an output signal approaching —1 (light green and
light purple). (B) Network output of a sample RNN model trained with noise to perform the same DMS task as (A). A schematic of the four stimulus conditions
used in the DMS task shown in the Bottom Left corner. (C) PHATE-embedding of the network activity (from the onset of the first stimulus window) from the
RNN shown in (A). (D) PHATE-embedding derived from the network activity of the RNN trained with noise (same network as B). Black arrows indicate temporal

progression of the PHATE trajectories over the trial duration.

channels with smaller variance was more effective in maximizing
Tinh — Texc than using fewer noise channels with larger variance
(81 Appendix, Fig. S3).

Based on these results, we then hypothesized that the decreased
training success rate observed for C = 20 and C = 50 was due
to the large increase in Teyc. To test this hypothesis, we trained an
additional set of 50 RNNs for the C = 50 case, with Ty fixed to
their initial values and not adjustable during training. Imposing
the constraint of fixing Ty resulted in a significant improvement
in the training success rate (40 out of 50 RNNs successfully
trained), indicating that the noise-induced prolongation of ey
impaired memory maintenance. In addition, we observed similar
findings when the number of inhibitory units was increased to
match the number of excitatory units (57 Appendix, Fig. S5).

Studying the average firing rate activities () of the excitatory
and inhibitory units from the trained DMS RNNs revealed
that the inhibitory units, on average, had significantly higher
firing rates than the excitatory units (S/ Appendix, Fig. S6).
This significant difference in #, along with the strong outgoing
inhibitory connections (S/ Appendix, Fig. S4), likely led to
the preferential prolongation of 7j,, during learning. These
findings are in line with recent modeling studies that emphasized

https://doi.org/10.1073/pnas.2316745122

the importance of slow inhibitory dynamics in maintaining
information (15) and underscore the importance of incorporating
inherent noise during training to shape learned dynamics to
robustly perform working memory computations.

Noise Pushes Model Neurons with Slow Synaptic Dynamics To-
ward the Edge of Instability. We next focused on understanding
the role of slow inhibitory signaling in the networks trained with
noise. For an RNN to perform well on the DMS task, it is
plausible that RNN persistently maintains information during
the delay window. This condition can be achieved when each
unit in the network maintains relatively stable synaptic current
activity throughout the delay window, i.e., x(¢) ~ x* at a given
time point # during the delay period, where x* is the delay
period steady state. For both models (RNNs trained without and
with noise), the synaptic current activity during the delay period
exhibited stability (S7 Appendix, Fig. S7). We then performed
the linear stability analysis around x*, revealing the role of slow
inhibitory signaling as follows.

For each first stimulus condition, s; € {—1, +1}, we studied
the impact of a small instantaneous perturbation around the
stimulus-specific delay period steady state (x7, ). In the absence of
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Fig. 3. Influence of noise on cell-type specific temporal dynamics. Compari-
son of synaptic decay time constants of RNN models trained on the DMS task
with varying amount of noise. (A) For each noise condition, synaptic decay
time constants of successfully trained models are reported for excitatory
units (n = 33, 40, 46, 50, 48, 8 for the noise conditions of 0, 1, 5, 10, 20, and
50 channels, respectively). Overall, injection of random noise during training
increased synaptic decay time constants averaged across excitatory units in
the networks (Ps < 0.001, H = 156.4; Kruskal-Wallis test with Dunn’s post hoc
test). (B) Comparison of synaptic decay time constants for inhibitory units of
the trained RNN models (Ps < 0.05, H = 194.2; Kruskal-Wallis test with Dunn'’s
post hoc test). (C) Difference in the trained synaptic decay time constants
between the inhibitory (Inh) and excitatory units (Exc) (Ps < 0.01, H = 127.1;
Kruskal-Wallis test with Dunn’s post hoc test). Boxplot: Central lines, median;
Bottom and Top edges, Lower and Upper quartiles; whiskers, 1.5x interquartile
range; outliers are not plotted.

an input stimulus and noise, the synaptic current activities evolve

according to (modified from Eq. 1):

Perturbing x7 by dx;, would lead to

dx

— = F(x}) +J(«)x, + O(6x2),  [3]
dt xt +éx, ! O !

where / (x" ) is the Jacobian matrix (Materials and Methods). Since

F(x}) ~ 0, the perturbed dynamics (Eq. 3) can be rewritten as

dbxy,
dt

~ ] (%)) 6%, (4]

with the Jacobian matrix written explicitly as

i) = = [=85 + wyolo)(1 —ol)] | __ -

i 1

(5]

