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U n t i l  recently, peptides in brain tis- 
sue were thought to serve a neuroen- 
docrine function. The  discovery that 
a variety of peptides are contained in 
neurons throughout the nervous sys- 
tem has raised the possibility, however, 
that they are classical transmitters at 
synapses (16, 40, 44, 47, 50). Periph- 
eral autonomic ganglia are suitable for 
studying this possibility: ganglia are 
easily isolated for intracellular record- 
ing, the neurons are relatively homo- 
geneous, and the input and output are 
often segregated. 

In sympathetic ganglia immunoreac- 
tivity has been reported for peptide- 
like substance P (15), Met- and Leu- 
enkephalin (48), vasoactive intestinal 
peptide (14), somatostatin (1 31, chole- 
cystokinin (34), bombesin (1  6), avian 
pancreatic polypeptide (35), and lutein- 
izing hormone-releasing hormone 
(LHRH) (20, 21). The  reactive sub- 
stances have not been purified from the 
ganglia and sequenced, but their struc- 
ture is sufficiently similar to the known 
peptides to cross-react with specific an- 
tiserums. The  anatomical localization 
of peptides in sympathetic ganglia has 
far outpaced physiological and bio- 
chemical studies: in only a few cases is 
there substantial evidence that the pep- 
tide is a neurotransmitter. 

In this article peptidergic transmis- 
sion is examined in two preparations: 
the inferior mesenteric ganglion of the 
guinea pig where a substance P-like 
peptide may be a transmitter, and the 
paravertebral ganglia of the frog where 
a peptide similar to LHRH may me- 
diate synap~is transmission, In  both of 
these sympathetic ganglia, peptidergic 
transmission lasts much longer than the 
familiar fast cholinergic transmission 
and is produced by different mecha- 
nisms. 

ABSTRACT 

Biologically active peptides have been localized in neuronal cell bodies, axons, and 
synaptic boutons of sympathetic ganglia; some of these peptides may be neurotrans- 
mitters. For example, substances immunologically similar to substance P and lu- 
teinizing hormone-releasing hormone appear to be released from nerve terminals 
in sympathetic ganglia. In each case, the postsynaptic action of the peptide lasts for 
several minutes and is accompanied by a combination of decreases and increases in 
the membrane conductance that are voltage dependent. These peripheral pepti- 
dergic synapses may be models for peptidergic transmission in the central nervous 
system where detailed analysis is more difficult.-Sejnowski, T. J. Peptidergic syn- 
aptic transmission in sympathetic ganglia. Federation Proc. 4 1 : 2923-2928; 1982. 

SUBSTANCE P 

T h e  first peptide to be proposed as a 
neurotransmitter was substance P for 
primary afferents in the spinal cord 
(43). Substance P is present in the 
spinal cord in dense networks of fibers 
(17) and is released when the spinal 
cord is bathed in high [K'] solution (2). 
Although substance P has an excitatory 
effect on spinal motor neurons when 
applied iontophoretically o r  in the 
bathing solution, it has,not been pos- 
sible to measure directly synaptic po- 
tentials mediated by substance P be- 
cause of the anatomical complexity of 
the spinal cord (45). 

In the inferior mesenteric ganglion 
of the guinea pig the principal cells are 
surrounded with baskets of varicosities 
and fibers that are positive for sub- 
stance P immunoreactivity (15). The  
source of these fibers appears to be a 
population of small cells in dorsal root 
ganglia, as suggested by the retrograde 
traqsport of hoyseradieh peroxidase 
and ligation experiments (3,9,  30,36); 
the fibers may be collaterals from sen- 
sory nerve fibersipassing through the 
ganglion from the gastrointestinal tract 
to the dorsal root ganglia (Fig. I). 

