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CHAPTER 21 

Open Questions About 
Computation in Cerebral Cortex 

In Chapter 20, Crick 
of summarizing what is 

T. J. SEJNOWSKI 

and Asanuma have attempted the difficult task 
presently known about the physiology and ana- 

tomy of cerebral cortex. Here I will attempt to summarize what is not 
known. The goal of this chapter is to provide a framework within 
which to ask computational questions about cerebral cortex. 

QUESTIONS ABOUT CEREBRAL CORTEX 

Different areas of cerebral cortex are specialized for processing infor- 
mation from different sensory modalities, such as visual cortex, audi- 
tory cortex, and somatosensory cortex, and other areas are specialized 
for motor functions; however, all of these cortical areas have a similar 
internal anatomical organization and are more similar to each other in 
cytoarchitecture than they are to any other part of the brain. The rela- 
tively uniform structure of cerebral cortex suggests that it is capable of 
applying a general-purpose style of computation to many processing 
domains, from sensory processing to the most abstract reasoning. 
Whether the similarity between different areas of cortex is merely 
superficial or extends to the computational level is an experimental 
question that depends on theoretical issues. 

Information processing and memory share the same circuitry in cere- 
bral cortex, in contrast with digital computers where the memory and 
central processing unit are physically separated. The style of 
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computation and the style of memory must theref'ore be closely related. 
This requirement is a very powerful one and should help narrow the 
range of possible candidate computational styles because, in addition to 
showing that a class of algorithms has significant processing capabilities, 
it is necessary to also show that the performance of the algorithms can 
be seamlessly improved by experience. This intimate relationship 
between the hardware and the software may make it possible to use 
constraints from both the computational level and the implementational 
level to investigate experimentally the representations and algorithms 
used in each cortical area (Ballard, in press; Sejnowski, in press). 

The key issue about which we know least is the style of computation 
in cerebral cortex: How are signals in neurons used to represent infor- 
mation? How do networks of neurons cooperate in transforming the 
information? How are the results of a computation stored for future 
use? These questions will be the focus of this chapter, which con- 
cludes with some remarks on the role of con~putational models in 
understanding complex systems like cerebral cortex. 

REPRESENTING INFORMATION 

Almost all information that must be transmitted by neurons over dis- 
tances greater than 1 millimeter is coded into action potentials. These 
all-or-none spike discharges last for about 1 millisecond and carry infor- 
mation by their presence or absence. When the technique for reliably 
recording action potentials from single cortical neurons was introduced, 
it was a surprise to many that the response from some cortical neurons 
in somatosensory cortex and visual cortex could be correlated with sim- 
ple features of sensory stimuli (Hubel & Wiesel, 1962; Mountcastle, 
1957). This early success put a special emphasis on the cellular level 
rather than either the subcellular or network levels and led to the idea 
that single neurons coded simple sensory features and perhaps simple 
percepts as well (Barlow, 1972). 

It should be emphasized, however, that rarely does a single neuron 
respond solely to a single feature dimension and that the tuning curves 
along feature dimensions are usually broad. Thus, single neurons in 
sensory cortex can be thought to represent volumes in a high- 
dimensional space of features: The firing rate of a single cortical neu- 
ron no longer represents the analog value of a variable directly, but 
rather the probability of a variable lying within some volume of the 
space of features (Ballard, Hinton, & Sejnowski, 1983). 

The perceptual interpretation of a local feature depends on the con- 
text of the visual scene in which the feature is embedded. If the 



374- BIOLOGICAL MECHANISMS 21. COMPUTATION IN CEREBRAL CORTEX 375 

response of a single neuron were to represent not merely a conjunction 
of local features, but an interpretation of those features in the context -- ~ao" 
of the image, then the response should be influenced by parts of the -- - -- mrf 

270- image outside the classical receptive field. Recently, evidence has been 
L a 240. found for strong surround effects in visual cortex which are antagonis- - 

210- - 
tic to the response properties of the receptive fields (Allman, Miezin, & - lea* 
McGuinness, 1985). a- 150- 

120' What makes these new surround effects especially interesting is that - 
eo' - 

they are selective. As shown in Figure 1, some neurons with direction- so' 
30' ally selective receptive fields in extrastriate cortex can have their best 
0' 

responses modulated 100% depending on the direction of movement of BACKGWXM~ DOTS STATMY 
the surrounding visual field (Allman et al., 1985). The surround 
effects in the middle-temporal area (MT), where receptive fields are - 330- 

