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Inhibition-stabilized networks (ISNs) are neural architectures with
strong positive feedback among pyramidal neurons balanced by strong
negative feedback from inhibitory interneurons, a circuit element found
in the hippocampus and the primary visual cortex. In their working
regime, ISNs produce damped oscillations in the γ-range in response
to inputs to the inhibitory population. In order to understand the prop-
erties of interconnected ISNs, we investigated periodic forcing of ISNs.
We show that ISNs can be excited over a range of frequencies and de-
rive properties of the resonance peaks. In particular, we studied the
phase-locked solutions, the torus solutions, and the resonance peaks. Pe-
riodically forced ISNs respond with (possibly multistable) phase-locked
activity, whereas networks with sustained intrinsic oscillations respond
more dynamically to periodic inputs with tori. Hence, the dynamics
are surprisingly rich, and phase effects alone do not adequately de-
scribe the network response. This strengthens the importance of phase-
amplitude coupling as opposed to phase-phase coupling in providing
multiple frequencies for multiplexing and routing information.

1 Introduction

Oscillatory rhythms of neuronal populations are ubiquitous in the brain
(see Buzsaki, 2004, for a review), but their functions are not yet established
(Sejnowski & Paulsen, 2006). Gamma oscillations in the 30–80 Hz frequency
band (Bartos, Vida, & Jonas, 2007) have been implicated in attention and
memory (Yamamoto, Suh, Takeuchi, & Tonegawa, 2014), in coding infor-
mation, and in communication between brain areas (Buzsaki & Chrobak,
1995; Bichot, Rossi, & Desimone, 2005; Ray & Maunsell, 2011; Womelsdorf
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Figure 1: Entrainment of theta activity in hippocampus by rhythmic inhibition
of inhibitory interneurons.

et al., 2012; Igarashi, Lu, Colgin, Moser, & Moser, 2014) and are abnormal in
pathologies such as schizophrenia (Lewis, Hashimoto, & Volk, 2005), autism
(Wright et al., 2012), and Parkinson’s disease (Hemptinne et al., 2013).

Gamma frequency oscillations are often coupled with oscillations at
lower frequencies (Jensen & Colgin, 2007). For example, oscillating inputs to
the hippocampus from the medial septum are in the theta frequency range
(4–8 Hz). CA1 neurons in hippocampus also receive inputs from the medial
entorhinal cortex in the high gamma frequency range (60–80 Hz) and inputs
from the CA3 neuron in the low gamma frequency range (30–60 Hz) (Colgin
et al., 2009). When neural networks in these different regions are coupled,
there is an interplay between oscillations that are internally generated and
those that arise from external inputs.

Analyzing these networks theoretically is difficult (Borisyuk, Borisyuk,
Khibnik, & Roose, 1995), even at the scale of neural populations, because
the interplay of multiple frequencies may lead to chaotic behavior (New-
house, Ruelle, & Takens, 1978). Large-scale network models of these oscilla-
tions also have large numbers of parameters, which are difficult to analyze
(Vierling-Claassen, Siekmeier, Stufflebeam, & Kopell, 2008). However, this
analysis can be more easily undertaken in models with fewer parameters
and the intrinsic working regimes of the different neural populations are
known. A good example of this is Tsodyks, Skaggs, Sejnowski, and Mc-
Naughton (1997), which analyzed a neural model of hippocampal circuits
forced by inputs from the medial septum (see Figure 1). This network
consisted of two populations of interconnected neurons, excitatory and
inhibitory, such that when the inhibitory connections are removed, the re-
maining excitatory network is unstable. Network stability was maintained
by strong inhibitory connections, putting the network into a dynamical
regime called an inhibition stabilized network (ISN). Recently, ISNs have
been used to model the cortical visual area (Murphy & Miller, 2009; Ozeki,
Finn, Schaffer, Miller, & Ferster, 2009; Jadi & Sejnowski, 2014a, 2014b; Rubin,
Van Hooser, & Miller, 2015), and they can also be found in studies where
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the ISN regime is not explicitly invoked (Kang, Shelley, Henrie, & Shapley,
2010; Akam, Oren, Mantoan, Ferenczi, & Kullmann, 2012).

Two properties of these ISNs make them especially interesting. First,
increasing the direct external input to the inhibitory interneurons causes
the interneurons paradoxically to decrease their firing rates, and, second,
the ISN operating regime supports intrinsic gamma oscillations.

The main objective of this article is to understand the amplification of
gamma rhythms of networks driven by periodic external inputs when the
gamma rhythm are generated resonantly within the circuitry of the network.
To this end, we focus on the ISN, which, we will see, can be understood
as damped oscillators. There are several reasons to perform this analysis in
addition to the considerations already identified:

1. An extension of Tsodyks et al. (1997) is to assume that the hippocam-
pus contains interconnected ISNs. As a first step toward the study of
such networks, we can consider a feedforward chain of two ISNs and
the even simpler case where the last ISN of the chain is periodically
forced (by the first ISN)

2. ISNs have been shown to be relevant for the description of the local
circuitry of V1 (see the experimental papers by Ozeki et al., 2009, and
Rubin et al., 2015): interconnected ISNs would then be adequate for
the study of center/surround interactions.

3. It has been shown recently (Akam et al., 2012) that a firing rate model
of CA3 neuron with sustained oscillations can be used to fit the phase
response curve (PRC) of carbachol-induced oscillations as well as
optogenetic stimulation. The PRC is a tool (Ermentrout & Terman,
2010) valid far from a bifurcation point. This suggests that the PRC
is inadequate for the study of forced ISNs where phase-amplitude
coupling may arise (Aronson, Ermentrout, & Kopell, 1990).

Periodic forcing of neural oscillators is a well-studied paradigm, but most
papers are not applicable to periodic forcing of ISN because they assume,
first, that the oscillations are sustained (see, e.g., Neu, 1979; Ermentrout,
1981); second, that the forcing amplitude is small compared to the amplitude
of the network oscillations; and the third concerns the forcing frequency ωF ,
which is off resonance with an intrinsic frequency ωH , that is, it is not related
by a rational number. As a consequence, resonance effects are ignored (see,
e.g., Hoppensteadt & Izhikevich, 1997).

One notable exception to the first assumption is Aronson et al. (1990), al-
though resonance conditions were not addressed. These above assumptions
naturally lead to the limited description of phase-locked (PL) solutions that
are ωF-periodic solutions with constant amplitude. Hence, the only variable
in these solutions is the relative phase between the forcing and the output,
which is assumed to encode information. This scheme is called phase-phase
coupling in the literature.
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Here, we go beyond a phase description and look at how the amplitude
of the response is affected by nonlinear resonance effects. The resonance
effect in which a network with intrinsic frequency ωH displays a maximum
in the amplitude of the response when the forcing frequency ωF is close to ωH
has been known for some time. It was used recently in experiments (Cardin
et al., 2009) to investigate the neural mechanism responsible for gamma
oscillations in the barrel cortex. It has been used in Akam and Kullmann
(2010) to show how to multiplex information and also in Paik and Glaser
(2010) to show how the visual cortex can adjust its working regime to the
frequency content of the thalamus inputs.

When the system is nonlinear, theory predicts that resonances appear at
every rational ratio k/l of ωH/ωF , although in real oscillatory systems, the
maximum and width of the resonance decrease with |k| + |l|: resonances
occur only for frequency ratios 1/2, 1, and 2. The perturbation parameter
δω

de f= ωH − k
l ωF is a fundamental parameter for the description of the k:l

resonance peak. Compared to linear resonance, many more new network
responses can be produced. For subharmonic forcing ωF < ωH , the PL fre-
quency is the same as the forcing frequency. For superharmonic forcing
ωH > ωF , the periodic responses frequencies are a fraction of the forcing fre-
quency

ωF
l , thereby producing again a phase-locked (to the input) solution.