In 1978 Neild (39) reported a slow 
depolarization in neurons of the guinea 
pig inferior mesenteric ganglion after 
repetitive stimulation of the hypogas- 
tric nerves, a response that was not af- 
fected by cholinergic blocking agents. 
Shortly thereafter it was found that a 
similar depolarization could be pro- 
duced in these cells by externally ap- 
plied substance P (6, 30); this depolar- 
ization was not affected by a reduction I, 

of [Ca2+] or  by an increase of [Mg2+] 
in the bathing solution, which indicates 
that substance P acts directly on gan- 
glion cells. T h e  possibility that sub- 
stance P is a transmitter in the inferior 
mesenteric ganglion was strengthened 
by the demonstration that substance P- 
like immunoreactive material is re- 
leased from the ganglion in a bathing 
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Figure 1 .  Diagram illustrating innervation of the 
inferior nlesenteric ganglion of the guinea pig. 
Some nerve fibers in the ganglion contain peptide 
itntnunoreactivity in addition to those shown, in- 
cluding vasoactive intestinal polypeptide and cho- 
lecystokinin (14, 16). In addition to norepineph- 
rine, many of the cell bodies in the ganglion also 
contain a somatostatinlike peptide (13). ACh: 
acetylcholine; NA: norepinephrine; EK: enke- 
pltalin; SP: substance P; BV: blood vessel; DKG: 
dorsal root ganglion; IhlC;: inferior mesenteric 
ganglion; S: skin; SC: spinal cord; VO: visceral 
organ. From ref 31,  through the courtesy of Dr. 
hfasanori Otsuka. 

solution containing high [K'], but only 
if Ca2+ is present (30). 

T h e  nerve-evoked depolarization 
and the depolarization induced by au- 
thentic substance P are usually asso- 
ciated with a decrease in the membrane 
conductance (5, 7, 30). In some cells, 
however, conductance increases have 
also been reported (5, 7, 38), and sev- 
eral mechanisms may therefore con- 
tribute to this peptidergic response. It 
is difficult to space clamp all the syn- 
apses on a mammalian ganglion cell to 
the same potential because rnany syn- 
apses are made on dendritic processes; 
consequently the voltage dependence 
of the peptidergic response is still un- 
certain. 

Enkephalinlike imrnunoreactivity is 
also found in nerve fibers and terminals 
in the inferior mesenteric ganglion of 
the guinea pig (48) and in the spinal 
cord where it is believed to inhibit syn- 
aptic transmission. In the mesenteric 
ganglion the ath application of fn an- 
alog of enke ) halin inhibits the release 
of substancej P-like immunoreactivity 
in a high [K'] bathing solution, and also 
inhibits the herve-evoked peptidergic 
response in bnglion cells without af- 

/ I  
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1 ,  
fecting 'the depolarizing response to 
externallv asdied substance P. This , I ,  

suggests that enkephalin acts presyn- 
aptically to reduce the release of sub- 
stance P-like transmitter from nerve 
terminals (29,3 l).The inhibitory effect 
of enkewhalin on the release of sub- 
stance P and on the nerve-evoked de- 
polarization is reversed by naloxone, 
an opiate antagonist. Enkephalin inhib- 
its fast cholinergic transmission in an 
apparently similar manner (29). 

LHRH 

In 1968 Nishi and Koketsu (42) re- 
ported that prolonged stimulation of 
the slowly conducting preganglionic 
fibers of bullfrog paravertebral syni- 
pathetic ganglia produces a long-last- 
ing depolarization of lumbar paraver- 
tebral sympathetic ganglion cells. The  
response, which is insensitive to cholin- 
ergic blocking agents, rises to a peak 
about 1 min after stimulation and can 
continue for over 10 min (Fig. 2). Re- 
cently, Jan et al. (20, 21) reported ev- 
idence that the transmitter for this slow 
synaptic potential is a peptide resem- 
bling LHRH: 

I) In nerves whose stimulation leads 
to the noncholinergic response, a pro- 
tease-sensitive substance with a molec- 
ular weight of about 1000 can be de- 
tected by radioimmunoassay for 
LHRH. 2) LHRII-like immunoreactiv- 

ity is present within synaptic boutons 
surrounding ganglion cells (1 8, 19). 3) 
Five days after cutting the appropriate 
nerves, about 95% of the substance 
disappears from the ganglia. At the 
same time the content of the substance 
central to the cut is increased, which 
suggests that it is concentrated in axons 
and transported to the periphery from 
the spinal cord. 4) The  substance is re- 
leased in solutions containing high [K'], 
but only if Ca" is present. 5) Appli- 
cation of the authentic LHRH mimics 
the action of the nerve-released trans- 
mitter in a specific manner (Fig. 2). 
Both substances cause similar changes 
in the postsynaptic membrane con- 
ductance and in the excitability of neu- 
rons (33). 6) An analog of LHRH, 
which in mammals blocks the release 
of gonadotropins, blocks the depolar- 
izing effect of nerve-released transmit- 
ter and of applied LHRH in ganglion 
cells (Fig. 2). 