Performing spectral decomposition on / and calculating the
eigenvalues (4) of the example RNN models employed in Fig. 2
revealed that all eigenvalues of / exhibited negative real parts,
indicating that the steady states (x) are indeed stable against
mild instantaneous perturbations (]Fig. 4 A-D; see Materials
and Methods). Interestingly, the RNN model trained with noise
contained more slowly relaxing modes with oscillatory behaviors
compared to the network trained without noise (i.e., eigenvalues
with nonzero imaginary components shifted toward zero along
the real axis in Fig. 4 C and D). Furthermore, these slowly relaxing
modes require spatially extended perturbations to trigger a neural
response, as evidenced by their low (left) Inverse Participation
Ratio (IPR) values (greener dots in Fig. 4 C and D, and
comparison of the average IPR values between the two RNNs
shown in Fig. 4F; see Materials and Methods). Throughout this

PNAS 2025 Vol. 122 No.3 2316745122

work, the IPR refers to the IPR of the /eft eigenvectors, as it
directly reflects the sensitivity to perturbations. Specifically, a
larger IPR indicates a more localized perturbation that affects a
smaller number of units is sufficient to trigger a neural response,
while a smaller IPR means a more delocalized perturbation
affecting a larger number of units is required to stimulate a
neural response (Materials and Methods). In other words, RNNs
trained with noise are more robust compared to the RNNs trained
without noise, as they require sustained perturbations to a larger
number of units for the steady states to be destabilized.

In order to further characterize the slow relaxation modes
observed in the RNN trained with noise, we first identified the
units involved in the left eigenvectors corresponding to the top
50 eigenvalues (i.e., 50 least negative eigenvalues) for each RNN
model (Materials and Methods). We categorize the units with
nonzero amplitudes in the top 50 eigenvectors as dominant units
(perturbation on these units could more dominantly influence
the RNN to destabilize), while the units with zero amplitudes
are referred to as nondominant units. Notably, in both RNN
models (trained without and with noise), the dominant units
were associated with significantly larger synaptic decay time
constants compared to the nondominant units (Fig. 4 F and
G). Furthermore, the synaptic decay dynamics of the dominant
units in the RNN trained with noise were significantly slower
than the dynamics of the dominant units in the networks trained
without noise (P < 0.001, two-sided Wilcoxon rank-sum test).
Interestingly, the top 50 left eigenmodes from the RNNs trained
with noise contained a significantly larger number of inhibitory
units than the top eigenmodes from the networks trained without
inherent noise (Fig. 4H).

These findings suggest that injection of the inherent noise
during training resulted in an increased proportion of units
exhibiting slower synaptic dynamics (i.e., dominant units). In
addition, this noise-induced effect pushed the top left eigenmodes
composed of these units closer to the edge of instability (critical
boundary between stable and unstable behavior).

To investigate the impact of these factors on working memory,
our analysis focused on the sustained maintenance of 51 = +1
during a long delay period (1,250 ms) in both models. Since
the networks consisted of units that were selective to each of
the first stimulus conditions (s; € {+1, —1}), the successful
maintenance of s; = +1 during the delay period relied on two
key conditions: persistent excitation of the units tuned to s; = +1
and persistent inhibition of the units tuned to 51 = —1. As
shown in Fig. 54, the average normalized firing rate timecourses
(normalized by subtracting the average baseline activity; see
Materials and Methods) of the dominant units preferring s; = +1
in the top 50 left eigenmodes of the RNNis trained without noise
demonstrated higher firing rates during the stimulus presentation
of +1 compared to the nondominant units selective fors; = +1.
Throughout the delay period, the average normalized firing rate
activity of the dominant units exhibited a rapid decay (Fig. 54).
Repeating the above analysis on the RNNs trained with noise
revealed that the dominant units maintained s; = +1 at a
significantly higher rate throughout the delay window than the
dominant units from the networks trained without noise (Fig. 5B;
P < 0.001, two-sided Wilcoxon rank-sum test), consistent with
the slow synaptic dynamics seen in Fig. 4.