Hence, we will also call them PL. In addition, there can be multistability
of PL and modulated responses with two intrinsic frequencies that we call
torus solutions or quasiperiodic solutions. The resonance curve is then the
amplitude of the response (PL/torus) as a function of the forcing frequency
ωF .

In earlier work along these lines (Pollina, Benardete, & Noonburg, 2003;
Ledoux & Brunel, 2011; Decker & Noonburg, 2012), the multistability of
PL solutions was studied around the 1:1 peak. One can find a resonance
curve in the periodic forcing of spatially extended ISN networks in Rule,
Stoffregen, and Ermentrout (2011). Resonance effects in neural masses have
also been studied in Spiegler, Knösche, Schwab, Haueisen, & Atay (2011),
though without addressing dynamics. There are general limitations to the
phase reset curve (PRC) as a description of neural oscillators; in particular,
the size of the perturbation has to be small. For example in Wedgwood,
Lin, Thul, and Coombes (2013), Morris-Lecar neurons forced by very brief
periodic kicks produce chaotic responses that are captured by an adequate
phase-amplitude description but not by a phase description alone.

Understanding the properties of the resonances of an oscillatory system
is extremely difficult in general. Here, by looking at the ISN, which we
show are tuned close to a Hopf bifurcation, we are able to understand
thoroughly the possible network responses PL/torus. The periodic forcing
of a Hopf bifurcation has been studied in Gambaudo (1985) for the responses
near all strong resonances. However, the link to our model is buried in
multiple changes of variables. Recently, the resonance curves were classified
in Zhang and Golubitsky (2011) around the 1:1 resonance. One issue is that



Periodic Forcing of Inhibition-Stabilized Networks 2481

the authors focused solely on PL solutions and hence the torus solutions
were not considered and the resonances curves are incomplete. A second
issue is that they did not examine the stability of the PL responses, which
limits the predictive power of the analysis. Here, we compute the changes of
variables that provide the normal form as in Gambaudo (1985), and we also
provide several formulas concerning the resonance curves. This is technical
and lengthy but not too difficult (see the appendixes). This allows us to
achieve a complete understanding of the resonance curves, which allowed
us to recover some previous results (Zhang & Golubitsky, 2011).

Finally, we introduce a type of network similar to the ISN but that sup-
ports sustained oscillations (SO), for example, those that are induced by
carbachol. The E-I network that we then consider can be tuned to either the
ISN or the SO regime.

The plan of the study is as follows. After presenting the model and the
general method, which is mainly the use of bifurcation theory, we study in
detail the main resonances 1:1, 1:2, 2:1 of an unforced E-I network in the
ISN regime. In the discussion, we put these results into an experimental
context.

2 Description of the Model and Definitions

We analyze a rate model with two populations of excitatory and inhibitory
neurons (E-I network). More specifically, we consider a Wilson-Cowan
model describing the firing rate of each population:

{
τEĖ = −E + S(JEEE + JEII + θE(t)),

τI İ = −I + S(JIEE + JIII + θI(t)),
(2.1)

where S is the sigmoid function:

S(x) = 1
1 + e−x

.

The variables θE, θI describe the total presynaptic current onto each pop-
ulation, and τE, τI are the time constants of each population. Finally, the
connections are such that JEE, JIE > 0, and JEI, JII < 0. The total presynaptic
currents (θE (t), θI(t)) are supposed to be periodic functions of time with
only one Fourier component:

[
θE (t)

θI(t)

]
=

[
θ

(0)

E

θ
(0)

I

]
+ ε cos(ωFt)

[
θ

(1)

E

θ
(1)

I

]
, (2.2)
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where ε � 1 is the (small) forcing amplitude and
ωF
2π

is the forcing frequency.
An important quantity is the perturbation. For a rational approximation of
the ratio

ωH
ωF

≈ k
l where

ωH
2π

is the gamma frequency of the rhythms generated
by the E-I network, the perturbation is defined by

δω
de f= ωH − k

l
ωF .

A phase-locked (PL) solution is a time-periodic network response of equa-
tion 2.1 with frequency ωF/l/2π , l > 0 integer, fraction of the forcing fre-
quency. A quasiperiodic network response V(t), or torus solution, is a
response with two frequency components V(t) = f (ω1t, ω2t) where f is
2π -periodic in each variable (see, for example, Figure 9, top).

3 Methods

This section introduces the parts of dynamical systems and bifurcation the-
ory needed to understand the behaviors of network 2.1 when the forcing
frequency ωF and the forcing amplitude ε are varied. The equations can be
rewritten as V̇ = F(V, t, μ) where V = (E, I) and μ is the vector of parame-
ters. When ε = 0, the system is autonomous and F(V, t, μ)

ε=0= F0(V, μ). We
first choose μ so that the unforced network V̇ = F0(V, μ) is in an ISN regime
and study the effect of forcing terms. In particular, we focus on the ampli-
tudes of the time-periodic and quasiperiodic solutions of equation 2.1.

Recall that an equilibrium state is a point Vf where the vector field F0(·, μ)

vanishes. A bifurcation occurs when there is a qualitative change in behav-
ior or stability as the parameters μ are varied (for a more precise definition,
see Guckenheimer & Holmes, 1983, and Kuznetsov, 2004). Bifurcations can
be detected by looking at the stability of the equilibrium, which is stable
if the eigenvalues of the Jacobian of F0 at (V f , μ) have negative real parts.
When μ is varied, the eigenvalues move in the complex plane, and when
two complex conjugate eigenvalues cross the imaginary axis without van-
ishing for μ = μH , the system undergoes what is called a Hopf bifurcation
signaling the appearance or disappearance of periodic solutions (modulo
some nondegeneracy conditions). The set of bifurcation points partitions
the parameter space in sets of similar local dynamics, called a bifurcation
diagram. Close to a bifurcation point, the vector field F0 can be simplified
by a change of variables into its normal form, which is the polynomial
approximation with the fewest monomials.

The analysis of the forced system proceeds by writing the activity as
V = V f + 2�(z(t)eiωF

k
l tζ )+ higher-order terms (h.o.t.), that is, monomials

zpz̄qeiωFt(n+ k
l (p−q)), p + q > 1. This expression is then substituted into V̇ =

F(V, t, μ) to obtain a normal form, ż = αz + βz|z|2 + · · ·, which may depend
on time. Note that when z = 0, the network response is an equilibrium,
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whereas when z(t) = z0, the network response is periodic in time. Finally,
a periodic solution z(t) corresponds to a torus response of the network.
Analysis of the differential equation in z with bifurcation theory allows us
to predict the network responses and resonances.

3.1 ISNs Are Close to a Supercritical Hopf Bifurcation. The param-
eters of the model are chosen for the ISN regime, which exhibits damped
oscillations in the gamma range. An ISN satisfies the following properties
(Tsodyks et al., 1997):

1. When the interpopulation connections JIE = JEI = 0 are zero, an
equilibrium and, more precisely, a (stationary) excitatory firing
rate Ef solution of E f = S(JEEE f + θE ), is unstable: −1 + JEES′(JEEE f

+ θE ) > 0.
2. When the interpopulations connections are reestablished, there is

a stable equilibrium (E f , I f ) solution of (Ė = İ = 0) that is stable:
all the eigenvalues of the Jacobian at (E f , I f ) have negative real
parts.

Assume that this is the same equilibrium, at some point between these
two extremes, the eigenvalues ±iωH of the Jacobian at the equilibrium have
zero real parts with nonzero imaginary parts and the network undergoes a
Hopf bifurcation signaling the appearance or disappearance of 2π

ωH
-periodic

solutions. (see Kuznetsov, 2004). Note that for an ISN, JEE is relatively small
at point 1 above.

Remark 1. The fact that the eigenvalues of the Jacobian are complex and
not real (hence zero) at the instability is not a restriction. Almost any per-
turbation of a network with real eigenvalues yields complex eigenvalues.

