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ABSTRACT: O’Keefe and Recce ([1993] Hippocampus 68:317-330) 
have observed that the spatially selective firing of pyramidal cells in the 
CAI field of the rat hippocampus tends to advance to earlier phases of 
the electroencephalogram theta rhythm as a rat passes through the place 
field of a cell. We present here a neural network model based on inte- 
grate-and-fire neurons that accounts for this effect. In this model, place 
selectivity in the hippocampus i s  a consequence of synaptic interactions 
between pyramidal neurons together with weakly selective external in- 
put. The phase shift of neuronal spiking arises in the model as a result of 
asymmetric spread of activation through the network, caused by asym- 
metry in the synaptic interactions. Several experimentally observed prop- 
erties of the phase shift effect follow naturally from the model, including 
1) the observation that the first spikes a cell fires appear near the theta 
phase corresponding to minimal population activity, 2) the overall ad- 
vance is  less than 360°, and 3) the location of the rat within the place 
field of the cell i s  the primary correlate of the firing phase, not the time 
the rat has been in the field. The model makes several predictions con- 
cerning the emergence of place fields during the earliest stages of ex- 
ploration in a novel environment. It also suggests new experiments that 
could provide further constraints on a possible explanation of the phase 
precession effect. 0 1996 Wiley-Liss, Inc. 
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The firing patterns of pyramidal cells in the CA1 and CA3 regions of 
the rat hippocampus are related to both the location of the animal in the 
environment and the theta rhythm, which dominates the hippocampal elec- 
troencephalogram (EEG) during exploratory movements (Vanderwolf, 
1969). These cells usually fire several bursts of spikes as the rat runs through 
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one or more limited portions of the environment, called 
place fields of the cell (O’Keefe and Dostrovsky, 1971). 
It is often assumed that this place-related firing consti- 
tutes a population code for the current location of the 
rat: Wilson and McNaughton (1993), for example, 
demonstrated that the simple spike counts in 500- to 
1000-ms time intervals from about 100 simultaneously 
recorded cells contain sufficient information to recon- 
struct the rat’s location with an accuracy of a few cen- 
timeters. 

O’Keefe and Recce (1993) have observed that at each 
location within the place field of a cell, there is a ten- 
dency for the cell to fire preferentially at a particular 
phase of the theta rhythm, and the preferred phase of 
firing advances as the rat passes through the field (see 
also Skaggs et al., 1996). Thus, the precise timing of the 
cell’s firing relative to the theta rhythm provides infor- 
mation about whether the rat is moving into or out of 
the cell’s place field. This observation may have far- 
reaching implications for the general problem of tem- 
poral coding in spike trains (Richmond and Optican, 
1990; Bialek et al., 1991; Tovee et al., 1993). 

The neuronal mechanisms underlying this phase pre- 
cession effect are unknown. As the rat passes through 
the place field of a cell, the number of spikes in each 
theta cycle typically increases through the first part of 
the place field and then falls off, even though the phase 
of firing continues to advance. If the place cell is driven 
by external excitation that waxes and wanes within the 
place field, one might expect first a phase lead and then 
a phase lag as the rat passes through the place field, as 
a consequence of changes in the timing at which the cell 
reaches threshold. In most cases, however, no clear phase 
lag can be observed. 

O’Keefe and Recce (1993) proposed that the phase 
precession they observed could be accounted for by an 
interaction between two oscillators with slightly differ- 
ent frequencies. One, deriving from the medial septum, 
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would provide global modulation of pyramidal cell activity. The 
second, higher-frequency oscillator would be intrinsic to pyrami- 
dal cells. The two oscillators would initially be synchronized by 
the first spikes the cell fires as the rat enters the place field. 
Thereafter, the higher frequency would cause spikes to advance 
gradually to earlier phases. This mechanism, however, cannot ac- 
count for the apparently stronger correlation of firing phase with 
space than with time, unless one of rhe frequencies depends on 
the running speed of the rat (O’Keefe and Recce, 1993). A de- 
pendence of theta frequency on running speed has in fact been 
observed, but it is quite weak (McFarland et al., 1975; Arnolds 
et al., 1979). 