Next, we directed our attention to the units in the corre-
sponding right eigenmodes to investigate the impact of the slow
dynamics observed in the top left eigenvectors on the dynamics of
the network response (Materials and Methods). We hypothesized
that the slow decay and persistent activity observed in the units
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(57 € {+1, —1}). (C and D) Spectra of a sample RNN model trained with noise (C = 10; same network as Fig. 2B) during the delay period following the first stimulus
presentation (sq € {+1, —1}). For both conditions, we observed stable steady states x¢_ as evident from the real parts of all the eigenvalues being negative. For
the RNN trained with noise, the eigenvalues with nonzero imaginary parts shifted to the right (toward zero along the real axis) and were associated with lower
Inverse Participation Ratio (IPR) values (C and D). Vertical dashed lines represent the cutoff for the top 50 real eigenvalues. (E) Average IPR values from the RNN
trained without noise were significantly higher (i.e., more localized) than those from the model trained with noise. (F) Average synaptic decay time constants
of the dominant (nonzero elements in the top 50 eigenvectors) and nondominant (zero elements in the top 50 eigenvectors) units from all the RNNs trained
without noise. (G) Average synaptic decay time constants of the dominant and nondominant units from all the RNNs trained with noise. (H) Proportion of
inhibitory units among the dominant units in the RNNs trained with noise was significantly higher compared to the RNNs trained without noise. Boxplot: Central
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tests were performed.

of the top left eigenmodes would confer similar properties to the
units in the corresponding right eigenvectors during the delay
period. Additionally, we posited that the units tuned for 41 and
—1 in the right eigenmodes would exhibit persistent excitation
and inhibition, respectively. As shown in Fig. 5 C and D, the
units tuned for +1 in the right eigenmodes of the RNNs trained
with noise demonstrated significantly higher activity during the
delay period compared to the +1-preferring units in the right
eigenmodes of the networks trained without noise. Furthermore,
the units tuned for —1 in the right eigenmodes of the RNNs
trained with noise exhibited significant suppression throughout
the delay period compared to the units tuned for —1 in the
right eigenmodes of the networks trained without noise (Fig. 5
E and F). These results suggest that the networks trained with
noise exhibit greater robustness to perturbations compared to the
RNN:Gs trained without noise, and the noise-induced increase in
synaptic decay time constants of the inhibitory units near the
edge of instability facilitated maintenance of stimulus-specific
information for an extended duration.

Robustness and Increased Efficiency Due to Inherent Noise Are

Specific to Working Memory Computations. Finally, we asked
whether the modulatory effects of noise during training were

https://doi.org/10.1073/pnas.2316745122

specific to working memory dynamics. To address this question,
we employed two cognitive tasks that do not require maintenance
of sensory information over time, namely sensory detection or
go/no-go (GNG) task and context-dependent sensory integration
(CTX) task (Materials and Methods). In the GNG task (Fig. 6A4),
the RNN model had to generate an output signal that indicated
whether a target sensory signal was present. The CTX task is a
more challenging variant of the GNG task, where the model was
trained to produce an output that corresponded to one of the two
input modalities as determined by a context signal (16) (Fig. 6B).
As these task paradigms do not involve any delay interval, the
model only requires minimal information maintenance, if any,
to perform well on these tasks.

Our findings demonstrated that the RNN models were able
to perform these non-working memory tasks well without
any noise and that adding noise during training did not
further improve training efficiency. In fact, it took longer
for models to reach successful training criteria when noise
(C > 10) was added during training compared to the no noise
condition for both sensory detection and context-dependent
sensory integration tasks (Ps < 0.001 for both tasks, Kruskal—
Wallis test with Dunn’s post hoc test). To investigate whether
noise modulated the temporal dynamics on these tasks, we
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Fig. 5. Persistent activity of dominant units from RNNs trained with noise.
(A) Average normalized firing rate timecourses of the dominant units selective
to +1 (purple) and nondominant units preferring +1 (dark gray) in the top
50 left eigenmodes of the RNNs trained without noise. The DMS task was
modified to have a delay duration of 1,250 ms, and 50 trials with the first
stimulus of +1 were used to extract the timecourses. (B) Average normalized
firing rate timecourses of the dominant units selective to +1 (purple) and
nondominant units preferring +1 (dark gray) in the top 50 left eigenmodes
of the RNNs trained with noise. (C) Average normalized firing rate timecourses
of the units preferring +1 in the corresponding right eigenvectors from
the RNNs trained without noise (dark gray) and with noise (purple). (D)
Average normalized firing rate of the units shown in (C) during the late delay
period (last 750 ms) was significantly higher for the RNNs trained with noise
compared to the networks trained without noise. (E) Average normalized
firing rate timecourses of the units preferring —1 in the corresponding right
eigenvectors from the RNNs trained without noise (dark gray) and with noise
(purple). (F) Average normalized firing rate of the units shown in (£) during the
late delay period (last 750 ms) was significantly lower for the RNNs trained
with noise compared to the networks trained without noise. Mean + SE
shown. Boxplot: Central lines, median; Bottom and Top edges, Lower and
Upper quartiles; whiskers, 1.5x interquartile range; outliers are not plotted.
Two-sided Wilcoxon rank-sum tests were performed.

analyzed the synaptic decay time constants of the excitatory and
inhibitory units. Our results revealed that the difference in the
inhibitory and excitatory time constants (T, — Texc) Was not
strongly modulated by C for both tasks (Fig. 6 C and D and
SI Appendix, Fig. S8).