X d  
typically 5-10', can extend 40-80". Significant surround e'iffects related 270' 

to illusory contours have also been reported in area V-11 (von der ;? Heydt, Peterhans, & Baumgartner, 1984), as shown in Figure 2. In 
another region of visual cortex, the V4 complex, neurons have been & lsd - 
found whose surrounds are selectively tuned for orientation, spatial fre- 1 200 

eo' quency, and color (Desinione, Schein, Moran, & Ungerleider, 1985). 
so' 

Some of the neurons in this area appear to be selective for color over a 30' 

wide range of illumination: The wavelength-dependent response in the 0' 

receptive field is influenced by the color balance of the surround. BACKGFKXMI DOTS MOVE AT 0' 

(Zeki, 1983a, 1983b). 3300 

These surround effects may be important for perceptual phenomena 300- 
270' like motion parallax and color constancy that require comparison of 
2 M  

local features within a larger context of the visual field (Allman, et al., / -- 
21d 

180' 1985). The basis of these long-range influences is not known, but 
-1500 

several sources may contribute: First, stimulus-specific information 12d 
could spread laterally within cortex through intrinsic horizontal axonal 1 ed 

so' arborizations that extend 2-4 mm (Gilbert & Wiesel, 1983; Rockland & 
30' 

J. S. Lund, 1983); second, reciprocal connections between cortical u 
maps, particularly the descending feedback projections, could have ~ ~ c . ~ a w ,  DOTS MOVE AT 180. 

extensive spread; third, inputs from noncortical structures such as the 
claustrum ( L ~ V ~ Y  & Sherk, 1981b) could influence the surrounds; and 
fourth, transcollosal connections might carry surround information, par- FIGURE 1. Responses of a neuron in middle temporal (MT) cortex lo a bar moving  i n  
ticu~ady between regions across the vertical meridian (Desimone et al., dirreren[ directions superimposed on a background of rmdoni d o h  The bar was oriented 
1985). I orthogonally 10 the direction of movement. The results o f  each o r  the 12 dlrcctlon4 (0" 

through 330") are shown in histograms consisting of a before period. an ~ m k ~ \ ~ o ~ ~ ~ l  The discovery of large nonclassical surrounds provides an important 
slimulus presenlatjon period, and an after period. The largest histogram bin conkiln' 26 

opportunity to explore the collective properties of cortical processing. spikes. When the background is moving in the same d~rection as the bar the response I' 
The response properties within the classical receptive field probably entirely abolished, but when its movement is opposed to the dlrecmn of the  hlr I h c  
represent local, intrinsic processing, but the surround effects represent I response is enhanced. (From "Stimulus Specilic Responses From Beyontl the C l ~ s s l c ~ ~ l  
the long-range pathways and the spread of information within cortical 1 Receptive Field: Neurophysiological Mechanisms for Local-Global ComPari.son4 In Vlwdl 

1 N~~~~~~~ by J. Allman, J .  Mlezin, and E. McGuinnc4s. 1985, Atitiual RPWW o/ N~'ll'(',cl- areas. The spread is stimulus specific and should prove to be as impor- 
8, p. 416. Copyright 1985 by Annual Reviews. Inc Re~r ln led  by pCrnll4slon ) tant as the primary response properties of the receptive field itself. For 

1 
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FIGURE 2. Top: Illusory contours. Apparent contours are perceived in A,  B, and D at 
sites where the stimulus is consistent with an occluding contour. Small alterations in the 
stimulus can have dramatic effects on the appearance of these contours, as in C  where 
thin lines have been added to B. Bottom: Responses of neurons in extrastriate visual 
cortex (area 18) of the monkey to edges, bars and stimuli producing illusory contours. 
The stimuli (insets) were moved back and forth across the receptive fields (ellipses). In 
each line of the raster scan a white dot indicates the occurrence of an action potential as a 
function of time. The mean number of spikes per stimulus cycle is indicated to the right. 
Neuron 1, which responded to the lower right edge of the light bar ( A ) ,  was activa~ed 
also when only the illusory contour passed over its classical receptive field (B). Either 
half of the stimulus alone failed to evoke a response ( C  and D). Spontaneous activity is 
shown in E. Neuron 2 responded to a narrow bar (F) and, less strongly, to the illusory 
bar stimulus (G). When the ends of the "bar" were mtersected by thin lines, however, 
!he response was nearly abolished ( H ) .  In Neuron 3, the border between two abutting 
gratings elicited a strong response. The orientation tuning curves show corresponding 
peaks for bar and illusory contour (1). When the lines inducing the contour were 
reduced in number to less than three, the response disappeared (J) .  In contrast, neurons 
in primary visual cortex (area 17) did not respond to any of these stimuli. (From 
"Illusory Contours and Cortical Neuron Responses" by R. von der Heydt, E. Peterhans, 
and G. Baumgartner, 1984, Science, 224. p. 1261. Copyright 1984 by the American Asso- 
ciation for the Advancement of Science. Reprinted by permission.) 

example, different orientation-sensitive neurons could respond dif- 
ferently to a local edge depending on the meaning of the edge within 
the context of the surrounding image: whether it represents an occlud- 
ing contour, surface texture, or a shadow boundary (Sejnowski & Hin- 
ton, in press). 