The Hopf bifurcations can then be found by varying the inputs θE and
θI in equation 2.1 (Wilson & Cowan, 1972; Borisyuk & Kirillov, 1992; Hop-
pensteadt & Izhikevich, 1997). The Hopf bifurcation curves (red) in the
plane (θ

(0)

E , θ
(0)

I ) are shown in Figure 2. The red-shaded region in the left
panel corresponds to the parameters where the E-I network produces sus-
tained oscillations (SO) and the gray-shaded region corresponds to the ISN
working regime with damped oscillations.

Close to the Hopf curves (red), there is a good polynomial approxima-
tion of equation 2.1, called the Hopf normal form, whose coefficients are
important in determining how the E-I network responds to constant inputs
θ

(0)

E , θ
(0)

I . We will consider the case of the inhibitory current θ
(0)

I as a param-
eter. More precisely, if ζ is the eigenvector of the Jacobian for the eigenvalue
ıωH and

(E, I) = (E f , I f ) + zζ + z̄ζ̄ + �(z, z̄), (3.1)
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Figure 2: Bifurcation diagram of the E-I network. (Left) Hopf bifurcation curves
(red) and Fold bifurcation curves (black) in the plane (θ

(0)

E , θ
(0)

I ), generalized
Hopf bifurcation point (GH), Bogdanov-Takens bifurcation point (BT), cusp
bifurcation point (CP). (Right) Hopf normal form coefficient �(b) (red) and
shear γ (blue). The green curve equation is y = √

3. Dashed and continuous
curves correspond to the dashed and continuous Hopf curve, respectively, in
the left panel. The ISN regions have a gray background. Parameters: JEE = 10,
JEI = −12, JIE = 10, JII = −10, and τE/τI = 3/8. (Diagrams computed with the
MatCont.)

where � is a higher-order polynomial, then

ż = z(ıωH + aδθ (0)

I − b|z|2) + h.o.t., (3.2)

where δθ
(0)

I
de f= θ

(0)

I − θ
(0)

I,Hop f and the h.o.t. of the polynomial in z are neg-
ligible. To completely characterize the behavior of the network, we need
to compute the complex coefficients a, b as a function of the network pa-
rameters. Recall that the Hopf bifurcation is said to be supercritical when
�b > 0 and subcritical when �b < 0. Computing the Lyapunov coefficient
b and the linear coefficient a is difficult even when an analytical expression
exists (see, e.g., Guckenheimer & Holmes, 1983; Kuznetsov, 2004). Hence,
we compute them here numerically. In the right panel of Figure 2, we plot
for each Hopf curve (dashed and continuous) the real part of b and the shear
γ defined by

γ
de f= �(b)

�(b)
. (3.3)
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Table 1: Link between the E-I Network Working Regime with the Internal
Parameters.

Regime Condition

ISN �(a)δθ
(0)
I < 0

SO �(a)δθ
(0)
I > 0

When equation 3.2 is expressed in polar coordinates, it is apparent that the
shear acts on the phase variable, speeding up or slowing the phase as a
function of the radius. Hence, it describes how the flow is distorted along
the phase variable. Note that the shear becomes infinitely large when the
network is close to the generalized Hopf points or the Bogdanov-Takens
points in the right panel of Figure 2.

For the network response to an inhibitory transient input to produce
damped oscillations (Tsodyks et al., 1997), the working regime of the ISN
should be close to a supercritical Hopf bifurcation. In contrast, close to a sub-
critical Hopf bifurcation with a bounded nonlinearity S(x), the bifurcation
diagram of equation 2.1 resembles that of a class II neuron, which exhibits
an undesirable bistability between large-amplitude oscillations and the con-
stant solution rather than a damped oscillation in response to a transient
inhibitory input.

Definition 1. We therefore assume that the ISN regime of a two-population
network is close to a supercritical Hopf bifurcation where �b > 0.

The consequences of �b > 0 are most easily seen in polar coordinates

for z. For �aδθ (0)

I > 0, the stable response is given by z(t) =
√

�(aδθ (0)

I )

�b eiωt+φ,

ω ≈ ωH , which are network sustained oscillations. For the other case, the
stable response is z(t) = 0. Thus, the term �(a)δθ

(0)

I controls which regime
the network is in, as summarized in Table 1.

Rephrasing these mathematical results, to be in an ISN regime an E-I
network needs to be close to a Hopf bifurcation, effectively acting as a
Stuart-Landan oscillator as described by the normal form in equation 3.2.
The parameter �(a)δθ

(0)

I controls whether the network is in an ISN or SO
regime.

An example of the phase plane and nullclines for the unforced model in
the two regimes ISN and SO is shown in Figure 3.

3.2 Numerical Study of the Phase-Locked Responses. We study the
effect of driving the network described in the previous section with periodic
inputs with forcing frequency ωF

2π
(see equation 2.1).

Definition 2. A k:l resonance occurs when ωF is a rational fraction of ωH:
ωF
ωH

= l
k .
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Figure 3: Phase-plane examples of the dynamics. Plot of the nullclines Ė = 0
(blue) and İ = 0 (green) in the ISN regime (left plot, θ

(0)

E = 0 and θ
(0)

I = −0.647)
and in the SO regime (right plot, θ

(0)

E = 0 and θ
(0)

I = −1). Examples of two
trajectories are shown in black with initial conditions indicated with a red dot.
In the ISN regime, the convergence of the trajectory to the stable equilibrium is
not shown completely for illustration reasons. In the SO regime, the trajectory
converges to a limit cycle.

For a given forcing amplitude, we computed numerically (using software
Auto07p) the PL responses as function of the forcing frequency as shown
in Figure 4. The stable responses are shown in black and the unstable ones
in dashed gray.

In linear systems, periodic forcing close to the intrinsic frequency ωH
2π

leads to a large increase in the amplitude of the response characterized by a
bell-shaped curve in the amplitude of the response versus forcing frequency
called a resonance curve. This is seen in Figure 4 for ωF ≈ ωH .

Because the ISN is poised close to a Hopf bifurcation, several new phe-
nomena arise. There are three additional peaks at ratios 3:1,2:1, and 1:2 and
multistability (right panel of Figure 4), as previously reported (Decker &
Noonburg, 2012; Pollina et al., 2003).

Note that the analysis of the PL solutions fails to predict the network
response for ωF ≈ 1.5 ωH in the right panel of Figure 4 because the PL
solutions are unstable. The stable network response is a torus solution.

When forced at frequency 2ωH/2π , the stable response of the network
is a PL solution with frequency

ωH
2π

; that is, there is period doubling in the
response of the network. There are additional phenomena near ωF ≈ 2 ωH
that will be explained more precisely in the following sections.

3.3 Theoretical Properties of the Network Resonances. In this section,
we study the nonlinear resonance curves using the normal form approx-
imation. Periodic forcing of a Hopf bifurcation has been systematically
studied (Arnold, 1988; Gambaudo, 1985; Zhang & Golubitsky, 2011). The
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Figure 4: Amplitude of the phase-locked solutions as a function of the forc-
ing frequency. (Left) Plot of the amplitude of the PL solutions for the same
network as in Figure 2 in the ISN regime; parameters are ε = 0.07, θ

(0)

E = 0,
and θ

(0)

I = −0.647 (θ (0)

I,Hop f = −0.647759). (Right) Amplitude plot for parameters
of the forcing current in the SO regime: ε = 0.11, θ

(0)

E = 2, and θ
(0)

I = 1.5874
(θ (0)

I,Hop f = 1.595384). Black lines are stable; dashed gray lines are unstable. SNP:
saddle node of periodic solution. NS: Neimark-Sacker bifurcation. PD: period
doubling bifurcation.

dynamics of the forced network response amplitude close to the k:l reso-
nance is (Elphick, Iooss, & Tirapegui, 1987):

ż = z(aδθ (0)

I + c1 + ıδω − b|z|2) + c2z̄l−1 + h.o.t., (3.4)

where δω = ωH − k
l ωF is the perturbation parameter and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(E(t), I(t)) = (E f , I f )+z(t)eı
ωF k

l tζ + z̄(t)e−ı
ωF k

l t ζ̄ +�(z(t)eı
ωF k

l t,

z̄(t)e−ı
ωF k

l t, μ, t),

μ
de f= (δθ

(0)

I , ε, ω),

(3.5)

where t → �(·, ·, ·, t) is 2π
ωF

-periodic (see appendix A) and represents poly-
nomials of order at least 2 whose contribution can be neglected because
|z| � 1. Note that the coefficients c1, c2 have to be computed as functions
of the network parameters ε, δω (see the appendixes) while the other co-
efficients are the same as in equation 3.2. The normal form, equation 3.4,
describes the network response amplitude z as a dynamical object.

