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Abstract 
A unifying framework for analyzing models of neural map formation %i presented based on 

growth rules derived from objective functions and normalization rules derived from constraint 
functions. Coordinate transformations play an important role in deriving various rules from 
the same function. Ten different models from the literature are classified within the objective 
function framework presented here. Though models may look dierent, they may actually be 
equivalent in terms of their stable solutions. The techniques used in this analysis may also be 
useful in investigating other types of neural dynamics. 

1 Introduction 
Computational models of neural map formation can be considered on at  least three different levels of 
abstraction: detailed neural dynamics, abstract weight dynamics, and objective functions &om which 
dynamical equations may be derived. Objective functions provide many advantages in analyzing 
systems analytically and in finding stable solutions by numerical simulations. The goal here is to 
provide a unifying objective function framework for a wide variety of models and to provide means 
by which analysis becomes easier. A more detailed description of this work is given in [14]. 

2 Correlations 
The architecture considered here consists of an input layer all-to-all connected to an output layer 
without feed-back connections. Input neurons are indicated by p (retina), and output neurons by r 
(tectum). The dynamics in the input layer is described by neural activities a,, which yield mean ac- 
tivities (a,) and correlations (a,, apt). Assume these activities propagate in a linear fashion through 
feed-forward connections w,, from input to output neurons and eflective lateral connections D,,I 
among output neurons. D,,t is assumed to be symmetrical and represents functional aspects of the 
lateral connectivity rather than the connectivity itself. We also assume a b e a r  correlation function 
(apt, a,) and (a,,) = constant. The activity of output neurons then is a, = C,,,, D,,twTtp~ap~. 
With i = {p, T) ,  j = {p', TI), Dij = Dji = DTTt Dpfp - DTrt (apt, a,), and Aij = Aji = DTTt (apt) we 
obtain mean activity and correlation 
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Since the right hand sides of Equations (1) and (2) are formally equivalent, we will discuss only 
the latter, which contains the former as a special case. This correlation model is accurate for linear 
models [e.g. 2, 5, 7, 81 and is an approximation for non-linear models [e.g. 3, 6, 10, 11, 12, 131. 

3 Objective Functions 
With Equation (2) a linear Hebbian growth rule can be written as wi = xj Dijwj. This dynamics 
is curl-free, i.e. 8ziti/8wj = 8zitj/8wi, and thus can be generated as a gradient flow. A suitable 
objective function is H(w) = 4 Cij wrDijwj since it yields wi = 8H(w)/awi. 

A dynamics that cannot be generated by an objective function directly is wi = wi Cj Dijwj [e.g. 
51, because it is not curl-free. However, it is sometimes possible to convert a dynamics with curl 
into a curl-free dynamics by a coordinate transformation. Applying the transformation wi = 4v; 
yields vi = &vi xj Dij fv;, which is curl free and can be generated as a gradient flow. A suitable 
objective function is H(v) = 4 Cij $ v ~ B i j f v ~ .  Transforming the dynamics of v back into the 
original coordinate system, of course, yields the original dynamics for w. Coordinate transformations 
thus can provide objective functions for dynamics that are not curl-free. Notice that H(v) is the 
same objective function as H(w) evaluated in a diierent coordinate system. Thus H(v) = H(w(v)) 
and H is a Lyapunov function for both dynamics. 

More generally, for an objective function H and a coordinate transformatixdn wi = wi(vi) 

which implies that the coordinate transformation simply adds a factor ( d ~ i l d v i ) ~  to the original 
growth term obtained in the original coordinate system. Equation (3) shows that fixed points are 
preserved under the coordiinate transformation in the region where dwi/dvi is defined and finite but 
that additional fixed points may be introduced if dwi/dvi = 0. In Figure 1, the effect of coordinate 
transformations is illustrated by a simple example. 

Figure 1: The effect of coordinate transformations on the induced dynamics: The figure shows 
a simple objective function H in the original coordinate system W (left) and in the transformed 
coordiinate system V (right) with w l  = 4 2  and wa = v2. The gradient induced in W (dashed 
arrow) and the gradient induced in V and then back-transformed into W (solid arrows) have the 
same component in the wz-direction but differ by a factor of four in the wl-direction (6. Eq. 3). 
Notice that the two dynamics differ in amplitude and direction, but that H is a Lyapunov function 
for both. 

Table 1 shows two objective functions and the corresponding induced dynamics terms they induce 
under different coordinate transformations. The first objective function, L, is linear in the weights 
and induces constant weight growth (or decay) under coordinate transformation C1. The growth of 
one weight does not depend on other weights. Term L can be used to differentially bias individual 
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links, as required in dynamic link matching. The second objective function, Q ,  is a quadratic form. 
The induced growth rule for one weight includes other weights and is usually based on correlations 
between input and output neurons (a,, a,,) = Cj Dijwj, in which case it induces topography. Term 
Q may also be induced .by the mean activities of output neurons (a,) = Cj Aiiwj. 