The analysis of a single image requires the processing power of the 
entire visual system; in a sense, the interpretation of the image is the 
state of all the neurons in the visual system. In the language of 
features one would say that the object is internally represented by the 
particular combination of features currently activated. A problem arises 
when it is necessary to compare two objects, such as faces, seen at dif- 
ferent times. One needs some means for binding together the most 
important combination of features at one moment and storing them for 
future use. 

This binding problem is particularly difficult because most regions of 
cortex are only sparsely interconnected. If two groups of neurons have 
few direct connections then it is difficult to imagine how a conjunction 
of two facts represented in the two regions can somehow be stored. 
Several solutions to this binding problem have been suggested, but no 
one yet knows how it is actually solved in the nervous system. The 
binding problem is a touchstone for testing network models that claim 
to have psychological validity. For a discussion of binding in the con- 
text of shape recognition see Hinton (1981~). 

One approach to the binding problem is to represent a complex 
object by the activity of only a few neurons, a so-called local represen- 
tation similar to the "grandmother cell" hypothesis (J. A. Feldman, 
1981). In this case the binding of two facts can be accomplished by 
dedicating one or more intermediate links between the neurons 
representing the features and the neurons representing the object. One 
problem with this approach is the combinatorial explosion of neurons 
and links that must be dedicated to the representation of even modestly 
complex objects. One consequence of the localist solution to binding is 
that some decisions to take an action may be based on the state of very 
few links between very few units. There is no convincing evidence for 
such "command fibers" anywhere in cerebral cortex. An alternative 
solution to the binding problem, based on a "searchlight of attention" is 
discussed in the section on temporal coincidence. 

In summary, it appears from studies of single neurons in visual cor- 
tex that they generally respond to a conjunction of features on a 
number of different dimensions. The sharpness of the tuning for 
values on different dimensions varies, but in general, each neuron is 
rather coarsely tuned, and its receptive field overlaps with the receptive 
fields of other neurons. Coarse coding of features also holds for other 
sensory areas of cortex and motor cortex (Georgopoulos, Caminiti, 



Kalaska, & Massey, 19831, although the evidence there is not nearly as 
good as in the visual system. These observations are consistent with 
the ideas about distributed representations described in Chapters 3, 7, 
and 18. 

NEURONAL PROCESSING 

The time available for processing puts strict constraints on the types 
of algorithms that could be implemented in cerebral cortex. Following 
a briefly presented image, the information coded as a pattern of hyper- 
polarizations in the photoreceptors is processed in the retina and coded 
into trains of action potentials by the retinal ganglion cells. Within 
about half a second following presentation of the image we can recog- 
nize an object in the image. Because photoreceptors are slow, a signifi- 
cant fraction of the response time, about 25-50 milliseconds, is 
required for the information to reach cortex and several hundred milli- 
seconds are required for the motor system to produce a response, which 
leaves about 200-300 milliseconds for visual processing. This is a 
severe restriction on algorithms, such as cooperative ones, that require 
extensive exchange of information between local neurons. David Marr 
(1982) concluded that: 

cooperative methods take too long and demand too much 
neural hardware to be implemented in any direct way. The 
problem with iteration is that it demands the circulation of 
numbers around some kind of loop, which could be  carried out 
by some system of recurrent collaterals or closed loops of neu- 
ronal connections. However, unless the numbers involved can 
be represented quite accurately as they are circulated, errors 
characteristically tend to build up rather quickly. To use a neu- 
ron to represent a quantity with an accuracy of even as low as 1 
in 10, it is necessary to use a time interval that is sufficiently 
long to hold 1 to 10 spikes in comfort. This means at least 50 
ms per iteration for a medium-sized cell, which means 200 ms 
for four iterations-the minimum time ever required for our 
cooperative algorithm to solve a stereogram. And this is too 
slow. (p. 107) 