We will focus on the resonances 1:1, 1:2, and 2:1 for which l = 1, 1, 2
and use the perturbation parameter δω as a small parameter. By definition,
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Figure 5: Example of a multistable response. Plot of the excitatory population
response amplitude for ωF close to 0.853 ωH . Note that ωF is slowly modulated
to show the change between the stable states in the multistability region of
Figure 4 (right). The figure shows a jump between two PL solutions of different
amplitudes.

around each resonance peak, the resonance curve is approximated by the
function δω → |z| where z is solution of ż = 0 in equation 3.4.

The resonance curve near the resonance 1:1 was partially characterized
in Zhang and Golubitsky (2011) and can be quite complicated. In the ISN
regime only two types of resonance curves are possible (see Figure 11).
However, Zhang and Golubitsky (2011) did not examine the stability of
the PL solution. We propose to fill the gap in the following analysis. Here
are some important properties of the main resonances that we prove in the
following sections:

1. The maximum of the 1:1 peak is not centered on ωH when �(b) 
= 0.
2. There is multistability (and hysteresis near the peaks 1:1, 2:1) in the

ISN regime if and only if the shear γ (see equation 3.3) satisfies
|γ | >

√
3. See section 3.4 and also Zhang and Golubitsky (2011) for a

proof. An example of hysteresis is shown in Figure 5. If the forcing
amplitude ε is too small, the multistable PL disappear.

3. If the forcing amplitude ε is large enough, the maximum M of the
1:1 resonance peak satisfies ε1/3/21/6 < M |�b|1/3

|c̃2|
< ε1/3 where c2

de f= ε ·
c̃2 (see Golubitsky, Shiau, Postlethwaite, & Zhang, 2009). As ε �
1, it gives a very large amplification of the corresponding forcing
frequency component. We plot the maximum of the resonance peaks
1:1, 1:2, 2:1 in log-log coordinates in Figure 6.

4. No torus responses are possible in the ISN regime near the 1:1 and
1:2 resonances.
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Figure 6: Power law for the maximum of the resonance peaks. Log of the
resonance peak power for 1:1, 1:2, 2:1 as a function of the log of the forcing
amplitude ε. Network parameters as in Figure 4, right.

Given these properties, it is straightforward to select a network that
shows one of these features. For example, to have multistability, we need
a large enough shear (see Figure 2, right, and Figure 4, right). For torus
solutions, the network should be in the SO regime.

3.4 Case of 1:1 Resonance. How do the different PL solutions inter-
act? Can the torus solution exist together with multistable PL solutions?
Are there any other behaviors? We explore these questions for the 1:1 res-
onance. The coefficients of the general normal form, equation 3.4, around
the resonance 1:1 are given in appendix A:

ż = z(aδθ (0)

I + ı(ωH − ωF ) − b|z|2) + ε

2
〈DS θ (1), ζ ∗〉, (3.6)

where DS θ (1) de f= (θ
(1)

E S′(JEEE f + JEII
f + θ

(0)

E ), θ
(1)

I S′(JIEE f + JIII
f + θ

(0)

I )).
Recall that from definition 3.5 of z, the PLL solutions are equilibria solving

0 = z(aδθ (0)

I + ı(ωH − ωF ) − b|z|2) + ε

2
〈DS θ (1), ζ ∗〉.

All possible responses of the forced network near the resonance 1:1 can
be obtained by studying the dynamics generated by equation 3.6 as a
function of the parameters ωF, ε, θ (0). There are at least three parameters—
δθ (0), ε, and δω—which makes the analysis difficult. However, equation
3.6 can be further simplified using appropriate scaling t = αt′, z = βY (see
appendix D), to an equation with two parameters:

Ẏ = Y(ε0 + ıτ − |Y|2)ei arg b + ρ, (3.7)
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Figure 7: Dynamics for the amplitude of the network response in the case
ε0 = −1. Bifurcation diagram of equation 3.6 in the plane (τ, ρ). The dashed
curves are the resonance curves parameterized by the perturbation δω (dashed
for the ISN regime, dotted for the SO regime). Adapted from Gambaudo (1985).

where Y ∈ C, ρ ≥ 0, τ ∈ R ρ > 0 and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε0 = sign(δθ
(0)

I (�a + γ�a) + γ δω) = ±1

ρ2/3 = �(b)

�(a)δθ
(0)

I

( |c2|
|b|

)2/3 (
ε0

γ
− τ

)
, c2

de f= ε

2
〈DS θ (1), ζ ∗〉

(3.8)

(see appendixes D and E). The complete bifurcation diagram of equation
3.7 can be found in Arnold (1988) and Gambaudo (1985). The case ε0 =
−1, shown in Figure 7, is a torus solution (Y is time-periodic) when τ is
sufficiently negative. The case ε0 = 1, γ > 1/

√
3 is shown in Figure 8, and

the case ε0 = 1, 0 < γ < 1/
√

3 can be found in Gambaudo (1985).

3.5 Description of the Phase Diagram in the Case ε0 = 1. The equilibria
of the phase diagrams in Figure 8 are marked with red dots and represent
PL network responses. Time-periodic solutions correspond to the quasiperi-
odic network responses, such as the top one in Figure 9. Two curves are
particularly interesting in Figure 8: the curve of saddle-node bifurcations
(blue), which signals the appearance or disappearance of equilibria (marked
as red dots), and the Hopf bifurcation curve (red), which signals the appear-
ance or disappearance of periodic orbits. The saddle-node curves give the
parameter regions corresponding to multistable PL, such as phase diagram
numbers 3 and 11 in Figure 8.

Hence, between the phase diagrams 3 and 4, a torus response is created
by a Hopf bifurcation. The period of the response amplitude increases
without bound as the parameters go from the phase diagram 4 to 5 (or 11 to
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Figure 8: Dynamics for the amplitude of the network response in the case ε0 =
1, γ > 1/

√
3. Bifurcation diagram of equation 3.6 in the plane (τ, ρ). Red: curve

of Hopf bifurcations. Blue: curve of saddle-node bifurcations. BT: Bogdanov-
Takens bifurcation point. The dashed curves in black are the resonance curves
parameterized by the perturbation δω (dashed for the ISN regime, dotted for
the SO regime). The CP points have coordinates ( ±1√

3
, 2

√
2

3
√

3
). The BT points have

abscissa ± �b
�b+2 . Adapted from Gambaudo (1985). On the right, we show the link

between the dynamics of the amplitude z(t) (or Y(t)) and E(t).

9) to the homoclinic bifurcation curve. An example of such a phenomenon
of a homoclinic response is shown in Figure 9.

Remark 2. Some effects are not captured by the normal form analysis.
Along the Hopf curves, the frequency ωamp of the response amplitude tends

to zero at the BT points and the frequency ωamp can be such that
ωamp

ωH
is ratio-

nal, leading to Arnold tongues and possibly strong resonances. The same
resonances can occur when going from the Hopf curves to the homoclinic
curves. Hence, in phase diagrams 4 and 9 in Figure 8, there is a “torus break-
down” (see Kuznetsov, 2004), usually associated with chaotic behavior of
equation 2.1 in which the torus solution becomes highly irregular.

