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Abstract
Some sensory tasks in the nervous system require highly precise spike trains
to be generated in the presence of intrinsic neuronal noise. Collective
enhancement of precision (CEP) can occur when spike trains of many neurons
are pooled together into a more precise population discharge. We study CEP in
a network ofN model neurons connected by recurrent excitation. Each neuron
is driven by a periodic inhibitory spike train with independent jitter in the spike
arrival time. The network discharge is characterized by σW , the dispersion in
the spike times within one cycle, and σB , the jitter in the network-averaged
spike time between cycles. In an uncoupled network σB ∼ 1/

√
N and σW is

independent of N . In a strongly coupled network σB ∼ 1/
√

logN and σW
is close to zero. At intermediate coupling strengths, σW is reduced, while σB
remains close to its uncoupled value. The population discharge then has optimal
biophysical properties compared with the uncoupled network.

1. Introduction

The nervous system is capable of producing extremely precise periodic electrical discharges
necessary for sensory tasks such as electroreception. As an example of this phenomenal
precision, the coefficient of variation (CV)—the standard deviation of the period divided by
the mean period—is ∼10−4 for the electric organ discharge generated by the pacemaker nucleus
in weakly electric fish [1]. This discharge is produced by a network consisting of 100–150
neurons sparsely connected by electric gap junctions and possibly by chemical synapses.
There are two types of neuron in the network, pacemaker cells and relay cells. It is not
known how networks of neurons can generate highly precise spike trains in the presence of
intrinsic noise [2, 3]. One possible strategy is to pool the discharge of many neurons into a
more precise population discharge [4, 5]. This would reduce the jitter in the average spike
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216 P H E Tiesinga and T J Sejnowski

time of N uncoupled neurons in a given oscillation cycle to 1/
√
N times that of the jitter of a

single neuron. Hence the precision, defined as the inverse of the jitter in average spike time,
is improved by a factor of

√
N . The typical spike-timing jitter in the spike train of a single

neuron in the neocortex is about 1 ms [7]. The jitter for an isolated pacemaker or relay cell
in the pacemaker nucleus is not known. Hence, based on neocortical physiology, the jitter in
the pacemaker nucleus could be reduced to approximately 1 ms/

√
100 = 100 µs. However,

jitter as small as 0.1–1 µs was obtained in experiments [1]. There are two possible reasons for
this discrepancy: the pacemaker and relay cells have biophysical specializations in order to
lower the level of intrinsic noise, or the high precision is an emergent property of the coupled
network. The fundamental question is thus whether one can improve on the

√
N result by

using a network of coupled neurons [6].
Here we study a network of neurons coupled via recurrent excitation, with each neuron

driven by a periodic inhibitory spike train with independent jitter (with variance σ 2
φ ) in the spike

arrival time. The key quantities characterizing the network discharge are σW , the dispersion in
the spike times within one cycle; and σB , the jitter in the network-averaged spike time between
cycles. Thus, the precision for the network is the inverse of σB . The network discharge can
be entrained to the periodic drive. For instance, during 1:1 entrainment each neuron emits one
spike for each arriving inhibitory pulse. We address the following questions. How does the
output precision depend on the input jitter σφ? How does it depend on the network size N?
Can excitatory coupling improve the precision compared with an uncoupled network?

Our main results are as follows. Optimal precision is attained during entrainment, where
the output jitter depends linearly on the input jitter. The improvement in optimal precision
for an uncoupled network goes as

√
N as a result of the law of large numbers [8], and is

always higher compared with
√

logN for the strongly coupled network. The
√

logN can
be understood intuitively as follows. In the strongly coupled network all neurons spike at the
same time, since the first neuron to spike immediately recruits all other neurons in the network.
Hence, the jitter in the network spike time, σB , is determined by the variance,

√
logN , of the

distribution of the earliest spike time among N independent, identically distributed spike
times. At intermediate coupling strength the precision, 1/σB , can still improve as

√
N , while

the dispersion σW in the spike times within one cycle is reduced compared with the uncoupled
case.

We first present an efficient algorithm for the simulation of large pulse-coupled networks,
and introduce the statistical measures that we calculate. The precision of an uncoupled and
a strongly coupled network was derived analytically, while the precision for intermediate
coupling strengths was determined using numerical simulations. Finally we discuss the relative
benefits of a coupled compared with an uncoupled network.