As shown in ST Appendix, Fig. S8, the inhibitory time constants
from both GNG and CTX RNNs were significantly larger than
the values from the DMS RNNs. Given that the GNG and
CTX tasks were considerably easier to learn compared to the
DMS task (547 = 97 trials across 50 GNG RNNs, 1,521
4+ 243 trials across 50 CTX RNNs, 12,225 4+ 2,891 trials
across 33 DMS RNNs, mean + SD), we trained 50 RNNs
each for the GNG and CTX tasks with a minimum of 12,000
trials (matching the average number of training trials used for
the DMS RNNs) to ensure a more equivalent comparison. As
shown in SI Appendix, Fig. S9, training the RNNs for a longer
duration resulted in significantly decreased inhibitory synaptic
time constants compared to those from the RNNs without the
minimum trial constraint for both GNG and CTX tasks. Given
the significant changes in the synaptic decay time constants
induced by lengthening the training duration, we repeated our
analyses from Fig. 6 C and D with the minimal number of
training trial set to 12,000. For conciseness, we focused on

PNAS 2025 Vol. 122 No.3 2316745122

comparing the no-noise case with the 10 noise channels (C = 10)
case. Imposing the minimum training trial constraint led to
quantitatively similar results: Adding noise during training did
not result in dramatic increases in the inhibitory synaptic time
constants for both GNG and CTX tasks. More importantly, we
did not observe notable increases in Tigh — Texc (S/ Appendix, Fig.
S10).

These findings suggest that the slow synaptic decay dynamics
induced by noise are specific to working memory functioning
where robust information maintenance is needed to ensure
successful performance.

Discussion

In this study, we demonstrated that introducing random noise
into firing-rate RNNs allowed the networks to achieve efficient
and stable memory maintenance critical for performing working
memory tasks. We also showed that the models trained with noise
were able to generalize to sustain stimulus-related information
longer than the delay period used during training. Further
analyses uncovered that the introduction of noise led to the
emergence of inhibitory units with slow synaptic decay dynamics,
which were predominantly associated with dominant eigenmodes
situated near the edge of instability. These eigenmodes were
critical for maintaining information during the delay period of the
working memory task. Specifically, the network should exhibit
stability to prevent minor noisy perturbations from causing
substantial alterations in its dynamics and compromising the
information of the stimulus. However, the network should not be
overly stable, as this would result in rapid decay of the information
associated with the stimulus, as the network quickly returns to its
stable configuration. Hence, these eigenmodes crucial for robust
memory maintenance emerge near the edge of instability. In
addition, these effects were specific to the models trained to
perform working memory task, suggesting that noise-induced
changes were specific to working memory.

Previous studies have demonstrated that neuronal variability
increases along the cortical hierarchy (1-3, 5) and that higher
cortical areas, including the prefrontal cortex, tend to exhibit
high trial-to-trial variability (4, 6, 15, 22). The high variability
associated with these higher cortical areas is thought to be due
to their involvement in integrating and processing complex,
abstract information (4, 23, 24). This increased variability may
also result from the integration of bottom—up and top—down
processes, a complexity that low-level areas do not typically
handle (1, 25). Whether such high variability and other sources of
noise intrinsic to the higher-order cortical regions could engender
stable network dynamics for supporting working memory is an
important open question. By providing an easy-to-use framework
for understanding how inherent noise influences information
maintenance and learning dynamics when performing memory-
dependent cognitive tasks, we aimed to address this question in
our current work.

