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Natural systems, including the brain, often seem chaotic, since
they are typically driven by complex nonlinear dynamical pro-
cesses. Disruption in the fluid coordination of multiple brain
regions contributes to impairments in information processing
and the constellation of symptoms observed in neuropsychi-
atric disorders. Schizophrenia (SZ), one of the most debilitat-
ing mental illnesses, is thought to arise, in part, from such
a network dysfunction, leading to impaired auditory informa-
tion processing as well as cognitive and psychosocial deficits.
Current approaches to neurophysiologic biomarker analyses pre-
dominantly rely on linear methods and may, therefore, fail to
capture the wealth of information contained in whole EEG sig-
nals, including nonlinear dynamics. In this study, delay differ-
ential analysis (DDA), a nonlinear method based on embedding
theory from theoretical physics, was applied to EEG record-
ings from 877 SZ patients and 753 nonpsychiatric comparison
subjects (NCSs) who underwent mismatch negativity (MMN)
testing via their participation in the Consortium on the Genet-
ics of Schizophrenia (COGS-2) study. DDA revealed significant
nonlinear dynamical architecture related to auditory informa-
tion processing in both groups. Importantly, significant DDA
changes preceded those observed with traditional linear meth-
ods. Marked abnormalities in both linear and nonlinear fea-
tures were detected in SZ patients. These results illustrate
the benefits of nonlinear analysis of brain signals and under-
score the need for future studies to investigate the relation-
ship between DDA features and pathophysiology of information
processing.
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In neuropsychiatric disorders, subtle abnormalities in low-level
processes contribute to the complex constellation of symp-

toms. Schizophrenia (SZ) is among the most intractable and
disabling illnesses, with impairments in multiple domains of cog-
nitive and psychosocial functioning (1). In this study, a nonlinear
analysis technique for characterizing large-scale systems from
a theoretical physics perspective was applied to leading can-
didate biomarkers in healthy nonpsychiatric subjects and SZ
patients.

Among many domains of clinically relevant dysfunctions,
altered early auditory information processing (EAIP), as mea-
sured by event-related potentials (ERPs), is a fundamental
feature of SZ (2, 3). Mismatch negativity (MMN) is an ERP
biomarker of EAIP with promise for improving our understand-
ing and treatment of SZ. MMN has been shown to reliably
correlate with cognition and psychosocial functioning (1, 4).
MMN can be used for predicting the development of psy-
chosis among individuals at high clinical risk and is sensitive
to interventions that target cognition (5, 6). MMN is auto-
matically elicited via a passive auditory oddball paradigm in

response to infrequent deviant sounds randomly interspersed
in a sequence of frequently presented standard sounds. MMN
is followed by a positive component also reflective of EAIP
that peaks at 250–300 ms called P3a. Although less studied,
the P3a is followed by a negative wave called the reorient-
ing negativity (RON) (7). This MMN–P3a–RON response has
been referred to as the auditory deviance response (ADR)
complex (8). Many studies have found significant ADR compo-
nent reductions in SZ that correlate with impairments across
multiple domains of higher-order cognitive and psychosocial
functioning (9, 10). Recently, Thomas et al. (1) proposed and
validated a hierarchical information processing cascade model,
where impairments in these early auditory sensory processing
measures propagate and substantially contribute to deficits in
cognition, clinical symptoms, and real-world functional disability
in SZ. Thus, small changes in early auditory processing measures
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contribute to deficits in higher-order functions and macroscopic
manifestations of SZ.

The vast majority of ERP studies in neuropsychiatry have used
linear analysis of EEG signals. These linear methods include
ERP peaks and latencies (11, 12), frequency (13) or time fre-
quency analyses (14, 15), and cross-frequency coupling (16, 17).
Such conventional linear methods, while highly informative,
focus on a priori determined time-locked events or frequency
ranges (i.e., delta, theta, gamma bands) and therefore, fail to
capture important underlying nonlinear system dynamics. Thus,
characterizing general dynamical components of broadband data
without such restrictions may reveal information about altered
systems-level states associated with SZ.