2. Methods

2.1. Dynamical equations

We study the dynamics of an integrate-and-fire (IAF) model neuron driven by a periodic
inhibitory spike train with period T = 1. The dynamics is given by

dVn
dt

= −Vn + I0 − p
∑
m

δ(t − φ −�φnm −mT ) + E(t), (1)

where Vn is the membrane potential of the nth neuron, n = 1, . . . , N,N is the number of
neurons, I0 the driving current and p the strength of the inhibitory pulse. The inhibitory pulses
arrive in cycle m at relative phase φ with some jitter �φnm, and m = 1, 2, . . . . The jitter is
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Precision of pulse-coupled networks 217

independent for each neuron, uncorrelated between cycles, and is normally distributed with
mean zero and variance σ 2

φ . The neurons are coupled all-to-all with instantaneous excitatory
synapses, yielding an excitatory current,

E(t) = g

N

∑
n,i

δ(t − tni ),

with total coupling strength g, and the sum is over all spike times tni . Here tni is the ith spike
time of the nth neuron. When the voltage Vn crosses 1 a spike is emitted, and the voltage is
reset to V0. Here we take V0 = 0.

2.2. Spike time map for a single neuron on the entrainment step

During 1:1 entrainment the neuron produces one spike on each cycle; the spike index i is then
equal to the cycle index m. In this subsection we will suppress the neuron index n and use m
instead of i. We derive a map for a single neuron on the 1:1 entrainment step that predicts the
new spike time tm+1 in the next cycle m + 1 given the spike time tm in the previous cycle m.
This map is studied in section 3. Equation (1) is integrated with g = 0 from the last spike
at tm = mT + ψm to the next spike at tm+1 = (m + 1)T + ψm+1, where ψm = mod(tm, T )
is the spike phase. The membrane potential after the arrival of the first inhibitory pulse at
mT + φ +�φm is

V ′ = e−(φ+�φm−ψm)(V0 − I0) + I0 − p, (2)

and the voltage at later time t > mT + φ +�φm is

V (t) = e−(t−mT−φ−�φm) [V ′ − I0
]

+ I0. (3)

The neuron spikes when it reaches threshold, V (t) = 1, yielding the following map in terms
of the spike phase, ψm:

ψm+1 = ln
[
a(V0)e

ψm + be�φm
]− T

= ψm + ln
[
a(V0) + be�φm−ψm]− T (4)

here we used

a(V0) = I0 − V0

I0 − 1
, (5)

b = p exp(φ)

I0 − 1
. (6)

In the following expressions we suppress the dependence of a on V0. In the absence of
input jitter, σφ = 0, the fixed-point phase ψ is found by substituting ψn+1 = ψn = ψ in
equation (4), yielding a period T = ln(a + be−ψ). To simplify the analytical calculation it
is useful to choose φ for each I0 such that ψ = 0, yielding T = ln(a + b). In this way the
inhibitory pulse in cycle m will be guaranteed to happen after the spike ψm. However, in the
numerical simulations (described below) we keep φ fixed and ψ is allowed to vary with I0.

2.3. Network simulations

We simulate the network dynamics of equation (1) as follows. The state of the network is
described by the set of membrane potentials {V1, . . . , VN } at time t1. If the current drive to
each neuron is the same, the one with the highest voltage, Vn, would spike first. Note that in
a synchronized network there may multiple neurons with a membrane potential equal to Vn.
We estimate the next spike time as

t2 = t1 + ln
I0 − Vn
I0 − 1

. (7)
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218 P H E Tiesinga and T J Sejnowski

Here we assume that I0 > 0 and define t2 to be equal to t1 when Vn = 1. We then find all the
inhibitory pulses that arrive between t1 and t2 and update the membrane potential to the time
immediately after pulse arrival (at tnp for the nth neuron):

V ′
n = e−(tnp−t1)(Vn − I0) + I0 − p. (8)

There may be multiple pulses per neuron, but for simplicity the above notation does not reflect
this. Then, all of the neurons are updated to t2: neurons that received inhibitory pulses,

V ′′
n = e−(t2−tnp)(V ′

n − I0) + I0, (9)

and the ones that did not,

V ′′
n = e−(t2−t1)(Vn − I0) + I0. (10)

We then determine which neurons actually crossed the threshold, V ′′
i > 1, reset their voltage

to zero, and emit an excitatory pulse to all neurons. We again check which neurons reached
threshold, then their membrane potential is reset to 1 so they would spike immediately, t2 = t1,
in the next iteration of equation (7). This algorithm leads to a large speed-up compared with
direct integration using the Runge–Kutta algorithm [9]. In addition, it predicts to machine
precision the spike time, whereas for direct integration the spike time is a multiple of the
integration time step (see also [10]).