T h e  minimum concentration of 
LHRH that produces a depolarization 
in ganglion cells is about 1 PM. Several 
analogs of LHRH that are 10-100 
times more potent in releasing gonad- 
otropins from the anterior pituitary of 
rats are also more effective in depolar- 
izing sympathetic ganglion cells of the 
frog. For example, [D-AI~~ILHRH is 
about 100 times more potent in mam- 
mals (5  1) and acts at concentrations of 
about lo-% in sympathetic ganglia 

Figure 2. A) Comparison of nerve-evoked and LHKH-induced peptidergic intracellular responses in 
sympathetic ganglion cells. B) Bath application of an LHKI-I antagonist, [I>-pClut, r~-PI le~ ,  D- 

Trp3*"]~HKH, which in rats inhibits the release of  gonadotropins from the pituitary, blocked both 
responses without affecting the other cholinergic responses in the same neuron. The vertical lines in 
these recordings are test pulses whose peaks are not shown. From ref 2 1. 
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(20, 21). ?he LHRH-like substance in 
sympathetic ganglia of the frog has 
chromatographic characteristics differ- 
ent fromi hypothalamic LHRH in the 
frog and  probably has a different se- 
quence (8). Although the sequence of 
LHRH varies slightly among verte- 
brates, the hypothalamic LHRH ap- 
pears to have the same structure in 
mammals and amphibians (28). 

Taken together, these lines of evi- 
dence strongly favor the possibility that 
an LHRH-like peptide is a transmitter 
in these ganglia. 

c 

IONIC 'MECHANISMS 
ACTIVATED BY LHRH 

Neurons in bullfrog sympathetic gan- 
glia lack dendrites and are well suited 
for voltage clamp analysis. T h e  pre- 
ganglionic cholinergic axons cover a 
substantial fraction of the axon hillock 
and cell body with synaptic boutons. In 
the large B neurons of the ninth and 
tenth ganglia, the peptidergic inputs 
can be stimulated independently from 
the cholinergic inputs. ,A train of stim- 
uli to the seventh and eighth spinal 

Figure 3. Nerve-evoked pe~tidergic responses in two representative B neurons in sympathetic ganglia of the bullfrog. Cells from the ninth or tenth 
ganglia in an isolated chain of ganglia were voltage clamped at the membrane potential indicated to the left of each current recording and the seventh 
and eighth spinal nerves carrying peptidergic fibers were stimulated at 20 Hz for 5 s at the position of the arrow. The cell on the left responded with 
an inward current at all membrane potentials tested. In the cell on the right the current reversed polarity; however, the early part of the response reversed 
at a somewhat different membrane potential than the later part. At -60 mV, for example, the response is nearly null for the first minute after stimulation, 
but the later portion of the response has already reversed in polarity. The resting ~otentials of these cells were around -50 mV and the external [K'] 
was 2 mM. A single-electrode voltage clamp was used; the electrodes had resistances of about 20 MQ and were filled with 3 M KCI. From S. W. Kumer 
and T.  J. Sejnowski (unpublished). 

nerves carrying the peptidergic fibers 
produces an inward current in all gan- 
glion cells when they are voltage 
clamped a t  their resting potentials 
(Fig. 3). 