I I 1) Coordinate Transformations I 

I Objective Functions H(w) (1 Growth Terms: thi = ... + ... or Gi = wi + At( ... + ...) I 

I Constraint Functions g(w) 1) Normalization Rules (if constraint is violated): wi = ... Vi E In I 

Table 1: Objective functions, constraint functions, and the dynamics terms they induce under four 
different coordinate transformations. Specific terms are indicated by the symbols in the left column 
plus a superscript taken from the first row representing the coordinate transformation. For instance, 
the growth term Piwi is indicated by LW and the subtractive normalization rule wi = Gi + X,Pi is 
indicated by NL (or Nk). Nz and ZL are multiplicative normalization rules. For the classifications 
in Table 2 this table h% to be extended by two other methods of deriving normalization rules from 
constraints. 

4 Constraints 

A constraint is either an inequality describing a surface between valid and invalid region, e.g. g(w) = 
wi 2 0, or an equality describing the valid region as a surface, e.g. g(w) = 1 - Cj,, wj = 0. 
A normalization rule is a particular prescription for how the constraint has to be enforced. Thus 
constraints can be uniquely derived from normalization rules but not vice versa. Normalization rules 
can be orthogonal to the constraint surface or non-orthogonal (6. Figure 2 ) .  Only the orthogonal 
normalization rules are compatible with an objective function, as illustrated in Figure 3. 

The method of Lagrangian multipliers can be used to derive orthogonal normalization rules from 
constraints. If the constraint g(w) _> 0 is violated for dt, the weight vector has to be corrected 
along the gradient of the constraint function g, which is orthogonal to the constraint surface, wi = 
tZi + X8g/8Gi. The Lagrangian multiplier X is determined such that g(w) = 0 is obtained. If no 
constraint is violated, the weights are simply taken to be wi = Gi. 

Consider the effect of a coordinate transformation wi = wi(vi). An orthogonal normalization 
rule can be derived from a constraint function g(v) in a new coordinate system V. If transformed 
back into the original coordinate system W one obtains an in general non-orthogonal normalization 
rule: 

if constraint is violated : 

This has an effect similar to the coordinate transformation in Equation (3) (6. Figure 4). These 
normalization rules are indicated by a subscript = (for an equality) or 2 (for an inequality), because 
the constraints are enforced immediately and exactly. Orthogonal normalization rules can also be 
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Figure 2: Different constraints and different ways in which constraints can be violated and enforced: 
The constraints along the axes are given by gi = wi > 0 and gj = wj 2 0, which keep the weights wi 
and wj non-negative. The constraint g, = 1 - (wi + wj) 2 0 keeps the sum of the two weights smaller 
or equal to 1. Black dots indicate points in state-space that may have been reached by the growth 
rule. Dot 1: None of the constraints is violated and no normalization rule is applied. Dot 2: g, 2 0 
is violated and an orthogonal subtractive normalization rule is applied. Dot 3: g, 2 0 is violated and 
a non-orthogonal multiplicative normalization rule is applied. Notice that the normalization does 
not follow the gradient of gn, i.e. it is not perpendicular to the line gn = 0. Dot 4: Two constraints 
are violated and the respective normalization rules must be applied simultaneously. Dot 5: g, 2 0 
is violated, but the respective normalization rule violates gj 2 0. Again both rules must be applied 
simultaneously. The dotted circles indicate regions considered in greater detail in Figure 3. 

Figure 3: The effect of orthogonal versus non-orthogonal normalization rules: The two circled 
regions are taken from Figure 2. The effect of the orthogonal subtractive rule is shown on the left 
and the non-orthogonal multiplicative rule on the right. The growth dynamics is assumed to be 
induced by an objective function, the equipotential curves of which are shown as dashed lines. The 
objective function increases to the upper right. The growth rule (dotted arrows) and normalization 
rule (dashed arrows) are applied iteratively. The net effect is different in the tw6cases. For the 
orthogonal normalization rule the dynamics increases the value of the objective function, while for 
the non-orthogonal normalization the value decreases and the objective function that generates the 
growth rule is not even a Lyapunov function for the combined system. 
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Reference 
Bienenstock & von der Malsburg [2] 
Goodhill 
Hiiussler & von der Malsburg 
Konen & von der Malsburg 
L i k e r  
Miller et al. 
Obermayer et al. 
Tanaka 
von der Malsburg 
Whitelaw & Cowan 

Classification 
Q1 1: N& 
Q1 

i 5 N: Ng 
LW QW I$ Ng 

Q"" NZW 
L1 Q1 

Table 2: Classification of weight dynamics in previous models. 

derived by other methods, e.g. penalty functions, indicated by subscripts w and >, or integrated 
normalization, indicated by subscript II. Table 1 shows several constraint functions and their corre- 
sponding normalization rules as derived in different coordinate systems by the method of Lagrangian 
multipliers. There are only two types of constraints. The first type is a limitation constraint I that 
limits the range of individual weights. The second type is a normalization constraint N that affects a 
group of weights, usually the sum, very rarely the sum of squares as indicated by Z. It is possible to 
substitute a constraint by a coordinate transformation. For instance, the coordinate transformation 
CW makes negative weights unreachable and thus implements a limitation constraint I,. 