One limitation of the present study is the lack of comparisons
with RNNs trained with learning algorithms that are not based
on gradient-descent optimization. One such algorithm is First-
Order Reduced and Controlled Error (FORCE) learning which
has been employed to train rate and spiking RNNs (26, 27). Due
to the nature of the method, it is currently not possible to train
the synaptic decay time constant term using FORCE training,
making the comparison with our models difficult. Reinforcement
learning is another learning algorithm that can be employed to
train biologically realistic RNNs (17).
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Even though we showed that increasing the number of
inherent noise channels could lead to heterogeneous synaptic
decay time constants, the theoretical basis behind the preferential
tuning of the inhibitory synaptic decay constants associated
with working memory is not clear. As briefly mentioned in
Results, strong inhibitory signaling and the resulting strong
suppression of excitatory units could possibly explain why
gradient updates prefer inhibitory units. Future work will focus
on better understanding the theoretical and computational basis
for the emergence of slow inhibitory synaptic dynamics.

Relatedly, recent findings (28) provide critical insights into
the mechanisms underlying the emergence of long behavioral
timescales during temporal tasks involving complex sensory
signals and high cognitive demands. Their work demonstrates
that these long timescales can originate either from the in-
trinsic properties of single neurons or from recurrent network
interactions, with the latter being a more optimal mechanism
for flexibly supporting working memory computations across
multiple levels of difficulty. As the inherent noise used in
our current work modulates not only the individual neuronal
synaptic time constants but also recurrent connections, our
findings further support the notion that enhancing network
dynamics, rather than solely relying on the intrinsic properties
of individual neurons, provides a more resilient and efficient
mechanism for handling complex cognitive tasks. However, a
systematic approach to tease out the contributions of individual
neuron properties and network interactions is warranted to
fully understand their respective roles in supporting working
memory.

Furthermore, while our findings highlight the benefits of
noise-induced modulation of synaptic time constants in working
memory tasks, these dynamics may also be advantageous in

https://doi.org/10.1073/pnas.2316745122

scenarios requiring prolonged input integration for decision-
making due to sensory ambiguity or sequential presentation. This
suggests that the mechanisms identified in the present study could
significantly enhance the performance of neural networks across
a wide range of cognitive tasks involving complex, naturalistic
signals, extending well beyond the confines of working memory
computation. Future research should investigate this possibility
by examining cognitive tasks with varied sensory complexities
and integration demands. Such studies would not only confirm
the generalizability of the present findings but also deepen our
understanding of how noise-enhanced dynamics can improve the
functionality of biological networks, particularly in environments
characterized by complex sensory signals.

By interpreting the concept of noise within the context of
biology, the present study proposes a general framework that
bridges recent advances in machine intelligence with empirical
findings in neuroscience. Our approach involves introducing
inherent noise into a biologically plausible artificial neural
network model during training to simulate aspects of cortical
noise and systematically evaluating its effects on model dy-
namics and performance under various testing conditions. This
approach outlines a theoretical framework that aims to bridge
computational findings with biological observations. While our
model serves as an initial step toward understanding how noise
might influence neural dynamics, it is important to acknowledge
that these results are derived from a computational perspective
using simplified network models. Therefore, further research is
essential to establish more robust links between behaviors of
artificial networks and true biological functions. Ultimately, the
present study underscores the potential of computational models
as tools for advancing our understanding of how noise influences
cognitive functions and its implications for clinical applications.
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Materials and Methods

Continuous-Rate RNN Model. We constructed our biologically realistic RNN
model based on Eq. 1. All the units in the network are governed by Eqgs. 1, 6,
and 7.

1i(t) = o (x(1)) = m ¢
o(t) = w®r(t) + b 7

7;isthe synapticdecay time constant of unit/, x; is the synaptic currentvariable of
unit/, wj;isthe synapticweightfrom unitjtouniti, andr;is thefiring rate estimate
of unit (estimated by using the sigmoid transfer function in Eq. 6). Each model
contains 200 units. To adhere to previous empirical observations regarding the
proportion of excitatory and inhibitory units in the brain, we constructed each
RNN with a composition of 80% excitatory and 20% inhibitory units [i.e., E-l
ratio of 80/20; (29-31)]. The model receives time-varying input composed of U
channels of signals over T time steps (u € RU*T) via the input weight matrix,
w() e RVNxU Forthe DMS task, u contained two streams of input signals(i.e.,
U = 2). The network also receives random noise via w("i5¢) ¢ RN*C \here
C is the number of independent noise signals in y € RE*T. Each signal in
w was independently drawn from the standard Gaussian distribution with zero
mean and unit variance. We considered C € {0, 1, 5, 10, 20, 50} in this study.
The external noise (¢ € RV*T: uncorrelated in time) was generated from a
Gaussian distribution with zero mean and a variance of 0.01. The output (o) of
the network was computed as a weighted average of the activities of the units
via the readout weights (w((’“t)) and the constant bias term (b).