3.5.1 Application to the Study of the Response. We now study the specific
effects of the three parameters ε, ωF, δθ (0) on the response of the forced net-
work. In appendix E, we show that the three parameters describe a curve
given by the second equation in 3.8 in the plane (τ, ρ) which is parameter-
ized by the perturbation parameter δω. They are plotted in Figures 7 and 8
using dashed curves of equation. Recall that the resonance curve is given
by RC : δω → |z| where z is the solution of ż = 0 in equation 3.6. It can be
solved by taking some norm in equation 3.6. Using the equivalent equation,
3.7, one sees that RC(−δ) = RC(δ) if the shear is zero: γ = 0. Computing
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Figure 9: Example of convergence to a homoclinic response. Plot of the excita-
tory response for different forcing frequencies. The forcing parameters are such
that the dynamics is close to the homoclinic curve. Different parameters from
Figure 4, right, are θ

(0)

I = 0.824174, ε = 0.05.

the resonance curve amounts to computing the equilibria as a function of
the perturbation. But we can also predict the dynamics corresponding to
a particular value of the perturbation. Indeed, when the perturbation is
varied, the couple (τ, ρ) describes a curve of the second equation in 3.8 in
the bifurcation diagram that allows predicting the response of the forced
network.
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The two types of curves, depending on the network regime (ISN or
SO), are shown in Figures 7 and 8. When the forcing frequency or the
perturbation is varied, the value of ε0

de f= sign(δθ (0)(�a + γ�a) + γ (ωH −
ωF )) changes, which has the consequence of switching the possible response
dynamics between Figures 7 and 8.

More precisely, if ωF > ωH + δθ (0)

γ
(�a + γ�a), the possible dynamics cor-

respond to the one of Figure 7 whereas if ωF < ωH + δθ (0)

γ
(�a + γ�a), then

the possible dynamics correspond to the one of Figure 8.
We next examine the working regimes for ISN and SO in more detail.

3.5.2 The ISN Regime. Recall that this case corresponds to �(aδθ (0)) < 0
which forces

ε0
γ

≤ τ from the second equation in 3.8. When Figures 7 and
8 are used, the resonance curve never crosses the Hopf bifurcation curve,
and the network cannot produce torus solutions (see appendix C). Also, if
�(aδθ (0)) ≈ 0, the resonance curve (dashed black) is almost vertical and in-
tersects the Saddle-node bifurcation curve iff 1

γ
< τCP = 1√

3
, that is, γ >

√
3,

the condition given in Zhang and Golubitsky (2011) ensuring multistabil-
ity. Indeed, in this case, the resonance curve crosses the region labeled 3 in
Figure 8, where two stable equilibria are present. The same occurs when
the shear |γ | is increased. In the right panel of Figure 4, |γ | >

√
3 using the

numerical values of the shear given in Figure 2. Finally, if the forcing ampli-
tude ε increases, the regime of multistable PL becomes larger (if |γ | >

√
3)

because the curve will shift from phase diagram 1 to phase diagram 3 (see
the effect of the forcing amplitude ε on the curve in Figure 8). As a conse-
quence, the only possible dynamics in the ISN regime are the ones labeled
1 and 3 in Figure 8.

Thus, the forced ISN network can only produce periodic responses and
multistable periodic responses that we call PL solutions.

3.5.3 The SO Regime. The SO regime gives rise to a richer behavior than
the ISN regime because

ε0
γ

≥ τ from the second equation in 3.8. In partic-
ular, the resonance curve can cross the Hopf curve, which generates torus
solutions such as those in regions 2 and 4 in Figure 8. Reducing the forcing
amplitude ε yields more dynamical effects as the resonance curve passes
through all parts of the phase diagrams in Figure 8. It is, for example,
straightforward to select an amplitude ε that produces an almost homo-
clinic response (green curve in Figure 8) as in Figure 9, or multistability
between PL and torus responses (e.g., phase diagram 6 of Figure 8), or
large-amplitude torus responses as in phase diagrams 10 and 11. In con-
trast to the ISN regime, increasing the forcing amplitude leads to simpler
dynamics.

Therefore, the SO regime can produce periodic responses, quasiperiodic
responses, or even stranger behaviors like the one in Figure 9. Hence, the



2494 R. Veltz and T. Sejnowski

resonance curve is not enough to describe the dynamics (see the incom-
plete case in Figure 4, right, and one needs to at least compute and plot
the quasiperiodic responses. This is done numerically in the section 3.8.

3.6 Case of the 2:1 Resonance. The shape of the resonances for the cases
1:1 and 2:1 are qualitatively similar (see equation 3.4) because l = 1 in both
cases. In particular, a necessary and sufficient condition for the 2:1 resonance
curve to display multistability is (see the study of the 1:1 resonance)

|γ | >
√

3. (3.9)

The dynamics are the same as in Figures 7 and 8, albeit occurring in a much
narrower parameter region.

3.7 Case of the 1:2 Resonance. This case is different from the 1:1 and
2:1 resonances. Let us write the network response (E(t), I(t)) around the
basal activity (E f , I f ) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(E(t), I(t)) = (E f , I f )+z(t)eı
ωF
2 tζ + z̄(t)e−ı

ωF
2 t ζ̄ +�(z(t)eı

ωF
2 t,

z̄(t)e−ı
ωF
2 t, μ, t),

μ
de f= (δθ

(0)

I , ε, ω),

(3.10)

where t → �(·, ·, ·, t) is 2π
ωF

-periodic (see appendix A for an explanation) and
represents a polynomial of order at least 2 whose contribution is negligable
because |z| << 1. The dynamics of the amplitude around the 1:2 peak is
governed by

ż = z(aδθ (0)

I + ı(ωH − ωF/2) − b|z|2) + c2z̄, (3.11)

where c2 is proportional to the forcing amplitude ε (see the appendix B). Un-
like the previous cases, z = 0 is the solution of this equation corresponding
to the network response (E(t), I(t)) = (E f , I f ) + �(0, 0, μ, t); the response
frequency is

ωF
2π

. On the other hand, the nontrivial constant solutions in z cor-
respond to PL responses at frequency

ωF
4π

, that is, half the forcing frequency
from equation 3.10. Thus, the PL solution undergoes a period-doubling
bifurcation around ωF ≈ 2ωH (see Figure 4).

The shape of the 1:2 resonance peak can be found by solving ż = 0 in
the previous equation, which leads to a quadratic equation in |z|3 (see
appendix F). It always has the qualitative shape shown in Figure 4. In
appendixes F and G, we prove the following properties concerning the 1:2
peak:
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Figure 10: Example of resonance curve in the SO regime. Plot of the amplitude
of the response as function of forcing frequency. The gray box shows one pe-
riod of a periodic response. See the text for further explanation. Parameters:
ε = 0.01, δθ (0) = −0.0018. Same network as in Figure 2. The torus solution is
continued until the resonance R2 where the continuation fails. (Computed with
Auto07p and Knut.)

1. The 1:2 resonance peak exists only if the forcing amplitude is large
enough: |c2| > |�aδθ (0)

I |.
2. The width W of the peak scales linearly with the forcing amplitude

W ∼ ε.
3. The height H of the peak scales linearly with the forcing amplitude

H ∼ ε.
4. In the ISN regime, quasiperiodic network responses are not possible.

We do not show all the possible responses for the 1:1 peak due to a lack
of space. However, all of the responses in the ISN regime are listed in
appendix G. In other words, the 1:2 case has the remarkable feature that
when the ISN is forced at frequency ≈ 2ωH

2π
, it has a periodic response with

frequency
ωH
2π

. This could explain why this peak was not seen in Cardin et al.
(2009), for example.