Figure 4: The effect of a coordinate transformation on a normalization rule: The constraint function 
is gn = 1 - (wi + wj) 2 0 and the coordinate transformation is wi = fv?, wj = fvj. In the new 
coordinate system Vw (right) the constraint becomes g, = 1 - $(v; + vj) 2 0 and leads there 
to an orthogonal multiplicative normalization rule. Transforming back into W (left) then yields a 
non-orthogonal multiplicative normalization rule. 

5 Classification of Existing Models 
Table 1 summarizes the diierent objective functions and derived growth terms as well as the con- 
straint functions and derived normalization rules discussed in this paper. Since the dynamics needs 
to be curl-free and the normalization rules orthogonal in the same coordinate system, only entries 
in the same column may be combined to obtain a consistent objective function framework for a 
system. Classifications of ten diierent models are shown in Table 2. The models [2, 5, 6, 7,101 can 
be directly classified under one coordinate transformation. The models [3, 8, 11, 121 can probably 
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be made consistent with minor modifications. The applicability of our objective function framework 
to model [13] is unclear. Another model [I] is not listed because it can clearly not be described 
within our objective function framework. Models typically contain three components: the quadratic 
term Q to induce neighborhood preserving maps, a limitation constraint I to keep synaptic weights 
positive, and a normalization constraint N (or Z) to induce competition between weights and to 
keep weights limited. The limitation constraint I can be waived for systems with positive weights 
and multiplicative normalization rules [6, 10, 121. Since the model in [7] uses negative and positive 
weights and weights have a lower and an upper bound, no normalization rule is necessary. The 
weights converge to their upper or lower limit. 

6 Discussion 
A unifying framework for analyzing models of neural map formation has been presented. Objective 
functions and constraints provide a formulation of the models as constraint optimization problems. 
Fkom these, weight dynamics, i.e. growth rule and normalization rules, can be derived in a systematic 
way. Different coordinate transformations lead to different weight dynamics, which are closely related 
because they usually have the same set of stable solutions. Some care has to be taken for regions 
where the coordinate transformation is not defined or if its derivatives become zero. We have 
analyzed ten different models from the literature and find that the typical system contains the 
quadratic term Q, a limitation constraint I, and a normalization constraint N (or Z). The linear 
term L has rarely been used but could play a more important role in future systems of dynamic link 
matching or in combination with term Q for map expansion, see below. 

In addition to the unifying formalism, the objective function framework provides deeper inside 
into several aspects of neural map formation. 

Functional aspects of the quadratic term Q can be easily analyzed. For instance, if D,,I and D,,I 
are positive Gaussians, Q leads to topography preserving maps and has the tendency to collapse, i.e. 
if not prevented by individual normalization rules for each output neuron, all links coming from the 
input layer eventually converge on one single output neuron. The same holds for the input layer. If 
D,,I is a negative constant and D,,, is a positive Gaussian and in combination with a positive linear 
term L, topography is ignored and the map is qanding, i.e. even without normalization rules, each 
output neuron eventually receives the same total sum of weights. More complicated effective lateral 
connectivities can be superimposed from simpler ones. 

Because of the possible expansion effect of L + Q it should be possible to define a model without 
any constraints. 

The same objective functions and constraints evaluated under different coordinate transformations 
provide different weight dynamics that may be equivalent with respect to the stable solutions they 
can converge to. This is because stable fixed points are preserved under coordinate transformations 
with finite derivatives. 

In [9] a clear distinction between multiplicative and subtractive normalization was made. However, 
the concept of equivalent models shows that normalization rules have to be jhdged in combination 
with growth rules, e.g. NW + IW + QW (multiplicative normalization) is equivalent to N1 + I1 + Q1 
(subtractive normalization). 

Models of dynamic link matching [2, 61 introduced similarity values rather implicitly. A more 
direct formulation of dynamic link matching can be derived from the objective function L + Q. 

Objective functions provide a link between neural dynamics and algorithmic systems. For instance, 
the Gmeasure proposed in [4] as a unifying objective function for many different map formation 
algorithms is a one-to-one mapping version of the quadratic term Q. 

The objective function framework provides a basis on which many models of neural map formation 
can be analyzed and understood in a unified fashion. Furthermore, coordinate tr&formations as 
a tool to derive objective functions for dynamics with curl, to derive non-orthogonal normalization 
rules, and to unify a wide range of models might also be applicable to other types of models, such 
as unsupervised learning rules, and provide deeper insight there as well. 
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