To characterize the large-scale, neural system-level dynamics
present in brain electrical activity in patients with SZ, com-
putational models based on nonlinear dynamics and systems
theory recently emerged as a promising tool in neuroscience
(18, 19). In contrast to our prevailing focus on microscale neu-
ronal activity, methods that characterize large-scale, system-level
dynamics may help us understand emergent phenomena of
behavior and cognition (18, 20). This perspective also underlies
past work linking nonlinear analysis of the EEG to the “dis-
connection hypothesis” of SZ (21, 22). Breakspear and Terry
(23) used a technique for estimating the nonlinear dynamical
interdependence of several EEG channels across and within
both hemispheres and found significant differences in the topog-
raphy of dynamical interdependence across the scalp between
SZ patients and matched healthy comparison subjects (24).
Here, we apply a distinct but related technique to probe the
nonlinear dynamics of a single EEG channel, which allows us
to investigate the nonlinear properties of a broader range of
data. Delay differential analysis (DDA) is designed to capture
large-scale dynamics present in nonlinear time series signals
(25–28). DDA operates in the time domain and maps unpro-
cessed data onto a functional embedding basis. Embeddings
are used in nonlinear dynamics to reveal invariant dynami-
cal properties underlying a more extensive, largely unknown
dynamical system (i.e., the brain) when only a single time series
(e.g., EEG data) is available. Previous studies have shown that
DDA can be used to extract disease-specific dynamical fea-
tures: Parkinson’s movement data (29, 30), ECG recordings (27,
31), sleep EEG (26), classification of Parkinson’s disease EEG
data (32, 33), and electrocorticography data for epileptic seizure
characterization (34).

In this study, DDA was applied to the unprocessed EEG
recordings from SZ patients and nonpsychiatric comparison sub-
jects (NCSs) who participated in the Consortium on the Genetics
of Schizophrenia (COGS-2), a multicenter case-control study of
SZ and related endophenotypes (10). In contrast to our prior
focus on linear ERP features (MMN and P3a amplitudes) (1,
10), this study aimed to determine (i) whether nonlinear dynam-
ics can be detected in raw EEG recordings and if so, (ii) if
they can be used to differentiate SZ patients from NCSs; by
mapping the trial information onto the DDA feature space,
we also aimed to determine (iii) whether the MMN, P3a, and
RON responses reflect nonlinear processes even after control-
ling for SZ–NCS amplitude differences, which would provide an
important perspective on EAIP deficits in SZ. Such information
may be important for guiding future studies of the genomic and
neural substrates of SZ and may provide targets for treatment
developments.

DDA
We developed and applied a signal processing technique, DDA,
based on embedding theory in nonlinear dynamics. DDA com-
bines two types of embeddings via a delay differential equa-
tion: delay embedding and derivative embedding. The general
nonlinear DDA model can be formulated as

ẋ =

I∑
i=1

ai

N∏
n=1

x
mn,i
τn , [1]

where τn , mn,i ∈N0 with x = x (t), xτn = x (t − τn), relating the
signal derivative ẋ (t) to delayed versions of the signal. Most
of the terms in this template are set to zero depending on the
data type. The following DDA model has been shown to capture
important dynamical information from EEG signals (26, 33–35):

ẋ = a1x1 + a2x2 + a3x
2
1 . [2]

This model was chosen through a structure selection proce-
dure, repeated random subsampling cross-validation (36) (SI
Appendix), using separate EEG and intracranial EEG datasets
(26, 33–35). The coefficients a1,2,3 were used as features to
distinguish dynamical differences in time series data. Together
with these coefficients, the least squares error ρ was also con-
sidered. Therefore, the full DDA feature set was composed of
{a1, a2, a3, ρ}. These previous studies have shown that the four
DDA parameters of Eq. 2 reflect both linear and nonlinear fea-
tures underlying nonlinear signals (25). Since previous results
converged on a3 as most informative (25), this parameter was
carried forward for detailed characterization in this dataset.