We offer here an alternative explanation based on cooperative 
dynamics within a population of interconnected place cells in the 
hippocampal formation. The basic operation of the model is as fol- 
lows: Each place cell receives external input corresponding to its 
preferred location in space and recurrent input from other neurons 
whose place fields are located nearby in space, as well as inhibitory 
input from interneurons. The strength of the recurrent connec- 
tions is assumed to be greater from a neuron to another hrther 
along in the direction of motion than in the reverse direction. At 
the beginning of each theta cycle, the first cells to fire are those 
with the strongest external input at the current location. These cells 
then excite neurons with place fields ahead of the rat, due to the 
asymmetry. The resulting wave of activity terminates at the end of 
the cycle, when the overall population activity becomes too small 
to sustain it further, and the new wave is initiated at the begin- 
ning of the next cycle starting from neurons corresponding to the 
new location of the rat. The very first firing of a neuron occurs 
therefore at the end of the first wave that manages to reach it, i.e., 
at the end of the theta cycle. Subsequent firing advances to earlier 
phases as the rat moves through the place field. Because the activ- 
ity waves propagate only in one direction, the cell’s firing does not 
lag to later phases as the external input wanes while the rat leaves 
the place field. In the present report, this proposed explanation of 
the phase precession effect is illustrated with computer simulations 
of a network of integrate-and-fire neurons. 

Figure 1 shows the response of a typical CAI pyramidal cell 
recorded from a rat running for food reward on a small triangu- 
lar track. This cell illustrates several phenomena that have been 
observed in a large number of cells by O’Keefe and Recce (1993) 
and Skaggs and McNaughton (1996), which need to be accounted 
for in any model of the precession effect: 

I .  The overall activity of the population of pyramidal cells is 
strongly modulated by the theta rhythm and synchronized 
throughout the dorsal hippocampus. 

2. The first spikes after the rat enters the place field occur 
about 90-120” after the peak of the CAI pyramidal cell popula- 
tion activity, and spikes from subsequent cycles advance gradu- 
ally to earlier phases. 
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FIGURE 1. Recording of a CAl pyramidal cell from a rat run- 
ning for food reward on a triangular track, demonstrating the phase 
precession effect. Spike activity from the cell was recorded extracel- 
lularly using a four-channel microelectrode positioned in the dorsal 
CAI cell body layer; see Skaggs et al. (1996) for details. The task of 
the rat was to circumnavigate a small triangular track repeatedly, al- 
ways in the same direction, stopping at the center of each arm to eat 
a small food reward. The data for this figure encompass 55 min, and 
131 laps. Hippocampal EEG was recorded from an electrode posi- 
tioned near the CAl-dentate fissure and digitally filtered with a band- 
pass of 6-10 Hz: the theta phase of a spike was defined as its fiac- 
tional distance between consecutive peaks of the filtered EEG. A: 
Spatial pattern of spike activity for the cell. Irregular gray lines rep- 
resent the rat’s trajectory, and black dots indicate the position of the 
rat at times when the cell emitted action potentials. This cell fired as 
the rat traversed one of the three corners of the triangular track: dur- 
ing this recording session the rat was always moving in the counter- 
clockwise direction. The region illustrated is 25 x 25 cm. B: Plot of 
theta phase versus location for the cell shown in A, illustrating pre- 
cession of spike activity to earlier theta phases as the rat passes 
through the place field. The horizontal axis indicates the rat’s posi- 
tion on the track “straightened out” for purposes of this plot, and 
the vertical axis represents the phase of the theta cycle at the moment 
the spike was emitted. Each point represents a single spike. Phase 
zero is the point in the theta cycle corresponding to maximal CAI 
pyramidal cell population activity. Two cycles of the theta rhythm 
are plotted for clarity. C: Plot of activity versus time, as the rat passes 
through the place field. To construct this histogram, a point was se- 
lected on the track, near the center of the cell’s place field. The hor- 
izontal axis represents the sum of theta phase and the number of theta 
cycles before or after the rat passes the selected point. The height of 
the bars represents firing rate. As the rat enters the place field, the 
first spikes are aligned with the tick marks; thereafter the spikes shift 
to earlier phases, and by the time the rat leaves the place field, the 
activity is centered midway between the tick marks. 

3. The overall advance in phase is always less than 360” but 
approaches 360” for strong place fields. 

4. The location of the rat within the field, and not time after 
entering the field, appears to be the primary correlate of the fir- 
ing phase. 

5.  The phase dispersion of cell spiking is minimal at the be- 
ginning and end of the place field, and largest at the time of max- 
imal activity in the center of the field. 
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6. Phase shifting occurs in both one- and two-dimensional en- 
vironments, but is more robust on linear tracks. 