We numerically simulate the following discretized dynamics obtained from
the first-order approximation method (correct up to the noise amplitude) with
the step size (At) of 5 ms (Eq. 8).

At At ; ;
Xt = (1 - 7) X1+ —(Wrg + w5y g+ wlMy_y)

+ &1 (8]

1/7 denotes a diagonal matrix whose ith diagonal element is 1/z;. Note that,

to ensure mathematically precise conversion of continuous-time variances 03,

and 62 of the Gaussian inherent noise w;j(t) and of the Gaussian external noise
&i(t) of Eq. Tinto their discrete-time counterparts, the noise amplitudes of Eq. 8
must be rescaled using Euler-Maruyama discretization. Specifically, the noise

amplitudein the discrete-time description mustbe scaled by afactor of ,/ a&,/At

for the inherent noise and ‘/ag/At for the external noise, respectively. While

converting discrete-time parameters back to their continuous-time equivalents
is necessary to recover the exact continuous-time noise variances in Eq. 1, this
variance rescaling does not affect the overall findings of this work. For simplicity,
our simulation results are performed using Eq. 8. The network was trained using
BPTT. The trainable parameters of the model included w, w(”Oise), T, w(°”‘),
and b. During testing, w("°1s¢) was replaced by a standard Gaussian random
matrix.

To further impose biological constraints, we incorporated Dale's principle
(separate populations for excitatory and inhibitory units) using methods similar
to those implemented in previous studies (17, 32).

Instead of fixing the synaptic decay constant (z) to a fixed value for all
the units, we optimized the parameter for each unit using a similar algorithm
similar to the method described in ref. 32. The parameter was trained to range
from 20 ms to 125 ms to model heterogeneous synaptic dynamics of different
receptors in the cortex (33, 34). We initialized the synaptic decay time constant
parameter (z) using

7 = o(N(0,1))zstep + Tmin, [9]

where o (-) is the sigmoid function and A/(0, 1) refers to the standard normal
distribution. 7yin = 20 ms and zstep = 105 ms were used to constrain the
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parameter to range from 20 ms to 125 ms. The gradient of the cost function with
respect to the synaptic decay term is derived in S/ Appendix.

The schematic diagram of the model is shown in Fig. 1C. All the models were
implemented with TensorFlow 1.10.0 and trained on NVIDIA GPUs (Quadro
P4000 and Quadro RTX 4000).

DMS Task. Two delayed match-to-sample (DMS) tasks were used to train our
RNN model and assess how the noise influenced the robustness of memory
maintenance in the network. Both tasks involved two sequential stimuli (each
lasting 250 ms) separated by a delay interval of 250 ms. The first stimulus was
presented after a fixation period of 250 ms. During the stimulus window, the
input signal (u) was set to either —1 or +1 (Fig. 14). If the signs of the two
sequential stimuli matched (i.e., stimulus condition 1:s = (41, +1); stimulus
condition 4: s = (=1, —1); Fig. 3A), the model was trained to produce an
output signal approaching +1. When the signs were opposite (i.e., stimulus
condition 2: s = (41, —1); stimulus condition 3: s = (=1, +1); Fig. 34),
the model had to produce an output signal approaching —1. For the first task,
the model had to respond immediately after the second stimulus (Fig. 1 A and
C). Asecond delay period of 250 ms was added after the second stimulus for the
second task (S/ Appendix, Fig. S14). Due to the two delay periods, the second
DMS task is considered a more challenging working memory task than the first
task. The primary focus of the present study is the one-delay DMS task, and
all the DMS findings presented in the main text are exclusively derived from
this specific paradigm. The results for the two-delay DMS task are shown in S/
Appendix, Fig. S1.

Training Protocol. Our model training was deemed successful if the following
two criteria were satisfied within the first 20,000 epochs:

e Loss value (defined as the root mean squared error between the network
output and target signals) <7

e Task performance (defined as the average accuracy of the network output over
100 randomly generated testing trials) >95%

Ifthe network did not meetthe criteriawithin thefirst 20,000 epochs, the train-
ing was terminated. For each task and each value of C € {0, 1, 5, 10, 20, 50},
we trained 50 RNNs using the above strategy. We considered the RNNs trained
with C = 0(i.e., without any noise) as the baseline model.