Results
ADR Complex. Consistent with established methods (10), individ-
ual subject deviant minus standard waveform averages derived
from the preprocessed ERP signals showed significantly reduced
MMN and P3a positivity components for the SZ patients
(Fig. 1A, Upper). The group-averaged signals (Fig. 1A, Lower)
also revealed significantly diminished ADR complex composed
of MMN, P3a positivity, and RON for the SZ group.

Performing the DDA on the difference waveforms and com-
puting individual subject a3 averages showed significantly lower
a3 values across the SZ patients in the 180- to 240-ms time win-
dow (Fig. 1B, Upper) (mean t value = 10.8, mean Cohen’s d =
0.55). The group-averaged a3 signals revealed three distinct
areas corresponding to the ADR components (numbered areas
in Fig. 1B, Lower). Interestingly, the timing of the three DDA
peaks occurred before their corresponding ADR components
identified in the group-averaged ERP signals. For instance, the
peak group difference in area 1 in Fig. 1B occurred 70 ms before
the peak group difference in the ERP MMN window in Fig. 1A.
This suggests that DDA reflects dynamical state changes (as esti-
mated by the amplitude changes in a3) occurring immediately
before each of the ERP ADR components. Thus, DDA not only
captures the group differences but also, identifies the underly-
ing dynamical state changes that contribute to the linear ERP
changes of the ADR complex components.

Responses to Constituent Deviant and Standard Tones. To deter-
mine whether findings in the deviant minus standard difference
waves were driven by effects to constituent tones, responses
to deviant and standard tones were also examined separately.
Consistent with the results presented above, similar waveform
morphology and magnitude of SZ impairment were observed
in both ERP and DDA results. Also consistent with the previ-
ous section, peaks observed with DDA, including those related
to SZ deficits, occurred earlier than those observed in the ERP
analysis.
Responses to deviant tones. Averaging the ERP signals corre-
sponding to only deviant tones revealed three ERP components
(Fig. 2A) that were reduced for the SZ group, consistent with
other studies (10). DDA identified dynamical changes unique
to each group occurring before each of the ERP components
(Fig. 2B). In addition, the dynamical states of the NCS group
were significantly different from those of the SZ patients during
the 50- to 100-ms time window (black arrow in Fig. 2B) (mean t
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Fig. 1. DDA identified dynamical state changes preceding each of the ADR complex components. (A) NCSs demonstrated robust MMN, P3a, and RON
components as shown in the heat map of the individual subject difference (deviant tone ERP − standard tone ERP) average signals (Upper). All three
components of the ADR (MMN, P3a, and RON) can be appreciated in the group-level average signals (Lower). (B) DDA a3 coefficient values averaged
within each subject revealed significantly decreased a3 in the SZ patients (Upper). As with the ERP results, the DDA group averages displayed three
components with homologous waveform morphology and severity of deficits in SZ, but the DDA components (numbered 1–3 in Lower) preceded their
corresponding ERP peaks identified in A by 71, 54, and 82 ms, respectively. The shaded regions in the group average signals represent group differences
that are statistically significant after adjusting for multiple comparisons (false discovery rate). Cohen’s d, t values, and degrees of freedom are shown in
SI Appendix, Fig. S9.

value = −2.6, mean Cohen’s d = −0.13). Notably, this window
corresponds to the earliest time window during which a stimu-
lus can be identified as deviant, since the deviant auditory tones

were 100 ms in duration (vs. 50 ms for the standard tones). No
such difference was observed in the grand average ERP signals
(Fig. 2A).
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Fig. 2. ADR components were evident from both ERP analysis and DDA of waveforms elicited by deviant auditory tones. (A) Individual subject
average signals from deviant tones revealed pronounced MMN and P3a components in the NCSs (Upper). The grand average signals from the
two groups showed significantly different ADR component signals (Lower). (B) DDA a3 amplitude changes were observed before each of the ADR
components (numbered 1–3 in Lower). Furthermore, statistically significant differences in a3 amplitude between groups were detected during the
earliest time window (50–100 which ms) in an auditory tone could be processed as deviant (black arrow; mean t value = −2.6, mean Cohen’s
d = −0.13).
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Responses to standard tones. Unlike the robust group differ-
ences observed in the ERP responses to the deviant tones, the
group differences in the standard tone ERP responses were
much more modest as shown in Fig. 3A. DDA identified a simi-
lar group difference occurring between 90 and 130 ms (Fig. 3B).
Consistent with ERP analysis of the standard tones, no signifi-
cant dynamical changes were detected in the 50- to 100-ms time
window.