The timing problem is even more severe than Marr states because 
the responses of single neurons in cortex often vary from trial to trial 
and there are usually only a few spikes in a single response (Figure 3). 
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POST-STIMULUS 1 lME HISTOGRAM 

Time in Milliseconds 

FIGURE 3. Extracellular recordings fro? a single neuron In extrastrlate visual cortex of 
the cat. This neuron responded best to a slit of lght  obliquely oriented in a particular 
part of the visual field. The  first 12 successive responses of the neuron to 50 exposures 
of the light are shown above, and the average response for 20 tr~als  is shown below 
(Post-Stimulus Time Histogram). Even before the onset of the stimulus the neuron wa5 
spontaneously active. Althoughtthe pattern of firlng vdr~ed from [rial to trial. the ensem- 
ble average of the responses is repeatable. (From " l n t e g r d h e  Properties of Parastr~ate 
Neurons" by F. Morrell, in Bruit7 atid tiutuman Bclia~sot. p 262. edited by A G .  Karczm'ir 
and J .  Eccles, 1972, Berlin: Springer. Copyright 1972 by Springer-Verlag. Reprmted by 
permission.) 

Therefore, in many experiments the spike train is averaged over a 
number of responses (typically 10) to obtain a post-stimulus time histo- 
gram. The histogram represents the probability of a spike occurring 
during a brief interval as a function of time following the ~t imulus.  
This suggests that for short intervals (5-10 milliseconds) and especially 
during nonstationary conditions, stochastic variables may be more 
appropriate than the average firing rate (Hinton & Sejnowski, 1983; 
Sejnowski, 1981). 

A probabilistic code means that the probability of firing, rather than 
being represented by a number that must be accurately transmitted, can 
be represented directly as the probability for a neuron to fire during a 



short time interval. The use of a probabilistic code rather than one 
based on the average value of spike firing reopens the possibility of 
cooperative algorithms because in 200 milliseconds it is possible to per- 
form 40 or more iterations with 3-5 milliseconds per iteration, the 
minimum interspike interval. This is enough time for some coopera- 
tive algorithms to con'verge to a steady state solution through a process 
of relaxation (Sejnowski & Hinton, in press). Interestingly, it was 
found that adding noise to the system during the relaxation often 
improved the convergence by helping the system overcome locally inap- 
propriate configurations and achieve the best overall global state. Some 
of the details and consequences of these probabilistic algorithms are 
discussed in Chapter 7. 

Nonetheless, "single-shot" algorithms that converge in one pass 
through a network, such as a linear transformation followed by thresh- 
olding (Duda & Hart, 1973; Kohonen, 1977), remain attractive, espe- 
cially for the early stages of visual processing that are fairly automatic. 
Even for problems that require the global comparison of features, it 
would be desirable wherever possible to minimize the number of passes 
that information must make through a circuit without new information 
being added. However, contextual influences on processing might still 
require iterative computation, as illustrated in models like the interac- 
tive activation model of word perception. 

The single-shot and relaxation strategies have been presented as 
alternatives, but a better way to view them is as extremes in a contin- 
uum of strategies, any of which may be adopted by cortex depending 
on the level in cortex and the nature of the problem. For the recogni- 
tion of common objects, a network that can process the image in a 
single-shot may be learned through experience. For novel or more 
complex objects, a relaxation strategy may be more flexible and have a 
higher capacity. Since the relaxation strategy must start out with a 
guess anyway, it may as well be a good one and get better with practice. 
This is also a graceful way to use the finite resources available in visual 
memory. In Chapter 7, an example is given of a relaxation strategy 
which can improve its performance with practice. 

Several nonlinear parallel models (J. A. Anderson, 1983; McClelland 
& Rumelhart, 1981; see also Chapters 14 through 17) make use of 
units that have continuous activation values. While the membrane 
potential of a neuron does have an approximately continuous value, the 
interaction between neurons with action potentials is clearly not con- 
tinuous. Several ways have been proposed to relate the variables in 
these models more closely with neural properties. First, the continuous 
value may be considered an average tiring rate; however, as explained 
earlier, the time average firing rate is ill-defined over short time inter- 
vals. Second, a single unit could correspond to a population of 

neurons, and the activation would then represent the fraction of' the 
neurons in the ensemble that are firing during a short time interval 
(Wilson & Cowan, 1972). A third possibility is that the units are den- 
dritic branches that interact nonlinearly. 