A model of these phenomena requires an analysis that includes 
the timing of individual spikes. However, place fields were orig- 
inally defined by the average firing rate of hippocampal neurons, 
and much can be learned about the dynamics of the network by 
first considering a model in which the number of spikes averaged 
over several hundred milliseconds is the primary variable. In the 
subsequent section we extend this model to a network of explic- 
itly spiking neurons. 

ber of different reference frames in a manner that makes spuri- 
ous transitions between reference frames improbable. In the 
Tsodyks and Sejnowski model (1995a), each cell is ‘‘labeled’’ by 
the location where it receives the strongest external input. The 
external input, however, is only weakly spatially selective. Hebbian 
learning between cells whose labels are close to one another re- 
sults in a network whose internal connections reflect the geome- 
try of the environment. This synaptic matrix, along with global, 
inhibitory feedback (Marr, 1969, 1971; McNaughton and 
Morris, 1987), can produce robust place selectivity of neuronal 
firing even if the external activation is highly noisy and only 

The main excitatory inputs to a place cell are generally thought 
to arise from highly preprocessed sensory information originating 
outside the hippocampus, and several different models have been 
proposed for how this input, together with intrahippocampal in- 
hibition, could lead to place-specific firing (Zipser, 1985; Sharp, 
1991). Some of the experimental facts, however, cannot easily be 
reconciled with such models, particularly the persistence of place 
fields following the removal of spatial cues or in total darkness 
(O’Keefe and Speakman, 1987; McNaughton et al., 1989; Quirk 
et al., 1990; Markus et al., 1994), the sensitivity of place fields 
to changes in the task being performed (Markus et al., 1995), the 
appearance of asymmetric fields in a symmetric environment 
(Sharp et al., 1990), the dependence of firing within the place 
field on head orientation within some but not all environments 
(McNaughton et al., 1983; Muller et al., 1994; Markus et al., 
1995), and the strong dependence of firing on “motor set” (Foster 
et al., 1989). The phase precession effect can be added to this list. 

Alternative models for place selectivity put the main empha- 
sis on cooperative interactions among hippocampal neurons 
(Tsodyks and Sejnowski, 1995a; McNaughton et al., 1996). For 
example, McNaughton et al. (1996) suggested that the hip- 
pocampus contains a mechanism for updating the representation 
of position solely on the basis of self-motion information (path 
integration). The synaptic matrix is assumed to represent a set of 
abstract, two-dimensional surfaces or reference frames. A refer- 
ence frame consists of a configuration of place cells whose inter- 
actions define a two-dimensional metric space. Locations within 
this space are represented by a group of neurons with intercon- 
nections that are decremental functions of distance within this 
space. (Note that this “distance” may bear no relation to the phys- 
ical distance between the cells in hippocampus measured with 
anatomical methods). The only stable configurations of activity 
are localized peaks of activation among cells that are neighbors 
within the current reference frame. Linear self-motion and head- 
direction information causes corresponding shifts of the focus of 
activity within the current frame. Learned associations between 
the active cells of a particular frame and external input enable 
frame selection and correction for drift error, but otherwise ex- 
ternal input is not required for updating the representation of po- 
sition. The same population of neurons can encode a large num- 

lation to develop the model for precession of firing relative to the 
theta rhythm phase; however, the principles developed apply gen- 
erally to models in which the neural dynamics are dominated by 
internal rather than external inputs. 

Consider a linear environment, as shown in Figure 2. In the 
first model, the average firing rates of the neurons will be con- 
sidered the primary variables, an assumption that leads to a valid 
description of the network on a time scale large compared to the 
theta cycle. The coordinate xi of each model neuron is taken to 
be the center of its place field, as described above. Let the synap- 
tic strengths between the neurons with coordinates xi and xi be 

where J1 is the maximum excitatory strength, I is the decay con- 
stant of excitatory interactions, and 1 0  is the global inhibitory 
strength. 

Let the dynamics of the average membrane potential of each 
neuron V ,  be governed by 

where 7 is the integration time constant of the model neuron, 
is the external input, and F ( V )  is a sigmoidal function that is 
normalized so that the average firing rate 9 lies between 0 and 1. 
For further details, see Tsodyks and Sejnowski (1995a). 

