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Abstract 

The output precision and information transnl~ssion was studied in a model neocortical 
neuron that was driven by a periodic presynaptic spike train w ~ t h  a variable number of 
inhibitory inputs on each cycle. Spike-timing precision was maintained during feedforward 
propagation during entrainment. The range of presynaptic firing rates and precision for 
entrainment was determined. During entrainment the Shannon information of the output spike 
phase was reduced but the amount of information the neuron transmitted about the synaptic 
input was increased. We quantify how robust information transmission is against intrinsic 
neuronal noise. We propose how neurotnodulation, via entrainment, can regulate the informa- 
tion transfer in neocortical networks. 0 2001 Elsevier Science B.V. All rights reserved. 

Keywords: Information theory; Oscillation; Phase locking; Precision 

I. Introduction 

Electropl~ysiological recordings fro111 the living brain reveal synchronized oscilla- 
tory activity in the delta (0.5-2 Hz), theta (5-12 Hz) and gamma (30-80 Hz) frequency 
ranges [I]. The functional relevance of these synchronized oscillations is unknown. 
Here we explore an alternative to the hypothesis that gamma oscillations bind 
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Fig. I .  Diagl-am of informatio11-tI1eo1-etical analysis. (a) Postsynaptic neuron ( P N )  ~reccives inputs fr-om 
a synchronized network of inhibitory neurons. Individual neurons fire at a fixed phase, (1) = 12.5 ms with 
temporal jitter a,, and sometimes skip cycles. The postsynaptic neuron produces a spike on each cycle. (b) 
The number t l i  of active neurons in cycle i is mapped onto a spike phase (b, in the next cycle. The spike phase 
(1) is the spike time modulo T. (c) Distribution P,, of t t  (left hand side) and distribution P,,+ of II conditional 
on d) (right hand side). The m~itual information M,,+ is large(top) when the conditional distribution is sharp 
and srnall (bottom) when it is dispersed. 

neurons representing the distinct perceptual features of an object. Neurons use spikes 
to carry inforn~ation between brain areas. A conllnonly used information measure is 
the Shannon entropy of the spike times or interspike interval distribution [9,10]. 
During synchronized oscillations the spike times are precise, the spike time distribu- 
tion is sharp, and its information capacity small. Why would populations of neurons 
synchronize if this reduces their information content? We report here that despite 
a reduced spiking variability, the neuronal output in the synchronized state conveys 
more information about the synaptic input: the mutual information between the 
synaptic input and the output spike tirne increases during synchronization. This result 
suggests that neurons can indeed support a spike-timing code during synchronization. 

Tonic activation of local interneuron networks in hippocampal slices produces 
a synchronous synaptic drive to pyramidal cells in the gamma frequency range [I41 
(see also [3]). These interneuron networks may also be responsible for the long-range 
coherence of galnlna oscillations [12]. Here we study the transmission by cortical 
neurons of the synchronized activity of a presynaptic network of interneurons. 

2. Methods 

The activity of the synchronized interneuron network can be accurately described 
using three parameters: the cycle length T = 25 Ins of the population discharge, the 
temporal dispersion o,,, of the network spike tirne distribution in each cycle, and jPr,, 
the number of inhibitory postsynaptic potentials (IPSPs) generated by the network 
per second [I I]. We generated the presynaptic spike trains using the method de- 
scribed in [I  I]. Example spike trains are shown in Fig. la .  Each presynaptic spike 
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produced an exponentially decaying conductance pulse in the postsynaptic cell, 
yielding a current I,,, = gi exp( - t/ti)(V - EGABA). In this expression t is the time 
since the pulse arrival, ti = 10 ms is a decay constant, gi = 0.002 mS/cm2 a conduc- 
tance, V the membrane potential, and EGAnA = - 75 mV, is the reversal potential. 
The total synaptic conductance cannot exceed g,,, = 0.1 mS/cm2. The resulting time- 
series of conductance pulses drives a single compart~nent neuron with Hodgkin- 
Huxley voltage-gated sodium and potassium channels, a passive leak current, the 
synaptic currents described above, and an applied current representing the membrane 
depolarization caused by neuromodulators. A detailed description of the model 
neuron and its implementation is given in [11,13]. This formulation accurately 
represents the spike generation in fast and regular spiking cortical pyramidal cells [8]. 

For the purpose of information-theoretical analysis we map the input spike trains 
into a single variable, 11, pulses in cycle i, or for brevity, 11 pulses per cycle (Fig. 1 b). The 
input capacity is the entropy St, of the input distribution PI,, and the output capacity is 
the entropy S4 of the phase histogram P4 (the bin width is 1 ms). The neuron maps 
a particular value of 1.1, into a spike phase 4,. The joint probability distribution P,,,,, is 
obtained by counting the data points (ni, dli) in a two di~nensional set of bins. The 
mutual information is the entropy of this distributio~l 

and measures, on average, how much the uncertainty in the input is reduced by 
knowing the output [2]. The mutual information M,,,,,, between consecutive spike 
phases is calculated similarly. 