Until recently, the dendrites of most neurons were thought to be 
governed mainly by the passive linear properties of membranes (Rall, 
1970) and to serve mainly in the integration rather than processing of 
synaptic signals. If, however, there are voltage-dependent channels in 
dendrites, then the signals represe~ted by membrane potentials are 
nonlinearly transformed and the dendrites must then be studied in 
smaller units, perhaps as small as patches of membranes (J. P. Miller, 
Rall, & Rinzel, 1985; D. H. Perkel & D. J. Perkel, 1985; Shepherd et 
al., 1985). The membrane patches and dendritic branches still have an 
integrative function, but to analyze that function requires a finer-grain 
analysis (Figure 4). 

At an even finer level individual synapses may themselves interact 
nonlinearly because the conductance change at one synapse may serve 
as a current shunt and alter the driving force for other nearby synapses 
(Koch, Poggio, & Torre, 1982; Rall, 1970). This is particularly true for 
synapses that occur on dendritic shafts but is less important for 
synapses that are electrically isolated on spines. With nonlinear interac- 
tions between synapses and between patches of dendritic membrane 
many more processing units are available but this advantage is partially 
offset by the limited topological connectivity of dendritic trees. We 
need to explore the range of transformations that can be performed 
inside neurons and build up a vocabulary of elementary computational 
operations (Shepherd, 1978, 1985). 

Whether nonlinear codputations are performed at a subneuronal 
level is of fundamental importance to modeling parallel networks. If, at 
one extreme, each neuron acts like a classical linear integrator, then the 
sigma-pi units discussed in Chapters 2, 10, and 16 would have to be 
implemented in the brain using a single neuron for each multiplicative 
connection. If, on the other hand, nonlinear interactions can be imple- 
mented at a subneuronal level, our estimate of the computational 
power of a fixed number of neurons would be greatly increased, and it 
would be possible to directly implement several proposals that require 
multiplicative connections, such as Ballard's (1984) implementation of 
Hough transforms; Hinton's (1981~) mapping from a retinocentric to a 
viewer-centered frame of reference; or McClelland's (1985) method for 
"programming" the weights between one set of units using signals set 
up in another set of units. It is worth noting, though, that these 
schemes would generally require very precise anatomical connectivity 
and very accurate timing of signals to get the most out of the nonlinear 
processing capabilities of dendrites. 
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FIGURE 4. Top: A: Pyramidal neuron in the cerebral cortex stained by the Golgi 
method of impregnation. B: Schematic diagram of the terminal segment of an apical 
dendritic branch in the most superficial cor~ical layer in A. Only three spines out of  the 
total array are indicated, spaced 50 F m  apart. C Diagrammatic representation of a com- 
partment model of  B. Dendritic compartments are symbolized by D, the necks of spines 
by N, and the spine heads by S.  In addition to passive membrane resistance and capaci- 
tance, active sodium and potassium currents, following the Hodgkin-tluxley model, were 
incorporated into the spine heads. This is a simplified model of  only a small portion of 
the apical dendrite. Banom: Current pulses were injected into spine head S1. The traces 
show the simulated membrane potential in various compartments of the dendrite and 
spines following either a subthreshold current pulse or  a suprathreshold current pulse. 
Note that when a spike occurs in S l  it propagates by saltatory conduction through the 
dendritic compartments down the chain of spines. Spines may also interact if lhey simul- 
taneously receive input currents: The combination may reach threshold even though the 
inputs individually produce only subthreshold membrane potentials. (From "Signal 
Enhancement in Distal Cortical Dendrites by Means of Interactions Between Active Den- 
dritic Spines" by G. M. Shepherd, R. K. Brayton. J. P. Miller, I. Segev, J. Rinzel, W. 
Rall, 1985, Proceedings of the Narronal Academv of Sciences USA, 82, p. 2193. Reprinted by 
permission.) 

TEMPORAL COINCIDENCE 

Digital computers have a central clock that synchronizes the process- 
ing of signals throughout the central processing unit. No such clock 
has been found in the central nervous system on the millisecond time 
scale, but this does not rule out the importance of small time differ- 
ences in neural processing. For example, the information about visual 
motion in primates at the level of the retina is represented as time 
differences in the firing pattern of axons in the optic nerve. In visual 
cortex, the relative timing information is used to drive cells that 
respond best to edges that are moving in particular directions (Koch & 
Poggio, 1985). in the realm of learning, the timing of sensory stimula- 
tion in the 10-50 millisecond range is known to be critically important 
for classical conditioning (Gluck & Thompson, in press; Sutton & 
Barto, 1981). Unfortunately, very little is known about the coding and 
processing of information as spatio-temporal patterns in populations of 
neurons. A few of the possibilities will be mentioned here. 