Discussion
In this study, DDA, a technique based on dynamical systems
theory, was used to determine whether nonlinear features sig-
nificantly contribute to leading neurophysiologic biomarker can-
didates of EAIP. The concept that nonlinear, chaos theory-
based perturbations occur early in information processing in
SZ patients has been hypothesized for some time (36). In this
context, these early dynamical state changes precede commonly
studied ERP features in both groups. SZ-related impairments
in DDA metrics may contribute to impairments in higher-order
neurocognitive and psychosocial functioning. A challenge has
been with the identification and quantification of these early non-
linear abnormalities in the information processing cascade of
function (1). DDA may provide a solution to this longstanding
challenge.

DDA was used on large cohorts of 877 SZ patients and 753
NCSs using a well-validated paradigm from the COGS-2 multi-
center study. DDA revealed nonlinear dynamical state changes,
which preceded well-established ADR components of the ERP.

Importantly, the dynamical information extracted from EEG
may also provide additional information about the underlying
nature of the MMN, P3a, and RON components of the ADR.
Interestingly, nonlinear features are evident nearly instanta-
neously in response to standard and deviant auditory stimulus
onset as well as in the deviant minus standard comparison that
is commonly used for measuring the ADR components. DDA
detected nonlinear activity > 50 ms before conventional ERP
peaks. Since this early DDA effect does not seem to be an arti-
fact of the analysis method, questions remain as to the functional
significance of these early nonlinear effects. It is possible that

the nonlinear features captured via DDA provide a more prox-
imal and direct readout of the neurophysiological substrate of
ERP measures and the earliest detectable changes in the brain
representing deviance detection.

DDA utilizes embeddings to reveal the underlying dynami-
cal patterns of brain activity in the feature space. These pat-
terns, which are otherwise not observable in the EEG using
conventional linear ERP methods, are sensitive to even small
perturbations in brain network dynamics—including those on
a small regional scale. The extracted features also provide
a natural measure of the magnitude of dynamical changes,
which may correspond to the severity of dysfunction in neu-
ropsychiatric illness. In addition to revealing important infor-
mation about nonlinear dynamics hidden in the EEG sig-
nals, DDA offers a number of important technical advantages
over commonly used ERP measures: it is computationally fast,
provides fine temporal resolution (10-ms data windows), and
requires only minimal preprocessing (i.e., demeaning of the
data) to avoid discarding meaningful contextual information.
Since time-consuming preprocessing steps (e.g., blink correc-
tion and filtering) are not required for DDA, even very large
datasets can be analyzed in minutes rather than days, weeks, or
even months.

Although DDA has great promise, several caveats should be
noted. As a measure, DDA findings do not neatly map onto the
vast existing literature, which has nearly exclusively relied on lin-
ear methods; DDA findings, therefore, may be challenging to
interpret. Likewise, the DDA methods have not undergone the
same degree of validation for use in clinical studies (e.g., reli-
ability, suitability for use as a repeated measure, sensitivity to
therapeutic interventions). As with the original papers describ-
ing the underlying data used in this report, another caveat is
that medications in the SZ patients were not experimentally
controlled. It is possible that some of the observed deficits in
the DDA features of the SZ patients could be attributable to
differences in their medication status. Likewise, other clinical
factors could also influence DDA findings. It is noteworthy that
the large COGS-2 dataset allows for additional tests to verify
that the observed SZ-related effects are not driven by group
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Fig. 3. DDA of standard tones detected significant dynamical state alterations preceding the P150 window. (A) ERP signals corresponding to the standard
tones revealed a reduced P150 component in the SZ grand average signal (Lower). (B) Dynamic changes preceding the P150 ERP changes were observed in
the 90- to 130-ms window (Lower; mean t value = 3.3, mean Cohen’s d = 0.17). The a3 changes were reduced for the SZ group during this time window.
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differences in age or sex (SI Appendix, Figs. S10 and S11). Future
studies are required to disentangle medication effects and inter-
acting clinical variables from the current DDA findings in SZ
(1, 10). However, if DDA is sensitive to medication or clinical
changes, this rapid approach may be useful for biomarker-guided
clinical trial approaches.