As shown in Figure 2, this network has sharply tuned, stable 
states of activity localized around the peak of the external input, 
even if the input is noisy and broadly tuned. As the peak of the 
input moves from one end of the linear apparatus to the other 
end, simulating the movement of a rat, the peak in the state of 
activity moves correspondingly. 

This simple average-firing-rate model illustraces a fundamen- 
tal aspect of attractor dynamics, the existence of localized states 
of the network that are selected by weak inputs (see Amit, 1995), 
but it does not address issues concerning spike timing. In the next 
section, the problem of the phase relationship between the theta 
rhythm and neuronal spiking is examined in a model comprising 
spiking neurons. 
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FIGURE 2. Example of a typical activity pattern for a one-di- 
mensional network model based on average firing rates, with stable 
attractors. Each model neuron i is labeled by the position x; of its 
place field on the horizontal axis. A: Activities of all the neurons in 
a network of 100 neurons in one of the stable states. Each neuron 
has an activity level ri corresponding to its average firing rate, nor- 
malized to the range &om 0 and 1. B: External input to the net- 
work. Parameters are Jo = 0.3, J1 = 0.4, I = 0.2. See Tsodyks and 
Sejnowski (1995a) for more details. 

In a simple integrate-and-fire model of a spiking neuron, the 
active conductances responsible for spike generation are replaced 
with the time of threshold crossing, and only passive leakage of 
the potential is allowed between consecutive spikes. We consider 
a network of such neurons, in which the potential of neuron i 
evolves according to the equation, 

dv, - 7- - -v, + li'(t) + Z7"t) 
dt ( 3 )  

where V ,  is the membrane potential in a model neuron with a 
single compartment, measured in units rescaled such that the net 
input resistance R, = 1; Z'(t) and Z"'(t) are synaptic currents me- 
diated by intrinsic and external inputs respectively, as specified 
later. Whenever the potential reaches a threshold value 8, the neu- 
ron emits a spike, and its potential is instantaneously reset to some 
predetermined subthreshold value, VreI. 

The total synaptic current from intrinsic inputs 

rqt) = I-@) - I'"(t) (4) 
is the difference between the overall excitatory current and the 
overall inhibitory current, which are linear sums from the corre- 
sponding populations of neurons. For simplicity, we neglect the 
ionic driving forces for the synaptic currents and assume that the 
size of the currents does not depend on the postsynaptic mem- 
brane potential. When a spike arrives at a presynaptic terminal, 
the postsynaptic current is instantaneously increased according to 
the strength of the synapse, and decays with a time constant f" 
for excitatory synapses (?" for inhibitory synapses). The rise time 
of the postsynaptic current is assumed to be much smaller than 
the decay constant (Stern et al., 1992). Thus, the excitatorysynap- 
tic current of the ith neuron evolves according to the following 
equation: 

where Jex is the strength of the excitatory synapse between neu- 
ronsj and i, and a spike in neuronj occurs at time 5. The synapses 
are probabilistic (McNaughton et al., 1981), and the binary ran- 
dom variables s m ( t )  representing the reliability of synaptic trans- 
mission equal 1 with probability pex, and zero otherwise. The 
equation for inhibitory currents is identical in form, 

9 

but the parameters may be different. We should emphasize that 
excitatory and inhibitory components of the synaptic current, re- 
sulting from the corresponding populations of neurons, converge 
on the same postsynaptic targets; thus all populations are inter- 
connected in the network. 

The synaptic interactions between the pyramidal neurons have 
a form analogous to the first term in Equation 1: 

where xi is [he label of neuron i: that is, the position of the rat 
in the linear apparatus where the neuron receives the strongest 
external excitation while the rat moves in a specific direction. A 
synaptic structure of this form may arise during the exploratory 
phase as a result of associative long-term potentiation (Bliss and 
Lomo, 1973; McNaughton et al., 1978). Alternatively, it could 
arise as a consequence of some developmental process. An addi- 
tional feature, which is important for explaining the phase shift, 
is the asymmetry of the synaptic contacts: synaptic strengths in 
the direction of motion are stronger than those in the opposite 
direction. This is captured by the factor a+ which is 

It is assumed that a> 1; thus, the larger the value of u, the 
stronger the asymmetry in the network. We consider possible 
causes for such asymmetry in the Discussion. 
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The firing pattern of inhibitory hippocampal neurons, also 
called theta cells, carries relatively little place-specific information 
(McNaughton et al., 1983; Kubie et al., 1990). Accordingly, we 
assume that their connections with each other and with the ex- 
citatory neurons are uniform, and specific labels are not assigned 
to each neuron as in the case of the excitatory neurons. 