3. Results 

For the synaptic strength used here the output jitter a,,, is only smaller than the 
input jitter ain 011 entrainment steps [ll]. The 1 : 1 entraitment step, when the neuron 
produces one spike per cycle, is the most stable. We show i n  Fig. 2a an exanlple of 
this resonance for o,, = I 111s and presynaptic firing rate J,, = 2500 Hz. At 
I = 1.0 pA/cm2, a,,, is still above 5 ms. Increasing the current drives the neuron into 
entrainment, and o,,, drops below 1 111s. The output entropy, S,,,, is closely related to 
the width of the phase distribution, and it drops from 4.2 to less than 1 bit per spike. 
The mutual information Mad, ,  however, goes from a value close to zero, to approxim- 
ately a bit per sprke (for other parameter values MI,,,, could reach 2 bits). We 
investigated this result In more detail by comparing the map of q') versus 1.1 when the 
neuron was entrained. to when it was not (not shown). I11 the latter case a given 4 is 
reached from a large range of 11 values. Therefore knowing a particular q') value reveals 
little about the input that produced it. Hence the mutual information in this case is 
low (Fig. lc, bottom). During entrainment the input 11 is mapped onto a small range of 
d) values, hence leading to high precision. Furthermore, observing a low value of 
4) implies that the input 11 was also small. Thus, observing a certain value of d) reduces 
the ullcertainty about the input, leading to a higher mutual information (Fig. lc, top). 
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Fig. 2. (a) Firing !-ate (Icft hand side scale) and output jittcr ci,,,,, (right hand side scale) as a function of 
neuroniodulator current I. The neuron produces one spike per cycle at high precision for I = 1.15-1.30. (b)  
So,, (solid line). hi,,, (dotted line), and M,,, (dot-dashed line) as a function of current. The curves have been 
scaled, So,, : Ad,,,, : M,9 = 5::: 3, to fit in the figure. Here, a,,, = 1 ms and.fbre = 2500 Hz. 

The difference in transmitted information between the two cases can be understood by 
determining the mutual information Md,d, bctween the phase 4, in the present cycle 
and d)l+l  in the next cycle. The mutual information in this case quantifies the 
reduction in the uncertainty about the next phase knowing the present phase. During 
entrainment the observed phases are essentially independent, the mutual information 
is close to zero (Fig. 2b), and the phase fluctuates around a well defined average. In  
contrast, without entrainment there is more structure in the return map (not shown). 
A given value of 4, maps onto a distribution of 61,. values that is different from the 
total distribution (and also has a different mean). The mutual information of this 
distribution can be higher than 1 bit per spike. 

The neuron can thus be in two states. One in which the phase variation from cycle 
to cycle reflects the variation in the input, and one in which the variation mostly 
reflects the internal correlations. Decreasing or increasing the current drive can switch 
the neuron from the entrained state to a non-entrained state. 

4. Discussion 

We explored how well the information present in the presynaptic drive is trans- 
duced to the output spike times. That is, we determined how well the neuron can 
convey the number of pulses in a cycle by the phase of the output spike. The output 
entropy is not a good indicator of the useful information content for this particular 
task. Indeed, outside entrainment the output entropy is high and the mutual informa- 
tion is low, whereas during entrainment the output entropy is small, but the mutual 
information is increased. The mutual information limits the maximum amount of 
information any postsynaptic neuron can infer about the presynaptic input of the 
emitting neuron. In the first case the neuron produces a lot of information, but that 
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information does not tell the postsynaptic neuron anything about the emitting 
neuron's input. In the second case the emitting neuron produces a small amount of 
information, but most of it is useful. 

Subcortical projections originating in the basal nucleus of the forebrain release the 
neuromodulator acetylcholine (ACh) in cortex and hippocampus. The ACh concen- 
tration varies between waking and sleep. The known physiological effects of ACh 
include blockade of the slow afterhyperpolarization current (AHP) and an increased 
excitability [7]. Application of the cholinergic agonists can induce synchronized 
gamma-frequency oscillations in hippocampal slices [4,5]. In our model neuron 
a higher ACh concentration corresponds to a higher driving current, making the 
neuron more excitable. A higher ACh concentration could switch the model neuron 
from a non-entrained to an entrained state. The information flow in cortex can 
therefore be dynamically gated by neuromodulators released by ascending subcortical 
projections. 

These results point toward a new view of the role of oscillations in information 
processing. Without entrainment a cortical neuron is a traditional integrator and 
transmits information through changes in its firing rate; during entrainment, which is 
promoted by neuromodulators and characterized by gamma band activity, a cortical 
neuron can transmit information about its inputs more efficiently by the relative spike 
timing within the cycle, as suggested by Hopfield [6]. Experiments in vivo need to be 
carried out to test this possibility. 
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