Despite the caveats of this study, these results represent a
clear and powerful demonstration of the potential benefits of
using nonlinear techniques to study important nonlinear aspects
of natural phenomena, including neural function. By applying
DDA to this large, rich dataset, we were able to obtain linear
and nonlinear features related to auditory information pro-
cessing in healthy subjects and corresponding deficits observed
in SZ patients. Elucidating the links among DDA features
and brain network dynamics can lead to a better understand-
ing of pathophysiology of cognitive impairment in SZ and
neuropsychiatric disorders as well as contribute to biomarker-
guided strategies to accelerate the development of treatments for
CNS disorders.

Materials and Methods
The COGS-2 Data Collection. Data were collected at five centers across the
United States: the University of California, San Diego; the University of
California, Los Angeles; the University of Washington; the University of
Pennsylvania; and Mount Sinai School of Medicine. Written consent was
obtained from all of the participants, and the study was approved by the
local human research protection committees at each site. Samples from a
total of 1,630 COGS-2 subjects were analyzed: 877 SZ patients and 753 NCSs.
Trains of auditory stimuli presented to each subject consisted of 50-ms stan-
dard tones (90% of stimuli) and 100-ms deviant tones (10% of stimuli) as
shown in Fig. 4. There were a minimum of 1 standard tone and a maximum
of 18 standard tones between deviants. EEG recordings were conducted at
a sampling rate of 1 kHz from a single electrode at the CZ (central zero)
position.

ERP Analysis. The COGS-2 data for each subject were segmented into trials
with duration of 550 ms. Each trial contained 100-ms pretone and 450-ms

posttone ERP signals. Trials corresponding to deviant tones (n = 150) and
standard tones (n = 150) were extracted from each subject. Eye movement
artifact was removed using a second-order blind identification algorithm,
and trials containing residual artifact (signal activity >±50 µV) were dis-
carded. Finally, the average standard tone responses were subtracted from
the average deviant tone responses.

DDA of EEG Data. DDA features are usually estimated from a data win-
dow of length L as shown in Fig. 5. The data for each such window are
normalized to zero mean and unit variance to remove amplitude informa-
tion. Sliding overlapping windows are then applied to the data. For the
COGS-2 data, windows of 10 ms were used, and the corresponding points
are plotted at the beginning of each time window for all of the figures.
Fig. 5 shows the single-trial version of DDA. The feature set {a1,2,3, ρ}
is estimated from each trial, and then, the mean over several trials is
taken as the nonlinear counterpart to traditional ERP, where the mean
of the data (after preprocessing) is used. The difference is that, for DDA,

data used

Fig. 5. Estimation of the features a1,2,3 for a data window of length L
for Eq. 2.
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the raw data are processed for each data window separately. To improve
the performance and to reduce the number of trials needed, cross-trial DDA
was used (SI Appendix, Fig. S3). Using the ergodic hypothesis (37), data win-
dows of multiple trials were combined, and features were computed across
trials. The DDA coefficients were estimated simultaneously from 150 trial
windows (SI Appendix, Figs. S1–S11). Supervised structure selection was used
to identify the delays that led to optimal group classification (A′) (32). Note
that these delays have no frequency correspondence due to the nonlinear
nature of the DDA model (25). Results from a3, the most salient feature, are
presented. As a measure of classification performance, the area A′ under
the receiver operating characteristic was used (38). An unpaired Student’s t
test was used to assess the significance of differences between the SZ and

NCS groups as observed in both traditional trial mean difference waveforms
and the DDA a3 coefficient. The false discovery rate was adjusted using the
Benjamini–Hochberg procedure. The optimal delays for the COGS-2 dataset
were τ = (3, 8) time points, corresponding to (3, 8) ms.
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