The  voltage dependence of the pep- 
tidergic current varied among gan- 
glion cells, as shown for two represen- 
tative cells in Fig. 3. In about half of 
the ganglion cells the synaptic current 
increased when the cell was clamped at 
membrane potentials that were either 
depolarized or  hyperpolarized from 
resting potential. In contrast, for a few 

NERVE-EVOKED PEPTIDERGIC RESPONSES 

NON -REVERSING REVERSING 

1 min  , 
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NERVE STIMULATION potential between -30 and -1 20 mV may contribute to the peptidergic re- 
sponse: a conductance decrease to K+ 
that dominates near the resting poten- 
tial in nearly all cells, and a conduct- 
ance increase, perhaps to Na' and K", 
that is most apparent at hyperpolarized 
potentials. The  diversity of the ob- 
served responses could be explained if 
the relative proportion of these two 
mechanisms were to vary from cell to 
cell. This hypothesis can be tested di- 
rectly by recording from single chan- 
nels with patch recording techniques. 

(as for the nonreversing type). This 
diversity of voltage dependence of pep- 

Pept ~ d e r g ~ c  

v 
tidergic responses was seen among 
gabglion cells that could not otherwise 
be distinguished on morphological 
grounds in the living preparation or  on 
their electrical properties such as their 
resting and action potentials. 
Cells that have been dissociated from 
ganglia have no axons, but their re- 
sponses to externally applied LI-IRH 
exhibit a similar diversity; thus, the 
soma of a ganglion cell is itself capable 
of generating peptidergic responses 
and the diversity cannot be attributed 
to the axon. 

Conductance measurements were 

COMPARISON WITH 
CHOLlNERGlC TRANSMISSION 

Acetylcholine is known to be a pregan- 
glionic transmitter in sympathetic gan- 
glia and only recently has there been 
evidence for other transmitters. Fast 

made during peptidergic responses us- 
ing a voltage jump technique, as illus- 
trated in Fig. 4. A decrease in the mem- 

cholinergic transmission in sympathetic 
ganglia is similar to the well-studied fast I 

cholinergic transmission between ver- 

brane c o n d k m c e  occurs in most cells 
of both the reversing and nonreversing 
types when clamped near the resting 
potential during peptidergic responses 
to nerve stiniulation or to the external 
application of LHRH. Examples of 
conductance decreases in response to 
a chemical transmitter have been re- 

Figure 4. Current responses in a voltage-clamped 
sympathetic ganglion cell after stimulation o f  the 
peptidergic nerves at 20  H7 for 5 S. The  riiern- 
brane potential was alternately cl;~rnped every 5 
s between the two voltages indicated to the left 

tebrate motor neurons and skeletal 
muscle: acetvlcholine is released from 
nerve terminals, binds to receptors in 
the postsynaptic membrane, and opens 
ionic channels, a sequence of events 
that takes only a few n~illiseconds (27). 
Two putative peptide transmitters in 
sympathetic ganglia, substance P and 
LI-IRH, share some features with ace- 

of  each current recording. After a voltage jump 
between two clamped potentials, a fast jump in 
the holding current occurs that relaxes to a new 
steady-state equilibriun~ in less than 1 s (4); tlie 

ported at several other synapses, in- 
cluding a slow niuscarinic synapse in 
sympathetic ganglion cells of the frog 
(53), a mollusc;in serotoriergic synapse 

envelope o f  tlie current steps sirnult;~neously pro- 
vides the slow tnenlb~.;~ne currents during the re- 
sponse at two clamped voltages. In addition, the 
change in the amount o f  current required to step 

tylcholine and other classical transmit- 
ters, but have actions that are different. 
Like fast cholinergic transmission, the 
peptides are released from nerve ter- 
minals on depolarization in the pres- 
ence of Ca"; however, the peptidergic 
resDonse lasts for several minutes. 

( lo) ,  and at  synapses in thk carp 
retina (22). 