The term IEx r ( t )  in Equation 3 denotes currents arising from 
inputs from outside the network. We assign different roles to in- 
puts onto the excitatory and inhibitory neurons. For excitatory 
pyramidal cells, we assume that their input, deriving preferentially 
from entorhinal cortex, represents a preprocessed sensory input, 
and thus carries information about the rat’s location in the ap- 
paratus. We assume a simple dependence, as illustrated in Figure 
2B, of the form 

> (9) 

where xg(t) is the rat’s coordinate at time t, 10 gives a baseline ex- 
citation for the neuron, and A controls the degree of place-spe- 
cific input modulation. For simplicity, these parameters (as well 
as all the others) are assumed to be uniform across the popula- 
tion of pyramidal neurons. Theta cells in the model do not re- 
ceive place-specific external input. 

The hippocampus receives inhibitory GABAergic input from 
the medial septum, which preferentially targets inhibitory in- 
terneurons (Freund and Antal, 1988). This input is modulated 
at a frequency of 6-9 Hz and is included in the model as an os- 
cillatory input to the inhibitory population: 

Jxi - xo(t)( )) 
I 

Itxt(t) = l o ( l  + A,exp(- 

pxt(t) = l o ( 1  + hj c o s ( 2 ~ t l T ) )  

where Ai is the strength of the oscillatory component. 

ters, the speed of the propagation is much faster than the actual 
speed of the rat. Because the intrinsic synaptic drive becomes 
stronger as the population activity increases, propagation tends to 
occur on the phase of the theta rhythm with the highest popula- 
tion activity. As the population activity decreases, intrinsic synap- 
tic interactions become weaker, and the focus of activity in the 
network reverts to the group of neurons corresponding to the ac- 
tual location of the rat. 

A network of 800 excitatory and 200 inhibitory integrate-and- 
fire neurons was simulated using the connection scheme given 
above (Equation 7); see Figure 3 for parameter values. The ex- 
ternal inputs to the pyramidal neurons are given by Equation 9 
with x o ( t )  = t/4,000, corresponding to traversal of the appara- 
tus in 4000 ms by the rat moving with a constant speed. The in- 
hibitory cells receive oscillatory input given by Equation 10. As 
a consequence of these two inputs, during each theta cycle activ- 
ity is initiated at the group of cells with labels corresponding to 
the position of the rat, propagates rapidly forward, and then is 
extinguished (Fig. 3). O n  the next cycle, the same pattern occurs, 
but shifted slightly in the rat’s direction of motion. The amount 
of shift is determined by the rat’s velocity. The resulting phase 
shift of neuronal firing relative to the theta rhythm is shown in 
Figure 4. Because a neuron fires first as a result of activity prop- 
agated from previous place fields, the first spikes that occur upon 
entry into the place field appear at the latest possible phase of 
theta. Subsequent spikes advance gradually in phase and are more 
spread over the cycle at the middle of the place field, where ac- 
tivity of the cell is maximal. 

Several observed features of the phase precession effect, which 
are particularly difficult to explain on the basis of single neuron 
dynamics, naturally follow from the dynamics of this network 
model: 

Before presenting simulations of the model specified above, we 
first give an intuitive description of the network behavior. As the 
rat runs along the track (as its position x&) advances from 0 to 
I) ,  the peak of external excitation shifts through successive groups 
of neurons. Aided by cooperative internal dynamics, the network 
tends to build up an activity pattern sharply peaked around the 
neuron whose label is closest to the current coordinate of the rat, 
as in Figure 2. An important new feature of the model is that, 
due to the asymmetry of the interactions, the activity propagates 
spontaneously through the network toward the neurons with 
higher x, , corresponding to the direction of the rat’s movement. 
Thus, at any given time, the neurons with the strongest direct ac- 
tivation by the external input tend to activate neurons in attrac- 
tors along the direction of motion of the rat. Note that in this 
scenario, the actual center of a neuron’s place field, as it would 
be observed experimentally, is ahead of the label assigned to the 
neuron, as in the model of Burgess et al. (1994). 