The arrival time of impulses is extremely important in the auditory 
system where slight temporal differences between spike trains in the 
two cochlear nerves can be used to localize sound sources. I t  also 
avuears that information in the rerative tinling of impulses in the same . . - 
nerve is essential in carrying information in speech at normal hearing 
levels (Sachs, Voigt, & Young, 1983). Although it is difficult for neu- 
rons with millisecond time constants to make accurate absolute timing 
measurements, differences between arrival times down to 10 
microseconds can be detected (Loeb, 1985) and therefore submil- 

- lisecond timing information could also be important in cortex. This 
raises the possibility that the timing of arriving impulses might also be 
important in the cerebral cortex as well. 

The transformation between the input current and the firing rate of 
the neuron has a range between threshold and saturation over which 
the relationship is fairly linear. However, at any given time only a 
small fraction of all cortical neurons is operating in the linear region. 
Therefore only a subpopulation of neurons is sensitive to the timing of 
synaptic events, namely, those neurons that are near the threshold 
region. This leads to the idea of a skeleton filter-the temporary net- 
work of neurons near threshold that can linearly transform correlations 
between spikes on input lines (Sejnowski, 1981). This is a way for 
temporarily changing the effectiveness with which some synapses can 
transmit information on the timing of synaptic events without actually 
altering their strength. I! is not as flexible as a general modification 
scheme, such as the one suggested by McClelland (1985), because all 
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the synapses originating from one neuron are modified by the same 
factor. 

Recently, von der Malsburg (in press) has suggested a scheme for 
binding together distributed circuits that represent a set of facts by their 
simultaneous activation. He speculates that this temporal binding is 
implemented by the rapid changes in the strengths of synapses between 
neurons that are co-active within a few milliseconds. Crick (1984) has 
modified this proposal by suggesting that the binding occurs during 
longer intervals of about 50 milliseconds during which bursts of 
impulses, produced by "searchlights" of attention in the thalamus, pro- 
vide the signal for rapid synaptic changes (Figure 5). The advantage of 
this approach is that the representations are distributed over a popula- 
tion of neurons and that simultaneous co-activation of a group of neu- 
rons in one area will impose simultaneous co-activation in another 
group that receives a projection from the first. 

I RETICULAR 

FIGURE 5. The main connections of the reticular complex, highly diagrammatic and not 
drawn to scale. Solid lines represent excitatory axons, dashed lines show inhibitory 
axons, and arrows represent synapses. The principal neurons in the thalamus that project 
to the neocortex have two modes of response depending on the membrane potential. If 
[he membrane potential is initially depolarized, then ascending input to the thalamus 
(from the retina, for example) causes the principal neuron to fire at a moderate rate 
roughly proportional to the input. If, however, the neuron is initially hyperpolarized, for 
example by inhibitory inputs from the reticular complex, then the output from the princi- 

J !  cell is a rapid burst of spikes. According to the searchlight hypothesis, focal inhibition 
arising from the reticular nucleus produces sequentially occurring bursts in subsets of 
active thalamic neurons. The bursts are thought to last about 50 milliseconds and to pro- 
duce short-term transient alterations in the synaptic strengths in cerebral cortex. (From 
'Function of the Thalamic Reticular Complex: The Searchlight Hypothesis" by F. H. C. 
Crick, 1984. Proceedings of the National Academy of Sciences USA. 81. p. 4587. Reprinted 
by permission.) 

If a temporal code is used in cortex, then spatio-temporal correlations 
should show up in recordings from groups of neurons. In recordings 
from nearby cortical neurons, spatio-temporal correlations have been 
observed between spike trains, but the significance of these correlations 
is unclear (Abeles, 1982; Abeles, de Ribaupierre, & de Ribaupierre, 
1983; Gerstein, Bloom, Espinosa, Evanczuk, & Turner, 1983; Shaw, 
Silverman, & Pearson, 1985; Ts'o, Gilbert, & Wiesel, 1985). However, 
it is already clear from these pioneering observations that the complex- 
ity of spatio-temporal signals from two or more neurons will require 
new techniques for data analysis and presentation. Several groups now 
have the technical ability to record simultaneously from many isolated 
neurons in cerebral cortex (Gerstein et al., 1983; Kuperstein & Eichen- 
baum, 1985; V. B. Mountcastle, personal communication, 1985; Reit- 
boek, 1983). It will be especially interesting to record from alert 
animals attending to sensory stimuli and to search for correlated bursts 
of spikes and temporal coherence between spike trains. 