3.8 Completion of the Resonance Curves in the SO Regime. Our goal
is now to complete the resonance curves (see Figure 4, right) in the SO
regime by computing the torus solutions amplitudes. To this end, we use
the software Knut (see Schilder, Osinga, & Vogt, 2005) to compute the torus
solutions emerging from the Hopf bifurcations for equation 3.4. The torus
solutions have two intrinsic frequencies ωF

2π
,

ωapp

2π
, which generate the toroidal

dynamics. When the rotation number ωapp/ωF is rational, the torus becomes
a periodic solution: this happens at the tip of the Arnold tongues. In Fig-
ure 10, we plot the PL amplitude and the torus amplitude as functions of the
forcing frequency ωF . An example of torus response is shown in Figure 10,
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bottom left. A PL response is shown in Figure 10, top left. A PL solution
(close to the peak 1:2) with frequency

ωH
2π

and forcing frequency
2ωH
2π

is shown
in Figure 10, bottom right; this is the period-doubling phenomenon that was
examined earlier. Finally, we have also plotted, with triangles, points where
the rotation number is 1

4 (labeled R4), 1
3 (labeled R3) and 1

2 (labeled R2).
An example of a PL solution with frequency ωF/3 is shown in Figure 10,
bottom left. This solution is very unstable and requires careful adjustment
of the forcing frequency; otherwise a torus solution appears.

4 Discussion

We have analyzed networks regimes that are important for understanding
phase-amplitude coupling, which is relevant for communication between
the hippocampus and the entorhinal cortex, for example (Jensen & Colgin,
2007; Igarashi et al., 2014). More precisely, we restricted our analysis to
the periodic forcing of a specific class of inhibition-stabilized E-I networks,
working close to a Hopf bifurcation. The results apply to a mean field
description of a population of neurons, and as such, most of our results
should carry over to spiking neural networks in an ISN regime. Also, the
results are insensitive to synaptic delays (Roxin, Brunel, & Hansel, 2005;
Coombes & Laing, 2008) as long as the network is close to a Hopf bifurcation.

Some predictions can be made based on the results of our analysis. First,
ISNs require the tuning of an E-I network close to a Hopf bifurcation effec-
tively acting as a Stuart-Landau oscillators. Working close to a Hopf bifur-
cation can lead to interesting phenomena that depend mainly on the value
of the shear γ and whether the network is tuned to the ISN regime. In short,
the ISN regime can produce only phase-locked solutions and hysteresis
of phase-locked solutions when periodically forced. In contrast, networks
that support sustained oscillations (such as the ones induced by carbachol
in Akam et al., 2012) are likely to produce torus responses when periodi-
cally forced. The shear breaks the symmetry of the 1:1 resonance peak (see
section 3.5.1), which makes periodic forcing of neural networks a flawed
tool to determine the intrinsic gamma frequency (Akam et al., 2012). An
extreme example of this is shown in Figure 11, where the shear governs the
emergence of multistability.

Another prediction of the resonance curve is that the main resonance
peaks arise at 1

2 , 1, 2 times the network intrinsic frequency which reflects
the large amplification of the input component located near these peaks (see
Ray & Maunsell, 2011). One interesting fact is that the resonance curves of
the ISN networks are more isolated because they cannot produce torus
responses (compare Figure 10 with Figure 4, left). In particular, the ISN
response to a broadband signal corresponds to a nonlinear and highly
selective filter at 1, 2, 1

2 times its intrinsic frequency ωH . In comparison,
the network with sustained oscillations will mix all frequency in a very
complicated manner because of the torus responses.
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Figure 11: Plot of the resonance curves in the ISN regime for two different
shears γ . The scaling of the width and amplitude of the peaks is indicated as a
function of the forcing amplitude ε. The domain of multistability for |γ | >

√
3

is a decreasing function of ε but an increasing function of γ . The amplitude of
the 1:1 peak does not scale exactly as ε1/3 as indicated. For more details, see the
text and appendix F.

We summarize these results in Figure 11 for the ISN regime and for two
different ranges of shears (γ ) that lead to the two different classes of reso-
nance curves. The larger the shear |γ | >

√
3, the larger the region of multi-

stability. The first prediction is that in the ISN regime, the network response
frequency is the same as the forcing frequency except near the 1:2 peak,
where it is half the forcing frequency. This period doubling phenomenon
also works in the case of a network that supports sustained oscillations.
The second set of predictions concerns the scaling of the different peaks as
functions of the forcing amplitude ε, as shown in Figure 11. As such, the
resonance curve and the scaling of its peaks constitute an experimental in-
direct proof of an ISN working regime that can be tested using optogenetics
experiments.

Most of these effects have been overlooked in studies focused on syn-
chronization and phase locking (Hoppensteadt & Izhikevich, 1997; Izhike-
vich, 2007) with notable exceptions (Vierling-Claassen & Kopell, 2009). The
widely used theory of weakly connected Hopf oscillations (WCHO) pre-
sented in Hoppensteadt and Izhikevich (1997, theorem 5.10) ignores reso-
nance effects and considers only phase coupling. In our view, the resonant
normal form is the one that should be perturbed using the perturbation
δω when considering weakly connected oscillators, not the Hopf normal
form used in Hoppensteadt and Izhikevich (1997). In particular, the normal
form for the external forcing of WCHO (Hoppensteadt & Izhikevich, 1997,
theorem 5.8) leads to the incorrect conclusion that the resonant frequency
affects only linear terms (see equation 3.4).

In a more recent study (Ostojic, Brunel, & Hakim, 2009), the second res-
onance peak was missed because the authors consider an ansatz for the
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response at frequency 2ωH when the network is forced at 2ωH , whereas the
maximum response amplitude occurs at frequency ωF based on our results.
This was also overlooked in Cardin et al. (2009) because the authors ex-
tracted only from the network response, the frequency component around
the forcing frequency ωF , possibly throwing away the main frequency com-
ponent around ωF/2 when the forcing frequency is at twice the gamma-peak
frequency. A recent computational study (Hahn, Bujan, Frégnac, Aertsen, &
Kumar, 2014) seems to indicate the presence of the second resonance peak
(see Figure 4.b in that paper). It would be interesting to understand the link
with the ISN working regime used in this work.

Periodic forcing of a supercritical Hopf bifurcation for single neuron
dynamics is rare and consequently has not been studied. Indeed, class II
neurons work close to a subcritical Hopf bifurcation with a fold on the limit
cycle branch (Izhikevich, 2007). This suggests that periodic forcing of the
generalized Hopf bifurcation (also called a Bautin bifurcation) is relevant for
resonance effects in class II neurons and should be more closely examined.

A central result of this study is that an ISN requires the network to be
close to a Hopf bifurcation. Hence, the predicted properties of this working
regime can be experimentally tested. The normal form method (Haragus
& Iooss, 2011) can be applied to study networks close to other local bifur-
cations such as the Bogdanov-Takens bifurcation. In the study of periodic
forcing and quasiperiodic forcing, we expect the general form of the reso-
nance curves to remain if there is dominant frequency in the forcing (Saleh
& Wagener, 2010).

As suggested in Golubitsky et al. (2009), feedforward chains of n ISN
networks are highly selective to the forcing frequency as the maximum of
the 1:1 peak, for the nth network, is ε1/3n

(other peaks have similar power
laws). Thus, these feedforward chains would be very useful for extracting
frequency components of noisy inputs by working as nonlinear filters and
would be able, at the same time, to demultiplex the main components of
the input. We plan to examine this effect in feedback networks.

We also plan to explore the effects of adding noise to the periodic forcing,
which should exhibit stochastic resonance phenomena. Indeed, one of the
first studies of stochastic resonance (Benzi, Sutera, & Vulpiani, 1981) consid-
ered the periodic forcing of a pitchfork bifurcation with noise perturbation,
which led to multistability of PL solutions. When multistable PL solutions
are perturbed with noise, they exhibit stochastic resonance. Similarly, the
periodic forcing of the Hopf bifurcation with large enough shear should also
exhibit multistability, which is the main ingredient in Benzi et al. (1981).