The speed of activity-propagation during a single cycle of the 
theta rhythm is determined by the internal dynamics of the net- 
work. In particular, it depends on the ratio of the strengths of the 
external and internal connections. Over a wide range of parame- 

1. For each cycle, activity in the network is initiated in the 
group of neurons with labels corresponding to the location of the 
rat, and then spreads with a speed that is independent of the speed 
of the rat. The preferential phase of firing of a neuron with the 
label x, at a certain location of the rat x is determined by the ra- 
tio of the difference xi - x and this propagation speed, and there- 
fore it is primarily a function of place, and not of the time after 
entering the place field. This is illustrated in Figure 4, where the 
phase is plotted as a function of position (A) and time (B), aver- 
aged over a set of 20 neurons, taken from several simulations of 
the rat running through the field with different speeds. As shown 
in Table 1, the correlation of phase with position is higher than 
the correlation of phase with time-in-field for these 20 neurons 
(cf. Table 1 of O’Keefe and Recce, 1993). 

2. Because the propagation of activity in the network due to 
the intrinsic connections depends critically on the overall activ- 
ity level, it ceases at the end of each theta cycle. As a result, the 
magnitude of the phase shift is always confined within 360°, as 
observed experimentally (O’Keefe and Recce, 1993; Skaggs et al., 
1996). 

3. The typical distance over which the network activityspreads 
during each theta cycle is of the order of the initial size of the 
place field (that is, the size which would have been found with- 
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FIGURE 3. Spiking activity in a network model composed of 
integrate-and-fire neurons, during a simulated run of a rat through 
a linear apparatus. The hippocampus was modeled as an intercon- 
nected network of 800 excitatory and 200 inhibitory neurons. For 
each spike of an excitatory neuron i, the position label xi of the neu- 
ron is plotted on the vertical axis, against the time at which the spike 
was emitted (horizontal axis). Vertical lines mark the phase of the 
theta cycle at which the activity of the network is minimal. The shal- 
low overall slope is determined by the velocity of the rat; the steep 

out assymmetric interconnections) (Fig. 2). The reason for this is 
that both the size of the place field and the distance the activity 
spreads in the network are determined by a common cause-the 
structure of the matrix of intrinsic connections (Equation 1). 
Thus, if the position of the rat is reconstructed from the activity 
of the neurons on the basis of brief samples of population activ- 
ity (as described by Wilson and McNaughton, 1993), the esti- 
mate of location shifts forward during each theta cycle for a dis- 
tance roughly the size of a field, which is consistent with the data 
of Skaggs et al. (1996). This behavior is illustrated in Figure 5, 
which gives the reconstructed position of the rat, as determined 
from the place fields using the formula, 

where n; is the spike count of neuron i over 10-ms bins. 
4. Detailed inspection of Figures 3 and 4 shows that the on- 

set of firing in each cycle advances in phase more rapidly than 
the offset, leading to a spread of spiking over most of the cycle 
at the middle of the field, as observed in recordings from the hip- 
pocampus by Skaggs et al. (1996). This occurs because, after a 
silent period, the initial spikes in the population are more syn- 

slope within each theta cycle is determined by the internal dynam- 
ics of the network, The spikes of one of the neurons are surrounded 
by circles for purposes of illustration. Note that these spikes shift 
gradually from the end to the beginning of the theta cycle, with con- 
siderable dispersion near the center. The parameters of the simula- 
tion were T = 20 ms T,, = 6 ms, 7in = 4 ms, V,, = 0.85, 0 = 1,h = 
0.015,Jz = 0.02, u = 1.8, sex = 0.2, sin = 0.7, 10 = 1.02, 1 = 0.15, 
A, = 0.03, Ai = 0.02. 

chronized than the subsequent spikes; this is a common feature 
of inhibition-induced synchrony in this type of network model 
(Tsodyks and Sejnowski, 1995b). 

The model of hippocampal place fields proposed here explains 
many of the observed properties of the O'Keefe-Recce phase pre- 
cession effect, which are difficult to explain on the basis of dy- 
namics intrinsic to single neurons. The phase drift of pyramidal 
cell firing relative to the theta rhythm is explained in the model 
by the spread of activity through the network on each theta cy- 
cle caused by asymmetric weights of intrinsic connections. 

We should note, however, that the model fails to reproduce 
some of the fine details of place cell firing patterns. O'Keefe and 
Recce (1993) reported a mean value of 0.66 for the correlation 
between position and theta phase, whereas the model produces a 
mean correlation of 0.51. Skaggs et al. (1996) did not measure 
these correlations, but a comparison of Figure 4 of this study with 
Figure 7 of Skaggs et al. (1996) suggests again that real CA1 neu- 
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TABLE 1.  