2.4. Calculated quantities

From the set of spike times tni we compute the phases ψni ≡ mod(tni , T ), where tni is the ith
spike time of the nth neuron. The temporal and network average of the spike-time jitter is

σ 2
ψ = 1

NM

N∑
n=1

M∑
m=1

∑
i(n,m)

(ψni )
2 − µ2, (11)

where the mean phase is

µ = 1

NM

N∑
n=1

M∑
m=1

∑
i(n,m)

ψni . (12)

HereN is the number of neurons in the network, andM the number of cycles in the simulation
run after a transient,

∑
n is the sum over all neurons,

∑
m is the sum over all cycles and

∑
i(n,m)

is the sum over all spikes i of neuron n that occurred on cycle m normalized by the number
of these spikes. (Note that on some cycles neuron n may not produce any spikes, whereas
during 1:1 entrainment we have the identity i(n,m) = m.) The jitter σψ is the sum of two
contributions,

σ 2
ψ = σ 2

W + σ 2
B. (13)

Here we used the following definitions:

σ 2
W = 1

M

M∑
m=1

σ 2
m, (14)

σ 2
B = 1

M

M∑
m=1

µ2
m − µ2, (15)

and

µm = 1

N

N∑
n=1

∑
i(n,m)

ψni , (16)

σ 2
m = 1

N

N∑
n=1

∑
i(n,m)

(ψni )
2 − µ2

m. (17)
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Figure 1. Illustration showing the calculation of σB and σW . (a) Schematic diagram of the network
model consisting of IAF neurons coupled all-to-all with excitatory synapses (open arrows) and
driven by inhibitory inputs (filled arrows). (b) Rasterplot for cyclesm andm+ 1; the ith spike time
of the nth neuron is shown as a filled circle with its index n as y-ordinate and its spike time tni as
x-ordinate. (c) Histogram of spike times; µm (filled triangle) is the average, and σm (solid line) is
the standard deviation of all the spikes during cycle m. (d) Histogram of σm; σW (solid triangle)
is the average of this distribution. (e) Histogram of µm; σB (solid line) is the standard deviation of
this distribution.

The calculation of σW and σB is illustrated in figure 1. σW measures the jitter around the
average phase in a particular cycle. If the network is fully synchronized—all the neurons fire
approximately at the same time in each cycle—σW will approach zero. In contrast, σB measures
the variation of the average spike phase µm in a particular cycle. It varies as σB ∼ 1/

√
N

for uncoupled neurons (equation (26)). The precision of the population discharge is given by
1/σB ∼ √

N , and increases with increasingN . The definition of the phase has a discontinuity:
once a phase changes from say 0.99 to 1.01 it is mapped to 0.01. This means that a unimodal
distribution of phases centred near 1 would be mapped to two peaks, leading to a higher
variance. To prevent this the pulses are applied at φ = 0.8.
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Figure 2. Phase locking of an IAF neuron to an inhibitory pulse train. (a) The firing rate f , (b) the
average spike phase 〈ψ〉 and (c) the output jitter σψ as a function of current I0. The dashed line
in (c) indicates the standard deviation, 1/

√
12, when the phases are uniformly distributed between

zero and one. We use the following parameter values: p = 0.7; σφ = 0; φ = 0.8. The averages
are over 10 × 103 cycles, after discarding the initial 200 cycles.

3. Results

3.1. Single neuron with zero input jitter

The firing rate versus current (f –I ) characteristic of a current-driven IAF neuron is

f = 1

ln I0−V0
I0−1

. (18)

The neuron does not spike for currents I0 < 1. For currents I0 > 1 the firing rate increases
smoothly with increasing current. Here we consider an IAF neuron driven by a periodic
inhibitory pulse train with I0 > 1. The emitted spike train can then be entrained, or phase
locked, to the input. This leads to steps in the f –I characteristic (figure 2(a)). On a step the
firing rate is constant for a range of current values, and equal to a fraction n

m
of the driving

frequency (here n andm should not be confused with the neuron and cycle index, respectively).
The neuron emits n spikes in m cycles of the drive. We now focus on the 1:1 (n = 1, m = 1)
step located between I0 = 2.0 and 2.3 for p = 0.7. The pulse arrives each cycle at phase
φ = 0.8, and the neuron spikes each cycle at phase ψ . At the left-hand side of the step the
neuron spikes shortly before the arrival of the next inhibitory pulse. For increasing current the
neuron spikes earlier, and ψ decreases (figure 2(b)).
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Precision of pulse-coupled networks 221

The precision of a single neuron is the inverse of the standard deviation σψ of the spike
phase. A larger σψ thus means a lower precision. In figure 2(c) we plot σψ versus current. It
is zero on the 1:1 and 1:m steps and it is nonzero outside these steps.

3.2. Single neuron with input jitter

Now consider the case when the inhibitory pulses arrive with a temporal jitter σφ . Their arrival
phase φm is independent in each cycle, and distributed according to Gaussian probability
distribution with mean φ, and variance σ 2

φ . In this subsection we again have suppressed the
neuron index n. The input jitter introduces jitter in the output spike train on the 1:1 step. The
spike time in themth cycle is tm = mT +ψm. The spike phase ψm jitters around its stationary
value ψ according to equation (4),

ψm+1 = ψm + ln
[
a(V0) + be�φm−ψm]− T . (19)

Note that a and b were defined in equations (5) and (6), �φm is the jitter in the pulse arrival
time.