NEURONAL PLASTICITY 

Not only does cortex provide the capability of fast processing but it 
can be partially reconfigured with experience. There are experimental 
hints that the functional connectivity within cerebral cortex is far more 
fluid than previously thought. In a series of careful studies, Merzenich, 
Kaas and their colleagues have demonstrated that the spatial map of the 
body surface on the surface df primary somatosensory cortex of mon- 

. keys can be significantly altered by changes in activity. 
In one series of experiments the map of the hand in somatosensory 

cortex was determined by multiple electrode penetrations before and 
after one of the three nerves that innervate the hand was sectioned 
(Merzenich et al., 1983), as illustrated in Figure 6. Immediately fol- 
lowing nerve section most of the cortical territory which previously 
could be activated by the region of the hand innervated by the afferent 
nerves became unresponsive to somatic stimulation. In most monkeys, 
small islands within the unresponsive cortex immediately became 
responsive to somatic stimulation from neighboring regions. Over 
several weeks following the operation, the previously silent regions 
became responsive and topographically reorganized. In another set of 
experiments a hand legion in somatosensory cortex was mapped before 
and after prolonged sensory stimulation of a finger; the area 

1 : represented by the finger on the surface of cortex expanded and the 
I average size of the receptive fields within the finger region diminished 
1 (Jenkins, Merzenich, & Ochs, 1984). 
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A. Nerve  F ie lds  of t h e  Hand 
D4 O3 B. T o p o g r a p h i c  P a t t e r n  of 
A R\ Ds Hand  R e p r e s e n t a t i o n s  

C. Normal Hand D - c o r t e x  Depr ived  by 
Representat ipn 2,. M e d i z  N e r v e  Sec t ion  

FIGURE 6.  The effect of median-nerve section and ligtation 

E. Ful ly  Reorgan ized  

7k 
C o r t e x  , . 

on the reoresentations of 
the hand in somatosensory Areas 3b and 1 of the owl monkey. A: The radial side of the 
glaborous hand is innervated by the median nerve, the ulnar side by the ulnar nerve, and 
the dorsal surface by the ulnar and radial nerves. Digits (D) and palmar pads (PI are 
numbered in order. Insular (I), hypothenar (H), and thenar (T) pads, and distal (dl. 
middle (m), and proximal (p) phalanges are also indicated. B: Pattern of topographic 
organization of the two hand representations, indicated without accurately reflecting corti- 
cal surface areas devoted to the representation of various surfaces of the hand. Cortex 
devoted to representation of dorsal surhces of the digits is shown in black. C: Typical 
organization of the hand representations in a normal owl monkey. D: The same area of 
cortex following seclion of the median nerve. The part of cortex indicated by dots is 
deprived of normal activation by sensory stimulation. E: The organization of the two 
hand representations several months after median-nerve section and ligation. p u c h  of 
the deprived cortex is activated by stimulation of the dorsal digit surfaces and the dorsum 
of the hand (black). In addition, palmar pads innervated by the ulnar nerve have an 
increased cortical representation. All "new" inputs are topographically ordered. Peri- 
pherally, the ulnar and radial nerves do not grow into the anesthetic median-nerve skin 
field. (From "Reorganization of Mammalian Somatosensory Cortex Following Peripheral 
Nerve Injury" by M. M. Merzenich and J. H. Kaas, 1982, Trends in Neuroscience, 5, p. 
435. Copyright 1982 by Elsevier Biomedical Press. Reprinted by permission.) 

The uncovering of previously "silent" synapses is the favored expla- 
nation for these experiments because the maximum shift observed, a 
few millimeters, is about the size of the largest axonal arborizations 
within cortex. The apparently new receptive fields that were 
"uncovered" immediately after nerve section could represent a rapid 
shift in the dynamicat balance of inputs from existing synapses, and the 
slower reorganization could be caused by changes in synapric strengths 
at the cortical and subcortical levels. This raises several crucial ques- 

t tions: First, what fraction of morphologically identified synaptic struc- 
tures are functionally active in cerebral cortex? I t  is not known, for 
example, how many quanta of transmitter are released on average at 
any central synapse. Second, how quickly if at all can a synapse be 
transformed from a "silent" state to an active state, and what are the 
conditions for this transformation? Finally, how is this plasticity related 
to the representation and processing of sensory information? Perhaps 
the most serious deficiency in our knowledge of cerebral cortex con- 
cerns the physiology of individual central synapses, which are inaccessi- 
ble by conventional techniques owing in part to the complexity of the 
cortical neuropil. New optical techniques for noninvasively recording 
membrane potentials and ionic concentrations may someday make it 
possible to study dynamic changes at central synapses (Grinvald, 1985). 