Testing Protocol. To evaluate the robustness and stability of the trained RNNs,
we devised a series of testing conditions where different aspects of the one-delay
DMS task (Fig. 1F) were systematically manipulated. During testing, inherent
noise and noisy input signals were introduced to the trained networks. For each

successfullytrained RNN, we generated w(1%i5¢) and y asidentically distributed
Gaussian random variables to deliver random noise during testing.

For the noisy input signal, white-noise signals (drawn from the standard
normal distribution) were added to the sensory signals (u) to mimic stimulus-
related noise. Additionally, we also varied the duration of the delay interval to
range from 250 msto 1,250 ms (with a 500-ms increment) to assess the stability
of memory maintenance (Fig. 1F).

Working Memory-Independent Tasks. [n addition to the DMS tasks that
require memory maintenance over time, we designed two additional cognitive
tasks that do not involve working memory computation. By comparing the
dynamics of the RNNs between the DMS tasks and these working memory-
independent tasks, we were able to identify the specific network dynamics
associated with working memory computation.

Forthe sensory detection or GNG task, our RNN model was trained to produce
an output signal approaching +1 when a stimulus was presented (250 ms in
duration), following a fixation period of 250 ms. For a trial where a stimulus was
not presented, the model had to maintain the output signal close to 0 (Fig. 64).
Forthe CTX task, the model received two streams of noisy stimulus signals (input
modality 1 and input modality 2; Fig. 6B) along with a constant-valued, context
signal which informed the model which sensory input modality was relevant
on each trial. A random Gaussian time series signal with zero mean and unit
variance was used to simulate a noisy sensory input signal. Each time series
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signal was then shifted by a positive or negative constant offset value to encode
sensory evidence toward either the positive or negative choice, respectively. The
magnitude of the offset value determined the degree of evidence for the specific
choice (positive/negative) represented in the relevant noisy input signal. The
network had to generate an output signal approaching +1or —1in response to
the cued input signal with a positive or negative mean, respectively. Thus, if the
cued input signal was generated with a positive offset value, the network was
expected to produce an output that approached +1 irrespective of the mean
of the irrelevant input signal. For both the GNG and CTX tasks, the training
termination criteria were similar to those used for the DMS (Training Protocol).

Visualization of Network Dynamics. To visualize the neural dynamics of
working memory computation as a function of injected inherent noise during
training, we employed the PHATE algorithm (21). This dimensionality reduction
technique is a manifold learning algorithm that enables faithful visualization
of high-dimensional data while best preserving the global data structure. Two
example RNN models successfully trained either without (C = 0) or with noise
(C = 10) were presented with a simulation of 100 DMS test trials (25 from each
of the four stimulus conditions). The delay interval was fixed at 250 ms, such
that the temporal structure of the testing phase mirrored that of the training
environment (Fig. 1C).

We then used the resulting neural activity data from each model type
during this testing phase as input data for PHATE in order to compute the
low-dimensional embedding corresponding to the neural activity of the RNNs
trained with and without noise. Specifically, for each of the RNNs trained under
each noise condition (without or with noise), the diffusion operator matrix was
first calculated using pairwise similarities among individual points in the input
networkactivity time series (downsampled by afactor of 5). This matrix was raised
to a power exponent to amplify the local structure while preserving the global
structure of the input data. The resulting matrix was then used to generate the
low-dimensional embedding that capturesthe neural dynamics ofthe input data.

To characterize potential topological patterns within the neural dynamics
associated with each RNN, clustering was performed on this PHATE-generated
embedding. Specifically, a K-means clustering algorithm was used to partition
the data into distinct groups based on their spatial proximity in the
low-dimensional space. For visualization purposes, a 3-dimensional PHATE
embedding of a sample model from each noise condition (i.e., without noise
and with noise; Fig. 2 C and D) was plotted and colored by stimulus conditions.
Black arrows were also included to indicate the temporal evolution of the neural
trajectories over the trial duration. These embeddings provided insights into the
temporal structure underlying working memory computation associated with
the network dynamics that resulted from the incorporation of inherent noise
during training.