Given the distribution of the input jitter,

P�φ(�φm) = 1√
2πσ 2

φ

exp

(
−�φ

2
m

2σ 2
φ

)
, (20)

and the value of the previous phase ψm, the distribution of the next phase ψm+1 is

Q(ψm+1|ψm) = J (ψm+1)P�φ

(
ln

eT +ψm+1 − aeψm

b

)
. (21)

Here we used

J (ψm+1) = d�φm
dψm+1

= eT +ψm+1

eT +ψm+1 − aeψm
.

Equation (21) is obtained by inverting equation (19) to express�φm as function of ψm+1,
and then multiplying the P�φ by the Jacobian J . The distribution for ψm in cycle m is
obtained by iterating the following equation starting from a distribution P0 for the starting
phase difference ψ0:

Pm+1(ψm+1) =
∫

dψmQ(ψm+1|ψm)Pm(ψm).

In numerical simulations the distributionPm(ψm) converged to a stationary distributionPs. We
have not established whether this holds for all parameters and initial conditions. The stationary
distribution is a solution of

Ps(t) =
∫

dsQ(t |s)Ps(s). (22)

Equation (22) turns into a matrix equation Pj = ∑
i QijPj when ψ takes discrete values

labelled by the indices i and j . The stationary distribution then corresponds to the eigenvector
at eigenvalue λ = 1. We numerically determined the stationary distribution using Matlab
(MathWorks). For small jitter, σφ 
 T , one can instead linearize equation (19) in terms of
the small deviations�ψm = ψm −ψ . To simplify, without loss of generality, we have chosen
φ such that ψ = 0 (see section 2), yielding

�ψm+1 = a

a + b
�ψm +

b

a + b
�φm. (23)
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1.8 1.9 2.0 2.1 2.2 2.3

 I0

0

2

4

σψ/σφ

σφ=0.091

σφ=0.051

σφ=0.021

σφ=0.001

Analytical

Figure 3. Output spike jitter σψ normalized by the input jitter σφ as a function of current on the
1:1 entrainment step for σφ = 0.001, 0.021, 0.051 and 0.091 as labelled. The solid curve is the
analytical curve from of equation (24). We use p = 0.7 and φ = 0.8. The averages are over
50 × 103 cycles, after discarding the initial 2 × 103 cycles.

After an initial transient the distribution of �ψn converges to a stationary distribution.
Hence the moments of the distribution in consecutive cycles are the same, 〈�ψ2

m+1〉 = 〈�ψ2
m〉.

Together with equation (23) this yields the following expression for the output jitter as a
function of the input jitter:

σ 2
ψ = 〈�ψ2

m〉 = 〈�φ2
m〉

1 + 2a(0)/b
≡ c2

0σ
2
φ . (24)

The above equation defines the proportionality constant c0. The average and variances of
the numerically determined distribution Ps are in excellent agreement with equation (24) for
σφ < 0.05 (not shown).

We also performed direct simulations based on equation (1) for different values of σφ
(with parameters valuesN = 1 and g = 0). We plot in figure 3 the output jitter as a function of
current on the 1:1 step, together with the results of equation (24). The numerical simulations
only agree with the analytical expression for current values in the middle of the step. The
width of this region decreases with increasing input jitter, and disappears for σφ > 0.05. In
order to understand why the analytic expression fails near the edges of the step we examine
how the phase locking on the 1:1 step becomes unstable for low and high currents. For low
currents, near the left-hand edge of the step, the neuron spikes just before the arrival of the
next inhibitory pulse. If the current were reduced even more, the pulse would arrive before
the spike is emitted. This would delay the spike even further into the next cycle. Therefore
we have a cycle without any spikes: the neuron has skipped a cycle. Skipping destabilizes
the phase locking. Due to jitter the inhibitory pulse can arrive before the neuron would spike,
even on the entrainment step. The neuron will then spike in the next cycle, but at a phase far
from its average value ψ . It takes a few cycles to return to its stationary value. The skipping
leads to extra output jitter that is not accounted for in our analytical treatment.

The time series of the spike phases and the resulting return map is shown in figure 4.
The time series for I0 = 2.15 (the middle of the step) consists of small deviations around the
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Figure 4. Spike skipping near the right-hand edge of the 1:1 entrainment step. (a) The spike
phase versus index i; (b) the return map (the phase ψi+1 versus the phase ψi ). The solid line is
ψi+1 = ψi . The location of the fixed point of the map is given by its intersection with the solid
line. The arrows indicate the temporal progression of the dynamics after a skip. Here (I) I0 = 2.15
and (II) I0 = 2.0028 with p = 0.7, φ = 0.8 and σφ = 0.01.

average ψ = 0.47. In the return map we plot the phase ψi+1 versus the previous phase ψi : it
consists of a compact cluster of dots. In contrast, the time series for I0 = 2.0028 (ψ = 0.77)
is characterized by infrequent large deviations when the neuron skips a cycle. During skipping
the phase jumps from ψi ≈ 0.77 to 0.3, then it returns to 0.77 over the next few cycles. The
return map now consists of multiple clusters of points.