Ganglion cells in the frog have a 
voltage-sensitive K+ conductance, called 

between the two potentials during the response 
is a measure o f  the change in steady-state con- 
ductance o f  the niembrane. At the peak o f  the 
response 40% less steady-state current was re- 
quired to step between -60 and -70 mV com- 

the M current, which decreases when 
LHRH is applied to the bathing solu- 
tion ( 1 ) .  Although a decrease in the K' 
conductance is ~robablv  involved in 

pared to the current required to step the same 
10 m V  before the response. At -60 niV both the k part of the long duration of the 

peptidergic responses in sympathetic 
ganglia could be due to slow delivery 
of the transmitter. In lumbar paraver- 
tebral ganglia of'the frog, synaptic bou- 
tons with LI-IRIH-like immunoreactiv- 

the nerve-evoked peptidergic re- 
sponse, it cannot by itself explain the 

conductance and voltage sensitivity o f  the con- 
ductance are altered during the response because 
the instantaneous current jump after a voltage 
jump from -60 to -70 m V  decreased by 32% 

virietv of res~onses'that have-been ob- 
served. First, the M current is inacti- 
vated at membrane potentials more 
negative than -60 mV; however, a syn- 
aptic current is measured in nearlv all 

at the peak o f  the response and the relaxing conl- 
ponent o f  the current jump decreased by 46%. 
In contrast, 35% more current was required at 
the peak o f  the response when stepping between 
- 1  10 and -120 mV. At these hyperpolarized 

ity are found mainly around a popu- 
lation of small ganglion cells, which 
may be C cells; inasmuch as most large 
B cells respond to stimulation of the 

cells at membrane potentials hyperpo- 
larized beyond -60 mV, whether or potentials tlie currentjump had no relaxing com- 

ponent. From S. W. Kumer and T. J .  Sejnowski 
(ut~published). 

not the pdlarity has reversed (Fig. 3). 
Second, in cells for which the ~olari tv 

peptidergid inputs, the transmitter may 
diffuse to them from neighboring cells 
(1 8, 19). Many other factors could also 
contribute to the long duration of the 
peptidergic responses, including an in- 
tracellular second messenger, as pro- 
posed for other slow synaptic responses 
in synlpathetic ganglia (1 1) and re- 
viewed elsewhere (1  2, 37). 

of the peptidergic response did reverse, 
it was generally not possible to find a 
potential at which the response was null 

neurons the polarity of the current 
changed from an inward to an outward 
current at hyperpolarized potentials. 
In addition, neurons with intermediate 
types of resppnses were occasionally 
found in whiqh it was possible to re- 
verse the polaiity of the first minute of 
the response (iis for the reversing type), 
but the later portion of the response 
could not be reversed at any claniped 

for the duration of the response, as 
might be expected for a single mech- 
anisnl (Fig. 3). Third, in syfne ganglion 
cells a conductance increase occurs 
when the cell is clamped at hyperpo- 
larized potentials (Fig. 4). , 

Nishi and Katayama (23, 24, 41) 
have suggested that two mechanisms 

Cyclic nucleotides do not appear to 
be second messengers for the response 
to LMRI-I in sympathetic ganglia of the 
frog because the application of dibu- 
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tyryl c y c d  AMP (dibutyryl CAMP) o r  
dibutyryl kYclic GMP (dibutyryl cCMP) 
to the bat$ng solution o r  the intracel- 
Mar  injection of cAMP or  cGMP did 
not mimic' the nerve-evoked response 
(41). However, cAMP may modulate 
peptidergic transn~ission: the pepti- 
dergic response of ganglion cells to 
nerve stimulation is augmented by bath- 
applied catecholamines acting on P-ad- 
renergic receptors, and this augmen- 
tation is mimicked by bath-applied di- 
butyryl CAMP, intracellularly injected 
CAMP, or ,  bath-applied isobutyl meth- 
ylxanthine, a phosphodiesterase inhib- 
itor, but not by bath-applied dibutyryl 
cCMP or  intracellularly injected cCMP 
(4 1). Interestingly, catecholamines and 
dibutyryl cAMP also potentiate the fast 
cholinergic response in the same gan- 
glion cells, apparently by increasing the 
release of acetylcholine from presyn- 
aptic terminals (32). Although frog 
sympathetic ganglia have a sparse pop- 
ulation of small intensely fluorescent 
cells containing catecholamines, no  
physiological role has yet been estab- 
lished for them (52). 

During fast cholinergic transmis- 
sion, the conductance of the membrane 
briefly increases as ionic channels are 
opened. The  principal action of LHRH 
on neurons in the paravertebral sym- 
pathetic ganglia of the frog and of sub- 
stance P on the inferior mesenteric 
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