Appendix A: Normal Form Computation of the 1:1 Resonance

Notation for hermitian scalar products for vectors and functions: 〈V,W〉 de f=
V1W1 + V2W2 and 〈 f, g〉per,τ

de f= 1
τ

∫ τ

o 〈 f (t), g(t)〉dt.
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We call ζ and ζ ∗ the eigenvector of the Jacobian and the Jacobian adjoint
at the equilibrium, respectively, for the eigenvalues ıωH and −ıωH with the
normalization 〈ζ , ζ ∗〉 = 1.

Proposition 1. The normal form of equation 2.1 for the 1:1 resonance is

ż = z(aδθ (0) + ı(ωH − ωF ) − b|z|2) + c2ε

plus additional terms o(|z|3 + |ε| + |z|(|ε| + |δθ |)) where c2 = 1
2 〈θ (1)d S(V f +

θ (0)), ζ ∗〉 and b is defined in equation 3.2.

Proof. In order to apply the result (Haragus & Iooss, 2011, III.5.2), we need
the forcing frequency to be constant. Hence, we start by rescaling the time

variable s
de f= ωFt, which yields

d
ds

V = 1
ωF

[−V + S(J · V + θ (0) + εθ (1) cos(s))]

= 1 − ω

ωH
[−V + S(J · V + θ (0) + εθ (1) cos(s))],

where
ωF
ωH

= 1
1−ω

. The bifurcation parameters are μ = (θ (0), ε, ω) and the
bifurcation point is μc = (θ

(0)

H , 0, 0), V = V f . It follows that the Hopf fre-
quency is 2π at the bifurcation point μ = μc. We write V(s) = V f + v0(s) +
�(v0(s); θ (0), ε, ω, s) where �(0; θ

(0)

H , 0, 0, s) = 0, D1�(0; θ
(0)

H , 0, 0, s) = 0
and � is 2π -periodic in s. From Haragus and Iooss (2011, III.5.2), we have
v0(s) = A(s)ζ + c.c. and

Ȧ = ıA + a(θ (0), ε, ω)A + c(θ (0), ε, ω)eıs + e(θ (0), ε, ω)A2e−ıs

+ f (θ (0), ε, ω)Ā2e3ıs + b(θ (0), ε, ω)|A|2A + g(θ (0), ε, ω)A3e−2ıs

+ h(θ (0), ε, ω)Ā3e4ıs + j(θ (0), ε, ω)Ā|A|2e2ıs,

where a(μc) = c(μc) = d(μc) = 0. As the expression G(V;μ, s) of
d
dsV given by G(V;μ, s) = 1−ω

ωH
[−V + S(J · V + θ (0) + εθ (1) cos(s))] satisfies

∂sG(V;μc, t) = 0, all the coefficients with an exponential factor vanish at
μ = μc (see Haragus & Iooss, 2011, III.5.2), hence at order o(|A|3 + |μ| +
|Aμ| + |A|),

dA
ds

= ıA + a(θ (0), ε, ω)A + c(θ (0), ε, ω)eıs + b(θ (0)

H , 0, 0)|A|2A.
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Finally, writing A(s) = z(s)eıs, we find

dz
ds

= (a(θ (0), ε, ω) + b(θ (0)

H , 0, 0)|z|2)z + c(θ (0), ε, ω).

We now compute the coefficients a(θ (0), ε, ω), c(θ (0), ε, ω) as a linear ex-
pression of the parameters (θ (0) − θ

(0)

H , ε, ω) and also the coefficient b. First,
Taylor-expand the function �:

�(v0;μ) =
∑

l1+l2+r>1

Al1 Āl2μr�̃l1,l2,r
.

Using equation 5.5 in Haragus and Iooss (2011) for the normal form change
of variable � and Fourier series, we find

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂a
∂μ

= 〈G11(ζ ) + 2G20(ζ ,�001), ζ
∗〉per,2π ,

∂c
∂μ

= 〈G01(ζ ), e−ısζ ∗〉per,2π ,

b(μc) = 〈2G20(ζ ,�110) + 2G20(
¯ζ ,�200) + 3G30(ζ , ζ , ζ̄ ), ζ ∗〉per,2π ,

(A.1)

where Gi j
de f= ∂ i+ jG

∂ iV∂ jμ
. It is straightforward to check that the expression of b

is the same as for the case of a regular Hopf bifurcation without forcing
(Kuznetsov, 2004; Haragus & Iooss, 2011). Hence, we have

b(θ (0)

H , 0, 0) = −b
ωH

.

Let G01 = dε
ωH

DS θ (1) cos(s) + dθ (0)

ωH
DS + 0 · dω with DS

de f= DS(J · V f + θ
(0)

H ).

Indeed, the derivative with regard to ω vanishes at V = V f , μ = μc, and
this gives the coefficient

c(μ − μc) = ε

2ωH
〈DS θ (1), ζ ∗〉. (A.2)

Let us focus now on the linear coefficient a(μ − μc)A. We start with the
expression of G20,

G20(U1,U2) = D(2)S(J · V f + θ
(0)

H )(J · U1)(J · U2),
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which is time s independent. The equation for �001 is

d
ds

�001 − L�001 = G01,

where L is the Jacobian atV = V f . Using Fourier series G01 = ∑∞
n=−∞ G(n)

01 eıns

and �001 = ∑∞
n=−∞ �

(n)

001eıns, we find

(ın − L)�
(n)

001 = G(n)

01 , ∀n ∈ Z.

From the expression of G20 and the scalar product 〈G20(ζ ,�001), ζ
∗〉per,2π

in the expression of a(μ − μc), it appears that only the term 〈G20(ζ ,�
(0)

001),

ζ ∗〉per,2π is nonvanishing. This gives −〈G20(ζ , L−1G(0)

01 ), ζ ∗〉per,2π . Also from
the expression of G01,

G11 = − dω

ωH
L + dθ (0)

ωH
D(2)SJ + dε

ωH
θ (1)cos(s)D(2)SJ,

D(2)S
de f= D(2)S(J · V f + θ

(0)

H ).

This allows us to find an expression for a(μ − μc) using 〈Lζ , ζ ∗〉 = ıωH :

a(μ − μc) = −iω + δθ (0)

ωH
(〈D(2)SJ · ζ − 2G20(ζ , L−1G(0)

01 ), ζ ∗〉per,2π ).

The second term is the same as for the case of no forcing (Kuznetsov, 2004;
Haragus & Iooss, 2011); hence we find

a(μ − μc) = −iω + δθ (0)

ωH
a.

where a is defined in equation 3.2. To sum up, we have found that

d
ds

A =
(

ı(1 − ω) + δθ (0)

ωH
a
)

A − b
ωH

|A|2A + ε

2ωH
〈DS θ (1), ζ ∗〉eıs

or

d
ds

z =
(

−ıω + δθ (0)

ωH
a
)

z − b
ωH

|z|2z + ε

2ωH
〈DS θ (1), ζ ∗〉.
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Coming back to the original time d
dt = ωF

d
ds = ωH

1−ω
d
ds , we find

d
dt

z =
(

−ıωωF + δθ (0)

1 − ω
a
)

z − b
1 − ω

|z|2z + ε

2(1 − ω)
〈DS θ (1), ζ ∗〉,

which gives at order o (|μ| + |μz|)

d
dt

z = (ı(ωH − ωF ) + δθ (0)a)z − b|z|2z + ε

2
〈DS θ (1), ζ ∗〉.

Appendix B: Normal Form Computation of the 1:2 Resonance

Proposition 2. The normal form for the 1:2 resonance is

ż = z(aδθ (0) + ı(ωH − ωF /2) − b|z|2) + c2z̄

where c2 = ε
2 〈D(2)Sθ (1)J · ζ + 2G20(ζ, (2ıωH − L)−1 DSθ (1)), ζ ∗〉 and b is defined

in equation 3.2.