On the right-hand edge of the current step the neuron spikes long before the next inhibitory
pulse arrives. For an even higher value of the current the neuron can spike again before the
pulse arrives. In that case there are two spikes in one cycle, and the next spike will happen at a
phase far from the fixed-point phase. In this way the phase locking becomes unstable. In the
presence of jitter the inhibitory pulse can arrive at a later time, and therefore the neuron can
spike twice in one cycle even on the entrainment step. This leads to increased output jitter in
an analogous fashion to skipping.

To summarize, the output jitter attains its minimum on the entrainment step. There it is
linearly proportional to the input jitter. The width of the linear region decreases for increasing
input jitter.
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224 P H E Tiesinga and T J Sejnowski

3.3. Uncoupled network

For the uncoupled network the average spike time µm is the sum of N independent variables
ψnm, each satisfying equation (19), and with standard deviation σψ . (The phase distribution is
not Gaussian, though for small σφ it is a good approximation.) Hence, for large N , using the
law of large numbers [8], the standard deviation of µm will approach

σB = σψ√
N
, (25)

and since the distribution of all the phases is the same as the distribution of each individual
phase, σW ≈ σψ .

On the entrainment step σψ ≈ c0σφ , hence

σB ≈ c0σφ√
N
. (26)

These results are confirmed using direct simulation of the ensemble of neurons in the next
subsection.

3.4. Strongly coupled network

We now discuss the dynamics of a network of IAF neurons coupled all-to-all via excitatory
pulses. Previously it was shown that excitatory coupling can lead to synchronization [11–14].
Here, each neuron in addition receives the same periodic inhibitory pulse train. However,
the jitter in the pulse arrival time is uncorrelated between different neurons. This network
converges for strong enough coupling to a synchronized state in which all neurons fire at the
same time. Just after the neurons fire, they each receive N excitatory pulses of strength g/N .
This instantaneously increases the membrane potential from its reset value 0 to g. In the time
interval just after the last spike and just before the next spike there are no other excitatory
pulses, hence the dynamics of each network neuron is reduced to equation (4), with initial
condition V0 = g. In the absence of input jitter all neurons have identical dynamics and thus
the network spike times are also given by equation (4). Once again there are phase-locked
solutions, including the 1:1 entrainment step. The position of the step is shifted to lower current
values due to the excitatory coupling. However, because of the coupling the effects of the input
jitter are different from before. The first neuron to spike will emit pulses to other neurons. As
a result they will all spike earlier. If the coupling is strong enough and the voltage distribution
is sharp enough, the first spike will make all other neurons spike immediately afterwards. The
network spike times are thus given by the earliest spike time of an ensemble of noisy uncoupled
neurons.

In equation (4), ψm+1 increases as a function of �φm, therefore the earlier the inhibitory
pulse arrives, the sooner the neuron spikes. Since in the synchronized state all neurons have
the same membrane potential, the neuron that receives the earliest inhibitory pulse will spike
first. The distribution of earliest pulse times is equal to the distribution Pmin(�φ

min
m ) of the

minimum�φmin
m ofN randomly drawn deviates�φnm from a Gaussian probability distribution.

The analytical expression for Pmin and the asymptotic values of its first and second moment are
given in the appendix. The dynamics of the synchronized spike phase of the whole network
is thus given by equation (4) driven by a pulse train with jitter�φmin

m . The distribution Pmin is
different from P�φ in two ways. First, the average 〈�φmin

m 〉 is nonzero. The expected value for
the minimum ofN deviates with average zero is negative, asymptotically 〈�φmin

m 〉 ∼ −√logN .
Second, the distribution is more sharply peaked; the standard deviation scales asymptotically
as σeff ∼ σφ/

√
logN . The distribution is asymmetric: the tail on the left-hand side is longer

than the one on the right-hand side. We can now repeat the analysis done on equation (19) with
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Figure 5. Output spike jitter σB normalized by σeff (filled circles) and the analytical result
equation (24) (solid curve). In the inset we plot the distribution of µm (circles) and of �φmin

m

(solid curve). The x-ordinate is scaled so both distributions have zero mean and unit variance.
Here g = 0.4, p = 0.7, φ = 0.8 and σφ = 0.01. Averages are over 80 × 103 cycles, after
discarding the initial 200 cycles.

input jitter according to the new distribution Pmin. The spike times generated by equation (19)
are now the spike times of the network, instead of those of a single neuron. There was
good agreement between results obtained by discretizing equation (22) and those obtained by
linearization of equation (19), σψ = cgσφ , cg = 1

1+2a(V0=g)/b (not shown). Since the earliest

pulse�φmin
m arrives on average at phase φ′ = φ+〈�φmin

m 〉 we use φ′ instead of φ in equation (6)
for b. We have also determined using simulations of the full network the distribution of�φmin

m

and the average spike phase µm (see equation (16)). We rescaled them by their average µ and
variance σ : y = (x−µ)/σ with x = �φmin

m (orµm) and plotted them both in figure 5. The two
distributions have approximately the same shape. The ratio σψ/σeff obtained from simulations
comes closer to the theoretical value cg as N increases. We did not establish whether σψ/σeff

would converge to cg for even larger N . The analytical result only yields qualitatively correct
results for the network sizes studied here and it should be interpreted as a lower bound for σψ .