Network Stability Analysis During the Delay Interval. To investigate the
neural dynamics associated with memory maintenance, we employed linear
stability analysis. Specifically, we performed this analysis on the synaptic currents
of the RNNs successfully trained without or with noise during the delay period in
the DMS task (i.e., from the offset of the first stimulus to the onset of the second
stimulus (Fig. 1C). Throughout this window, the network activities exhibited
consistent steady-state patterns, as illustrated in S/ Appendix, Fig. S7.
Foreachfirststimulus conditionsy € {—1, +1}, we defined the steady-state
synaptic current variable (g, ) by first averaging Xs, (¢) across time within the
delay window and then averaging across multiple trials (50 trials per each first
stimulus condition). The impact of a small instantaneous perturbation around
the delay period steady state x§, on the synaptic current patters is determined
by the deterministic dynamics of Eq. 1 in the absence of an input stimulus and
is shown in Eq. 2.
For a weak perturbation 6xs; around x5, the linearized approximation of
the perturbed dynamics is % —— = F(x3,) + J(x5,)dxs; + O(éxsz1 ),
1 B 3/-'/.

where J(xg, ) is the Jacobian matrix Jj; (x5, ) = /| . Bythe assumption
Y 1X=x;

of the steady state x5, which is also consistent with the numerical results, we
have F(x3,) ~ 0. Thus, the linearized dynamics of the perturbation éxs, can
be written as Eqs. 4 and 5.

https://doi.org/10.1073/pnas.2316745122

Networkresponses toweak perturbations around the steady states can now be
systematically explored by the spectral analysis (eigenvalues and eigenvectors)
of the Jacobian in Eq. 5.

Forbrevity, we willadd the subscripts onlywhenthe stimuli-specificstatement
is needed. Also, J will denote the Jacobian evaluated at the steady state of
interest. In this notation, given the linearized perturbed dynamics of Eq. 4, the
initial perturbation 6xq will evolve into the response at time t, 5x(t), that can
be studied via the spectral decomposition of J (35) as

N
sx(t) =Y eMtyf (vf,éx()), [10]
n=1

where vL and vR are, respectively, the left and the right eigenvector of J with
the eigenvalue Aj. Notably, our trained RNNs exhibit highly asymmetric w
such that the Jacobian Eq. 5 is non-Hermitian, leading to distinct left and right
eigenvectors.

Eq. 10 states that an initial perturbation 6xq via v will contribute to a
response v, such that the response will grow (decay) exponentially on the
timescale of |1/Re (4n)| whenRe (4n) > 0(Re (4n) < 0).

Since the dominant responses to a perturbation depend on the overlap

between the perturbation and the top-most left eigenvectors (vf,éxo), the

non-zero elements of the top-most left eigenvectors determine the spatial extent
of perturbation required to significantly influence the system's response. Along
this line, the larger the number of non-zero elements in the top-most left
eigenvectors, the larger the number of units that need to be perturbed to
destabilize the steady states.

We employ the IPR, a measure commonly used in the study of localization
phenomenain statistical physics (36), to reflect the number of units participating
in the perturbation. The IPR provides valuable insights into the localization of
perturbations by indicating the number of units involved in the perturbation
process. In particular,

Sl ol
(=L |(v,,),-}2)2

The IPR of the left and the right eigenvector will be denoted by IPR; and
IPRp respectively, though we will focus on IPR; as we are interested in the
size of the neural subpopulations required to be perturbed to initiate a neural
response. Note that the maximum and the minimum values of PR are attained
at, respectively, 1 when only a single neuron is non-zero, and 1/N when all the
units are uniformly activated. A larger or a smaller value of IPR; indicates that
the perturbation is localized around a smaller number of units, or extended over
a larger number of units, respectively.

IPR(4p) = [11]

Stimulus Selective Units. To identify units selectively tuned for each of the
first stimulus condition (s7 € {+1, —1}), we first generated 50 trials for each
stimulus condition and computed averagefiring rates (r) during the firststimulus
presentation window. Next, we performed a one-sided Wilcoxon rank-sum test
for each unit to determine its selectivity.

Firing Rate Normalization. For the firing rate timecourses (Fig. 5), we
normalized the trial-averaged firing rate of each unit by subtracting its
corresponding baseline trial-averaged firing rate. The baseline activity was
determined by considering the window preceding the onset of the first stimulus.

Statistical Analyses. All the RNNs trained in the present study were randomly
initialized (with random seeds) before training. Throughout this study, we
employed non-parametric statistical methods to assess statistically significant
differences between groups. For comparing differences between two groups
(e.g., the logqq IPR of RNNs trained with or without noise), we used the two-
sided Wilcoxon rank-sum or signed-rank test. For comparing more than two
groups (e.g., the synaptic decay time constants associated with RNNs trained
with varying degree of noise), we used the Kruskal-Wallis test with Dunn's post
hoc test to correct for multiple comparisons.
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Data, Materials, and Software Availability. MATLAB-formatted data have
been deposited in Noisy RNNs Project (https://osf.io/dqy3g/) (37).
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