Correlation Coefficients of Phase W i t h  Location on the Track 
(Left Column), and Phase W i t h  Time After Entering the Place 
Field (Right Column), for  the Sample of 20 Cells Shown in 
Figwe 4* 

Phase 

position 
\‘S . 

Phase 

time in the field 
vs. 

-0.55 
-0.40 
-0.54 
-0.50 
-0.52 
-0.59 
-0.48 
-0.55 
-0.56 
-0.53 
-0.55 
-0.60 
-0.51 
-0.45 
-0.57 
-0.36 
-0.47 
-0.55 
-0.43 
- 0.40 

-0.50 
-0.38 
-0.46 
- 0.41 
-0.47 
-0.48 
-0.41 
- 0.49 
-0.51 
-0.42 
- 0.43 
-0.50 
-0.45 
-0.36 
-0.50 
-0.28 
- 0.42 
-0.54 
-0.36 
-0.33 

*The mean correlation with location was 0.51, versus 0.44 for correla- 
tion with time. As pointed out in the legend to Figure 4, the difference 
between these values would be increased if the variability in running 
speed were made larger. 

rons show a stronger position-phase relationship than the neu- 
rons in the model do. Also, the number of spikes fired by a cell 
per cycle in the model only rarely exceeds 2, but in real CA1 neu- 
rons it  can occasionally be as high as 8. These comparisons may 
well be beside the point, however, because much of the experi- 
mental data were recorded in CA1, whereas (as discussed below) 
the model applies either to CA3 or an area further upstream. 
Correlation and firing rate values could easily change as the phase 
precession effect is passed from one area to another, but proper- 
ties such as the amount and direction of phase shift, and the de- 
pendence of phase on position rather than time, are likely to be 
conserved. 

The asymmetric weights required by the model could be 
formed through a long-term potentiation (LTP)-like mechanism, 
during repeated stereotyped traverses through the environment, 
such that there are consistent sequences of cellular activation. This 
would require the synaptic plasticity to be asymmetric in time, so 
that when the rat goes sequentially through the fields of cells A 
and B, the connections from A to B are enhanced more than those 

from B to A. There is evidence for such asymmetry in the in- 
duction of LTP (Levy and Steward, 1983; Gustaffson and 
Wigstrom, 1986; Markram and Sakmann, 1995). 

The model implies that the phase shift originates in an area 
with strong reciprocal connectivity between excitatory cells. CA3 
is a natural candidate; however, recent data (Skaggs and 
McNaughton, 1995) indicate that a strong phase precession ef- 
fect can also be seen in granule cells of the dentate gyrus, which 
lie upstream from CA3. The model proposed here may well be 
applicable to the dentate gyrus, which contains an extensive sys- 
tem of modifiable excitatory feedback connections, although, in 
contrast to CA3, these are disynaptic connections mediated by 
the mossy cells ofthe hilus (Berger et al., 1980; Ribak et al., 1985; 
Buckmaster et al., 1992; Buckmaster and Schwartzkroin, 1994; 
Hetherington et al., 1994). The model may also be general enough 
to apply to the entorhinal cortex, about which insufficient rele- 
vant data are available. 

The synaptic structure proposed in the model explains both 
the formation of place fields and the phase precession effect. It 
thus implies that the same mechanism may be responsible for 
population and temporal coding in the hippocampus. Regarding 
a possible functional role of the phase precession, the model sug- 
gests that it could serve as a tool for anticipation of the future lo- 
cation of the rat on the time scale of about 1 s, based on previ- 
ous experience (Muller and Kubie, 1989; Blum and Abbott, 
1995). For this, the neural system has to separate the spikes oc- 
curring at different phases of theta rhythm. Whether this antici- 
pation actually takes place is an important question for future 
work. 

The model assumes that periodic theta modulation is provided 
to the hippocampus via septal inhibition of hippocampal in- 
hibitory interneurons. Medial septal inputs to the hippocampal 
formation are both GABAergic and cholinergic, but the cholin- 
ergic input acts through a muscarinic second-messenger system, 
which has a time constant considerably longer than the period of 
theta (Cole and Nicoll, 1984), so the cholinergic input is unlikely 
to be a source of periodic modulation. In contrast, the majority 
of the GABAergic septal inputs project to GABAergic interneu- 
rons in the hippocampus (Freund and Antal, 1988), as assumed 
in the model, and have effects over short time scales (Bilkey and 
Goddard, 1985). 