The evidence for a rearrangement of the body map on the surface of 
cerebral cortex during experimental manipulations raises interesting 
questions about perceptual stability because this reorganization is not 
accompanied by confused or mistaken percepts of the body surface 
(Merzenich & Kaas, 1982). This suggests that as a neuron shifts its 
input preference, other neurons that receive information from it must 
reinterpret the meaning of the signal. If the connectivity of cerebral 
cortex is as dynamic under normal conditions as these experiments sug- 
gest, then many of the issues that have been raised in this chapter must 
be re-examined from a new perspective (Changeux, Heidmann, & 
Patte, 1984; Crick, 1984; Edelman, 198 1). 

ROLE OF COMPUTATIONAL MODELS 

A complete description of every neuron, every synapse, and every 
molecule in the brain is not synonymous with a complete understanding 
of the brain. At each level of description the components must be 
related to the phenomena which those components produce at the next 
highest level, and models are a succinct way to summarize the relation- 
ships. A classic example of a successful model in neuroscience is the 

1 Hodgkin-Huxley model of the action potential in the squid axon. Here 



the bridge was between microscopic membrane channels (hypothetical 
at the time) and macroscopic membrane currents. The first step in 
making a model is to identify the important variables at both the lower 
and upper levels; next, a well-defined procedure must be specified for 
how these variables interact (an algorithm); and finally, the conditions 
under which the model is valid must be stated so that it can be com- 
pared with experiments. 

The models that have been explored in this book do not attempt to 
reconstruct molecular and cellular detail. Rather, these connectionist L 

models are simplified, stripped-down versions of real neural networks 
similar to models in physics such as models of ferromagnetism that 
replace iron with a lattice of spins interacting with their nearest neigh- 
bors. This type of model is successful if it falls into the same 
equivalence class as the physical system; that is, if some qualitative 
phenomena (such as phase transitions) are the same for both the real 
system and the model system (Ma, 1976). When they are successful 
these simple models demonstrate the sufficiency of the microscopic 
variables included in the model to account for the macroscopic 
measurements. 

The emergence of simple parallel models exhibiting nontrivial com- 
putational capabilities may be of great importance for future research in 
neuroscience because they offer one of the few ways that neuroscien- 
tists can test qualitative ideas about the representation and processing 
of information in populations of neurons. Suppose that single neurons 
in an area responded to features of the visual input that could be 
important for computing, say, optical flow. Knowing the goal of the 
computation, one could design a parallel algorithm for implementing 
the computation of optical flow and then test it with a wide range of 
inputs. The process of specifying and testing an algorithm often reveals 
unexamined assumptions and refines the original motivation for the 
model. If one successful algorithm is found then the computational 
feasibility of the original proposal is strengthened; to test whether some 
form of the algorithm is actually implemented in cortex would be much 
more difficult; ultimately, the performance of the algorithm has to be 
compared with psychophysical testing. 

Some neuroscientists may feel uncomfortable because connectionist 
models do not take into account much of the known cellular properties 
of neurons, such as the variety of membrane channels that have been 
found. What if the processing capabilities of cerebral cortex were to 
depend crucially on some of these properties? In this case it may not 
be possible to get networks of oversimplified model neurons to solve 
difficult computational problems, and it may be necessary to add new 
properties to the model neuron. The added capabilities would yield a 
better understanding of the roles played by these neural properties in 

processing information, and suggestions could emerge for useful prop- 
erties which have not yet been observed. The present models are 
guideposts for thinking about the computational capabilities of neural 
networks and benchmarks that set the standards for future models. 

One of the key insights that has already emerged from studying one 
class of simple nonlinear networks with recurrent collaterals is that 
amongst the large number of possible states of a network, only rela- 
tively few of these states, called attractors, are stable (J. A. Anderson, 
1983; M. A. Cohen & Grossberg, 1983; Hinton & Sejnowski, 1983; 
Hogg & Huberman, 1984; Hopfield, 1982; Hopfield & Tank, 1985; 
Sejnowski, 1976; Wilson & Cowan, 1972). The existence of stable 
attractors is a feature that is likely to generalize to more complex net- 
works. Objects and their relationships can be internally represented by 
these attractors, and the search for the best match between the world 
and the internal representation of the world by the dynamics of the net- 
work is much more powerful than previous template-matching pro- 
cedures. This opens a large number of research problems, such as the 
issue of local vs. distributed representations and the binding problem, 
both of which have been discussed in this chapter. The identification 
and study of these issues in simple network models will greatly help us 
in understanding the principles that went into the design of the cerebral 
cortex. 
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