We now describe the results of the simulations of the full network in more detail. In figure 6
we compare the behaviour of the precision as a function of N for two different current values,
I0 = 1.77, close to the left-hand edge of the step, and I0 = 1.88 in the middle of the step. In the
middle of the step σB only decreases very slowly with increasingN . It provides the largest part
of σψ . The jitter σW starts out at values close to zero for a small network with N = 10. This
means that the network is almost fully synchronized. However σW increases with system size,
and levels off for N > 100. For larger networks the effect of a single excitatory pulse, g/N ,
is not strong enough to immediately bring all other neurons to threshold, leading to dispersion
in the spike times within a cycle. The average arrival phase of the first pulse is φ + 〈�φmin

m 〉
(the average is over the cycles m). The earliest inhibitory pulse moves to an earlier phase for
increasing N , hence the spike phase µ also moves to earlier times (figure 6( f )).

Next, consider the edge of the step. The jitter σB decreases quickly with increasing N
(figure 6(a)). In this case the largest contribution to σψ is given by σW (figure 6(c)).
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Figure 6. Precision as a function of network size, N . Plots of (a), (b) σB , (c), (d) σW and σψ
and (e), ( f ) µ versus N (definitions are given in the section 2). Here (a), (c), (e) I0 = 1.77,
and (b), (d), ( f ) I0 = 1.88. The other parameters are g = 0.4, p = 0.7, φ = 0.8 and σφ = 0.01.
Averages are over 40 × 103 cycles, after discarding the initial 200 cycles.

The decrease in σψ is therefore due to an increase in synchronization as measured by σW .
Interestingly, µ depends nonmonotonically on N (figure 6(e)). To understand this in more
detail we study the time trace of the phase of one individual neuron in the network forN = 10
and 79 (figures 7(a) and (b)). The time series consists of small deviations from the average,
interspersed with large deviations due to skipping. The frequency of skipping depends on
network size: for N = 10 it occurs more frequently compared with N = 79. Skipping
increases the value of σW and σB . We have also plotted the probability distribution of the
spike phase, with the large deviations excluded (figures 7(c), (d)). Two features change when
increasing N . The mean of the distribution moves away from φ = 0.8, and the distribution
becomes sharper. These two changes make it harder for skipping to occur in larger networks.
The increase in precision with N near the edge is therefore partly due to the suppression of
skipping, and partly due to the reduced jitter in �φmin

m .
We now investigate how the increase in precision of a strongly coupled network compares

to that in uncoupled networks. There are two questions to be addressed. Firstly, how does the
precision increase with N compared with the initial precision at a small network size (here
N = 10)? We therefore plot σB(N)/σB(10) versus N in figures 8(a) and (b). In the middle
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Figure 7. The spike phase and its probability distribution. Plots of (a), (b) the spike phaseψi versus
index i, and (c), (d) its distribution with large deviations (ψi < 0.6) excluded. HereN = 10 (a), (c)
and N = 79 (b), (d), and g = 0.4, p = 0.7, φ = 0.8, σφ = 0.01.

part of the step the precision of the uncoupled network increases faster with N than in the
coupled network (figure 8(a)). However, near the edge the coupled network performs better
than the uncoupled network (figure 8(b)). The second question is how the output jitter σB
varies with N , compared with the input jitter σφ . In figures 8(c) and (d) we therefore plot
σB/σφ . We find that the uncoupled network always has a higher precision compared with a
strongly coupled network. Near the edge of the step the coupled network performs almost an
order of magnitude worse compared with the uncoupled network.

3.5. Precision for intermediate strength of the coupling

In figure 9 we show the crossover in the precision from its value in the uncoupled network to its
value in the strongly coupled network. The spike phase shifts to earlier times in the cycle when
g is increased at a fixed current. To allow for an unbiased comparison we decrease the current
as a function of g to keep the fixed-point spike phaseψ constant. We first discuss the results for
σφ = 0.005. The roman numerals refer to the labels in figure 9. (I) σW and σB remain constant
up to g ∼ 10−4. (II) For values between g ∼ 10−4 and g ∼ 10−2, σW decreases sharply, but
σB remains approximately equal to its g = 0 value. (III) For g > 10−2, the decrease in σW
is reduced, but σB increases. At g ∼ 1, the strongly coupled limit is reached: σW is close to
zero.