The network model of the phase shift was only formulated for 
the case of a linear environment. In rats that are exposed to lin- 
ear mazes, the place fields of most neurons are highly unidirec- 
tional (McNaughton et al., 1983; Muller et al., 1994; Markus et 
al., 1995), and, as a consequence, different neurons are activated 
in a given location for opposite directions of movement. As men- 
tioned in the Introduction, the phase precession effect also occurs 
in two-dimensional environments, although the pattern of phase 
shifting is much less obvious in this case. In cases in which the 
animal’s movement is not constrained to stereotyped trajectories, 
as in two-dimensional environments, place fields are typically 
multidirectional (Muller et al., 1987, 1994). Thus, the same 
groups of cells are activated at a given location when the rat passes 
through it running in different directions, albeit possibly with 
slightly unequal rates. 
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FIGURE 4. Relations of firing phase to position and time, in 
the integrate-and-fire network model. A: Plot of theta phase at the 
time of each spike, versus the position of the rat relative to the po- 
sition label of the neuron, for a random sample of 20 excitatory neu- 
rons. The spikes shift steadily earlier in phase as the rat approaches 
the index location. B: Plot of theta phase at the time of each spike, 
versus the time after entering the place field of the neuron. The spikes 
again shift steadily earlier, but the correlation with time is weaker 
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FIGURE 5. Reconstructed position of the rat, computed from 
the results of simulations shown in Figure 3 with the use of Equation 
11. The reconstruction was computed using the whole excitatory 
population. The rat's actual position fell along a perfect line, but the 
reconstructed position shifted forward during each theta cycle and 
then abruptly back at the end of the theta cycle. 
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than the correlation with position. The vertical streaks are a simu- 
lation artifact resulting from an absence of variability in the theta 
cycle timing. Five runs along the track with different velocities in 
the range 114000 ms-l to 112000 ms- were simulated. If the vari- 
ability in running speed is increased, the correlation of phase with 
position is hardly affected, but the correlation with time becomes 
weaker in proportion to the amount of variability. The same para- 
meters were used as in Figure 3. 

The generation of phase precession in our model requires some 
degree of directional tuning of the place cells in their place fields. 
This directional tuning leads to an asymmetry in the synaptic ma- 
trix, which in turn causes phase precession. For this paper we have 
simulated the case of linear trajectories in which the directional 
tuning is absolute. This assumption could be relaxed without los- 
ing the essential effect, although it remains to be determined how 
much directional selectivity would be necessary in two-dimen- 
sional environments to account for the magnitude of the phase 
precession observed under these conditions. 

The hippocampus is likely to receive inputs from head-direc- 
tion cells (Ranck, 1984; Taube et al., 1990), and the place rep- 
resentations in the hippocampus are strongly coupled to the head 
direction system (Knierim et al., 1995). An alternative explana- 
tion for the phase precession effect, both for one- and two-di- 
mensional environments, could be that these head-direction in- 
puts facilitate the intrinsically symmetric synaptic interaction 
between place cells in their preferred directions. In this scenario, 
the effective asymmetry of the interactions is not a result of long- 
term synaptic plasticity, but is mediated by head-directional cells, 
whose firing is selective for the current direction of motion. This 
would be a form of dynamical symmetry breaking. These possi- 
bilities require further experimental and theoretical study. 

Some contingent predictions can be made from the model re- 
garding the effects of experience on hippocampal activity. The 
asymmetry of the weights of the intrinsic connections, on which 
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the model’s phase precession effect depends, could be learned 
through LTP-like mechanisms that are rapid in onset, asymmet- 
ric in time, and long-lasting. This would imply that the asym- 
metries would not be present during the first experience of an an- 
imal in a place field, and hence that no phase precession should 
be seen under these conditions. Failure to observe these would 
not disprove the model itself, but rather would suggest that the 
symmetry is broken by some other means, such as the influence 
of head direction cells as suggested above. By the same reasoning, 
the model also predicts that the apparent location of place fields 
should shift opposite to the direction of rat as a function of ex- 
perience. Such an effect has recently been described (Mehta and 
McNaughton, 1996). 
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