Proof. The proof in appendix A shows that we only need to consider the
case ωF = 2ωH and incorporate the perturbation parameter ω as a linear
term where

ωF
ωH

= 1
1
2 −ω

. Hence,

c2 = ε〈G11(ζ ) + 2G20(ζ ,�001), e−2ıωHtζ ∗〉per,2π/ωF
,

which gives

c2 = 1
2
ε〈D(2)Sθ (1)J · ζ + 2G20(ζ ,�

(1)

001), ζ
∗〉,

where �001 = ∑
n

�
(n)

001e2ıωH nt and

c2 = ε

2
〈D(2)Sθ (1)J · ζ + 2G20(ζ , (2ıωH − L)−1DSθ (1)), ζ ∗〉.

Appendix C: Hopf Bifurcation Curve Near the 1:1 Resonance

Lemma 1. When �(a )δθ (0)
I < 0, the resonance curve does not intersect the Hopf

bifurcation curve.
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Proof. In order to simplify, let us assume �b = 1 and write the 1:1 normal
form (after a scaling in z to transform c2 → |c2|)

ż = z(λ + iω − (1 + iγ )|z|2) + |c2|,

where we have written ω = δω + �aδθ (0)

I , λ = �aδθ (0)

I , and γ is the shear.
The Hopf bifurcation curve is computed using two conditions (Kuznetsov,
2004) regarding the Jacobian L of the above dynamical system: det(L) >

0, tr(L) = 0, which satisfies

1
2
ω2λ − 1

2
λ2γω + 1

8
(γ 2 + 1)λ3 − |c2|2 = 0.

There is a solution ω if and only if λ(8|c2|2 − λ3) > 0. This condition is not
satisfied when λ < 0.

Appendix D: Simplification of the 1:1 Normal Form

Lemma 2. If �b > 0, �b > 0 and δθ
(0)
I (�a + γ�a ) + γ δω 
= 0, then the equation

ż = z(aδθ
(0)
I + iδω − b|z|2)z + c2 is equivalent to the equation

ż = z(ε0 + iτ − |z|2)zei arg(b) + ρ, (D.1)

where ε0 = sign(δθ (0)
I (�a + γ�a ) + γ δω), τ = δω+δθ

(0)
I (�a−γ�a )

|γ δω+δθ
(0)
I (�a+γ�a )| and ρ =

|c2|·|b|2
|�b|3/2·|(�a+γ�a )δθ (0)

I +γ δω|3/2
.

Proof. For the scaling: z → ze−i arg c2 , this implies c2 → |c2|. For the scaling:

t → Rt and z → Az with appropriate A, R, this implies ε0 = sign� aδθ (0)

I +iδω
b ,

τ = � aδθ (0)

I +iδω
b |� aδθ (0)

I +iδω
b |−1 and ρ = |c2|

|b|·|� aδθ (0)
I +iδω

b |3/2
.

Recall that cos arg(b) > 0 because the Hopf bifurcation is super-

critical. Then ε0 = sign�(
aδθ (0)

I +ıδω
b ) = sign(cos arg(b) δθ

(0)

I �a+γ δθ
(0)

I �a+γ δω

|b|(1+γ 2 )
) =

sign(δθ
(0)

I (�a + γ�a) + γ δω). Expressions for τ and ρ follow accordingly:

τ = �
(

aδθ (0)

I + ıδω
b

) /
�

(
aδθ (0)

I + ıδω
b

)
,

ρ = |c2|/|b| ·
∣∣∣∣∣�aδθ (0)

I + iδω
b

∣∣∣∣∣
3/2

.
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Appendix E: Equation of the Resonance Curve in the Plane (τ, ρ)

Corollary 1. From appendix D, the parameters satisfy

ρ2/3 =
�(b)

�(a )δθ (0)
I

( |c2|
|b|

)2/3 (
ε0

γ
− τ

)
, c2

de f
=

ε

2
〈DS θ

(1)
I , ζ ∗〉, (E.1)

assuming that the Hopf bifurcation is supercritical (i.e., �(b) > 0).

Proof. We first compute
ε0
γ

− τ = �(a)δθ
(0)

I (γ+ 1
γ

)

|γ δω+δθ
(0)

I (�a+γ�a)| and (
ρ

|c2|·|b|2
)2/3 =

1
|�b|·|γ δω+δθ

(0)

I (�a+γ�a)| , which gives

ε0

γ
− τ =

(
ρ|b|
|c2|

)2/3

[�(a)δθ
(0)

I ]
(

γ + 1
γ

) |�(b)|
|b|2

=
(

ρ|b|
|c2|

)2/3

[�(a)δθ
(0)

I ]
sign(�b)

�(b)
.

Using the fact that �(b) > 0 allows us to conclude the proof.

Appendix F: Properties of the PL Solutions Around the 1:2 Resonance

Lemma 3. We show here that the 1:2 resonance peak has the following properties:

1. The peak exists if and only if |c2|2 > (�aδθ
(0)
I )2, that is, if the forcing

amplitude is large enough.
2. The width at its base is 2

√||c2|2 − λ2|. Hence, it scales as the amplitude ε

since c2 is proportional to the forcing amplitude.
3. Its height is |c2| + �aδθ

(0)
I > 0.

Proof. Let us define λ
de f= �aδθ (0)

I and ω
de f= �aδθ (0)

I + ωH − ωF/2. Using the
scaling z → ze−i arg c2/2, we can replace c2 by its modulus. PL solutions are
solutions to the equation

z(aδθ (0)

I + ı(ωH − ωF/2) − b|z|2) + c2z̄ = 0,

which gives z = 0 or (1 + γ 2)Y2 − 2(λ + ωγ )Y + (λ2 − |c2|2 + ω2) = 0,
where Y

de f= �bX and X
de f= |z|3. The width at its base given by the differ-

ence of the ω such that Y = 0 is the solution. These ω satisfy λ2 − |c2|2 + ω2,
which gives the width 2

√||c2|2 − λ2|. It is positive only if |c2|2 > λ2. Hence,
this proves properties 1 and 2.
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From the implicit function theorem, the maximum Ym of Y as function of
ω occurs for a value ωm such that ωm = γYm. Result 3 in lemma 3 follows by
inserting this last expression in the quadratic equation: Ym = λ + |c2| > 0.

Appendix G: Dynamics Around the 1:2 Resonance Peak

We characterize here the dynamics of the 1:2 resonance in the ISN regime,
�aδθ (0)

I < 0. We show that no torus solutions are possible and that there are
one, three, or five PL solutions.

Lemma 4. In the ISN regime (i.e., when �aδθ
(0)
I < 0), no torus solutions are

possible. There are one, three, or five PL solutions.

Proof. We first simplify the 1:2 normal form using successive rescalings.
Using the scaling z → ze−i arg c2/2, we can replace c2 by its modulus. Then,
using a real scaling z → z/

√
|b|, we can assume |b| = 1. Hence, we can as-

sume that we have ż = z((aδθ (0)

I + i(ωH − ωF/2))e−i arg b − |z2|)ei arg b + |c2|z̄.
Finally, using the scalings z → z/

√|c2| and t → |c2|t, we arrive at the
equation

ż = z(σ + iτ − |z2|)ei arg b + z̄

where σ + iτ = (aδθ (0)

I + i(ωH − ωF/2))e−i arg b/|c2|. A resonance curve pa-
rameterized by ωF describes a line in the plane (τ, σ ) given by

τ = γ σ + (1 + γ 2)�(aδθ (0)

I )
�b
|b|2 .

Hence, in the ISN regime (�aδθ (0)

I < 0), this line is below the Hopf curve
(H), τ = γ σ , in the parameter plane (see Gambaudo, 1985). This shows that
the ISN regime can produce only the phase diagrams 1, 5, or 4 in Gambaudo
(1985), all of which are composed solely of fixed points.
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