The onset of the decrease in σW (II) shifts to higher coupling strengths for increasing σφ .
The increase in σB (III) is still coupled to the levelling off of the decrease in σW . However, at
higher coupling strength (IV) the phase locking becomes unstable: both σW and σB increase.

To summarize, at intermediate coupling strengths σB stays close to its optimal g = 0
value, but σW can be reduced by increasing g. The quantities σB

√
N/σφ and σW/σφ saturate

as a function of N for N > 79 (not shown).
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Figure 8. Scaling of precision with network size. Plots of (a), (b) σB(N)/σB(10) and
(c), (d) σB(N)/σφ versus network size N . The reference curve (solid curve) for an uncoupled
network at I0 = 2.15 is the same in all panels. Results are shown for two coupling constants
g = 0.1 (dot–dashed curve) and g = 0.4 (dashed curve). In (a) and (c) the current is in the middle
of the entrainment step, I0 = 1.97 (g = 0.1) and I0 = 1.88 (g = 0.4), whereas in (b) and (d) the
current value is on the left-hand side of the step, I0 = 1.934 (g = 0.1) and I0 = 1.77 (g = 0.4).
Other parameters are p = 0.7, φ = 0.8 and σφ = 0.01. Averages are over at least 40 × 103 cycles,
after discarding the initial 200 cycles.

4. Discussion

The properties of the discharge of an ensemble of neurons can be measured in a number of
different ways. One can pool the spike phases of all the neurons in all cycles together and
calculate the variance σ 2

ψ of the resulting distribution. This variance contains contributions
from two cycle-related variances: σ 2

W , measuring the average width of the network discharge,
and σ 2

B , measuring the jitter in the timing of the population discharge. Most studies concerned
with collective enhancement of precision (CEP) focus primarily on σB . σW and σB are both
biophysically relevant and here we have carefully studied their behaviour. We now briefly
summarize our results for σW and σB .

An IAF neuron driven by a periodic inhibitory pulse train attains its highest precision
(lowest value for σψ ) on 1 : m phase-locking steps. The 1:1 step has the largest width and is
thus the most stable. In the presence of jitter σφ in the arrival times of the inhibitory pulses the
highest precision is still obtained on the phase-locking step, but only in the middle, most stable
part. There σφ and σψ are linearly related, σψ = c0σφ . Skipping occurs close to the edges of
the step and it always increases the output jitter. The spike trains ofN independent (uncoupled)
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Figure 9. Crossover of precision from uncoupled to strongly coupled networks. (a) σB
√
N/σφ

and (b) σW/σφ versus coupling strength g for σφ = 0.005 (solid curves), 0.015 (dashed curves),
0.025 (dotted curves) and 0.035 (dot–dashed curves), with p = 0.7. The current I0 is covaried
with g to keep the fixed-point spike phase equal to ψ = 0.383. Roman numerals refer to regions
of g defined in the text in section 3.5. Averages are over 5 × 103 cycles, after discarding the initial
100 cycles.

neurons pooled together yield a network discharge with σB ≈ σψ/
√
N , and σW ≈ σψ . The

jitter σB in the network spike times therefore decreases quickly with increasing network size,
but the width σW of the discharge in a given cycle remains unchanged.

For a coupled network the maximal precision is also attained in the middle of the phase-
locking step. In a fully synchronized network we have by definition σW ≈ 0 and σB = cgσeff .
σeff is the variance in the distribution of�φmin

m , and it scales asymptotically asσeff ∼ 1/
√

logN .
We find numerically that this limit for σB is not reached, and that this expression should be
interpreted as a lower bound. Therefore the CEP, 1/σB , in the strongly coupled network is less
than that of an uncoupled network.

At intermediate coupling strength there is a crossover in σW and σB from the uncoupled
values to the strongly coupled values. The onset of the decrease in σW occurs at a lower
coupling strength compared with the increase in σB . As a result there is an optimal value of g
where σB is close to its optimal value (at g = 0), whereas σW is substantially reduced.

What are the functional consequences of these differences between coupled and uncoupled
networks? It is desirable to have a low value forσW , since most neurons will spike more reliably
when they are driven by a barrage of spikes that are close together in time compared with when
there is a large dispersion. During transduction of network spike trains into a continuous
electric signal, as occurs in the electric fish, a low σW would yield a much larger phasic-to-
tonic ratio than a spike train with a higher value of σW . Here the limitations of the uncoupled
network come to light: no matter how many neurons there are in the network σW will stay
the same and equal to the original jitter in a single neuron. In a coupled network one can find
values for N and g that satisfy arbitrary requirements on σW and σB .
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In this study we have investigated how precision increases with network size N using a
simple neural model. The model lacks features that are present in physiological systems,
such as a time scale for EPSPs and IPSPs, and it produces zero-width action potentials.
Furthermore, functionally important synaptic effects such as facilitation and depression were
not taken into account [15, 16]. Despite its simplicity the model produces phase-locking
steps in the firing rate. Phase locking of neuronal discharge to a periodic injected current,
periodic presynaptic spike trains and even synchronized network discharge are ubiquitous in
the nervous system. Phase locking has been studied theoretically in IAF neurons [17–20],
Fitzhugh–Nagumo models [21] and Hodgkin–Huxley-based models [22]. Recently, it was
shown that entrainment or phase locking can lead to a precision resonance [22–24]. Here
we investigated how precision resonance in combination with recurrent excitation influences
the CEP. We also specifically address the effect of jitter in the input spike train. The main
advantage of the present approach is that analytical estimates for large-N networks can be
obtained and tested using efficient simulations. However, it is important to determine how our
estimates carry over to more biophysically accurate models, which will be the subject of future
research.
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Appendix

The variance of the distribution Pmin determines the output jitter of the strongly coupled
network. Here we determine the asymptotics of the variance for very large networks to
complement the numerical results for small to large networks described in the main body
of the text. In the following we determine Pmin exactly and then proceed to make a number of
approximations to find the first and second moments as a function of network size N .

First we calculate the distribution of�φmin
m , the minimum value of�φnm in a given cyclem,

as a function of the network size (for simplicity we use the notation x = �φmin
m and σ = σφ).

The distribution of the minimum of N independent, identically distributed variables with
probability distribution function P(x) and cumulative probability distribution δ(x) reads [25]

Pmin(x,N) = NP(x)(1 − δ(x))N−1 ≡ e−F , (27)

where

P(x) = 1√
2πσ 2

exp

(
− x2

2σ 2

)
, (28)

is the distribution of the original x = �φnm, and

1 − δ(x) =
∫ ∞

x

P (y) dy = 1

2
− 1

2
erfc

(
x√
2σ

)
. (29)

There is excellent agreement between Pmin determined using numerical simulations and
the analytical expression equation (27) (figure A.1(a)). We expand δ asymptotically in 1/x
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Figure A.1. Comparison of simulations to analytical results. (a) Distribution of the minimum
x obtained from simulations (open circles), and the result of equation (27) (solid curve) for
N = 79. (b) Exponent of equation (27) (continuous curve) compared with the asymptotic expansion
equation (31) (dashed curve), and the saddle point expansion equation (35) (dot–dashed curve).
(c) Average obtained from simulations (continuous curve) compared with the saddle point position
x0 (equation (36), dashed curve). (d) Standard deviation from simulations (continuous curve)
compared with equation (36) (dashed curve). The dot–dashed curve is the dashed curve multiplied

by
√

3
2 . Averages over 80 × 103 cycles, after discarding the initial 2 × 103 cycles.

for large negative x,

δ(x) ≈ − 1√
2π

σ

x
e− x2

2σ2

(
1 − σ 2

x2

)
. (30)

Then, using the approximation log 1 − δ ≈ −δ, we obtain

F(x) ≈ x2

2σ 2
− (N − 1)

1√
2π

σ

x
e− x2

2σ2

(
1 − σ 2

x2

)
. (31)

In figure A.1(b) the result of equation (31) to the exact result (equation (27)). We find
excellent agreement for N > 1000 and −x/σ > 2. We further approximate the distribution
using the saddle point expansion. The first derivative of F is (up to second order in σ

x
)

F ′(x) = x

σ 2
+
N − 1

σ
√

2π
e− x2

2σ2 . (32)
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The minimum of F is located at x0 given by F ′(x0) = 0,

x0

σ
= −N − 1√

2π
e− x2

0
2σ2 . (33)

The value of the second derivative at x0 is

F ′′(x0) = 1

σ 2
− N − 1√

2π

x0

σ 3
e− x2

0
2σ2 = 1

σ 2

(
1 +

x2
0

σ 2

)
. (34)

Using the above results we get for the saddle-point expansion

Fsaddle = F(x0) + 1
2F

′′(x0)(x − x0)
2. (35)

In figure A.1(b) we compare this expression to equations (27) and (31). Equation (35)
only yields a good approximation for x values close to x0. The saddle point expansion
defines a Gaussian probability distribution with mean x0 and variance σ 2

eff = 1/F ′′(x0). For
exponentially large N , lnN � 1, we obtain

x0

σ
∼ −

√
2 ln(N − 1),

σ 2
eff

σ 2
∼ 1

1 + 2 ln(N − 1)
. (36)

We have compared these asymptotic estimates to the mean and variance determined by
numerical integration of equation (27). The exact results only slowly converge to their
asymptotic estimates. This indicates that the asymptotics are only valid for large N > 1000.
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