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Abstract

In a wide range of non-linear dynamical systems, noise may enhance the detection of weak deterministic input
signals. Here, we demonstrate this phenomenon for transmembrane signaling in a hormonal model system of
intracellular Ca2� oscillations. Adding Gaussian noise to a subthreshold extracellular pulsatile stimulus increased the
sensitivity in the dose�response relation of the Ca2� oscillations compared to the same noise signal added as a
constant mean level. These findings may have important physiological consequences for the operation of hormonal
and other physiological signal transduction systems close to the threshold level. � 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The exchange of biological information between
distant cells or organs is achieved by two major
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systems: the nervous and the endocrine system. In
the nervous system information is encoded in the

� �temporal pattern of neuronal spike trains 1 . The
specificity of information transfer arises from the
architecture of the neuronal network. On the
other hand, in the endocrine system, information
is unspecifically transmitted via the blood stream.
The specificity of signaling arises from the
biochemical structure of the hormones and their

� �respective receptors 2 . Most hormones are not
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constantly released into the blood stream but in a
� �burst-like, pulsatile manner 3,4 . This temporal

pattern of hormone secretion has been shown to
specifically regulate many distinct cellular func-

� �tions 5�7 .

2� Ž .The Ca -phosphatidylinositol PI signaling
pathway plays a major role in transmembrane
signaling in a large number of different cell types
� �8 . In this pathway, hormonal stimuli lead to the
activation of G-proteins as an effector system

Ž . 2�Fig. 1. a Generation of intracellular Ca -oscillations in electrically non-excitable cells. Here, g stands for the G -GTP, g forp � d
Ž .G -GDP, PLC for phospholipase C, IP for inositol 1,4,5 -trisphosphate, DAG for diacylglycerol, and ER for the endoplasmic� 3

Ž .reticulum. The dotted lines mark feedback. b : In the modified Bourne�Stryer mechanism, phospholipase C acts as a protein
activating G -GTP. The square is an inactive form and the diamond is an active form of G-protein �-subunit bound to GDP and�

GTP, respectively. GDP stands for guanosine-5�-diphosphate, and GTP stands for guanosine-5�-triphosphate. PLC is an effector
Ž � .which becomes active PLC when it is bound to G -GTP. The exchange of GTP for bound GDP is catalyzed by the�

� Ž .hormone�receptor complex, R , with the help of the ��-subunit of G-protein step 1 . Hydrolysis of the bound GTP brings the
Ž .G-protein back to the inactive state step 2 . This hydrolysis step is a very slow step. On the other hand, G -GTP activates the�

Ž .effector protein, PLC step 3 . GTP hydrolysis by G -GTP complexed with PLC is much faster than that of G -GTP alone, i.e. step� �

Ž � �.4 is faster than step 2. Fig. 1 is a modification of an already published illustration in Chay et al. 16 . The model we use is based on
Ž . � �these four steps and is summarized as follows see Section 2 : PLC is the GTP-ase activating protein; PLC is formed when 4 mol

� Ž .of G -GTP is combined with PLC; PLC is an effector which can produce IP and diacylglycerol DAG from� 3
Ž . Ž .phophatidylinositol 4,5 -biphosphate PIP ; Steps 3 and 4 are enhanced by a DAG-dependent protein. The production of DAG and2

IP by PLC� is also enhanced by the same protein. The enhancement of these steps by a DAG-dependent protein is necessary to3
generate the oscillation. However, to generate the oscillation, the DAG-dependent protein can be replaced by a Ca2�-dependent

� 2�� � �protein or by a protein which is activated by both Ca and DAG .i
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which subsequently activates the enzyme phos-
Ž .pholipase C PLC . The activated enzyme PLC

then results in the formation of the second
messenger substances inositol 1,4,5-trisphosphate
Ž . Ž .IP and 1,2-diacylglycerol DAG from3

Ž .phophatidylinositol 4,5-bisphosphate PIP . IP2 3
triggers the release of Ca2� from internal stores,

Ž .such as the endoplasmic reticulum ER . Succeed-
ing feedback mechanisms lead to a fall of the

Ž� 2�� .intracellular calcium concentration Ca backi
to resting levels. This is achieved through the
enhancement of active transport mechanisms via
Ca2�-ATPases like pumping Ca2� back into thei
internal stores and out of the cell and by tem-

2� Ž .porary binding of Ca through proteins Fig. 1 .i
� 2��The result are repetitive Ca -spikes varying ini

frequency and amplitude depending on the
strength and type of the hormonal stimulus.
� 2��Ca -spike trains allow for the differential reg-i

� �ulation of distinct cellular responses 9 , such as
� �the activation of protein kinases 10 as well as

� � � �the activation of genes 11 , differentiation 12,13 ,
� �motility, and morphology 14 .

� 2��To date, the generation of Ca -spikes hasi
been studied experimentally and numerically un-
der constant hormonal stimulation. Based on the
fact that hormones are secreted in a burst-like or
pulsatile manner, experiments have been per-
formed in single hepatocytes which demonstrated
the mapping of periodic pulsatile hormonal sti-
muli with the � -adrenoreceptor agonist phenyle-1

� 2��phrine into distinct temporal patterns of Ca -i
� �spike trains 15 . In these experiments 1:1, 2:1 and

5:4 locking rhythms were found between the ex-
tracellular hormonal stimulus and the intracellu-

� 2��lar Ca -response. Furthermore, a modulationi
� 2��of the Ca -spike amplitude by the frequencyi

of the periodic hormonal stimulus could be
observed. Motivated by this study, a mathematical

� 2��model for receptor-controlled Ca -spikes wasi
� �adapted 16 , which had been numerically studied

� �only under constant agonist stimulation 17 . This
new model accounts for most of the dynamical
features observed experimentally, such as blocked

� 2��and delayed Ca -responses to the extracellulari
� �stimulus 15 . Extensive simulations of this model

have been performed using a large variety of
different pulsatile stimuli with different inter-

pulse intervals, pulse durations and amplitudes to
explore the mapping of the dynamic stimulus

� 2�� � �pattern to the Ca -spike train 16 .i
Numerical simulations of this model performed

so far have either used constant stimuli or peri-
odically delivered square pulses without assuming
any noise in the stimulatory profile. In biological
systems, the impact of noise on the enhancement
of signal transduction of weak subthreshold sti-

Ž .muli, called stochastic resonance SR , has been
extensively studied experimentally and numeri-
cally for sensory neurons on the cellular and

� �systems level 18�25 , and on the subcellular level
� �for an ion channel 26 and receptor cell syn-

� �cytium structure 27 . This mechanism has been
explained by a non-linear cooperative effect aris-
ing from the coupling between deterministic and
random signals in a wide range of physical sys-

� �tems 21,28�34 .
In biochemical systems, the effect of noise on

the transduction of subthreshold stimuli has not
been studied yet. In contrast to the transmission
of information in the nervous system by repetitive
spikes of the electrical activity of neurons, the
information transfer in the hormonal system is
based on the specific biochemical structure of the
signaling molecules and the temporal profile of
their release. Here, we use the mathematical
model described above to simulate transmem-
brane signal transduction from extracellular fluc-
tuating hormonal stimuli to repetitive spikes of
� 2��Ca and investigate the effect of noise on thei
transduction of subthreshold stimuli. This non-ex-
citable cell model is still the only one exhaustively
examined driven by dynamical stimuli and found
to correspond with in vitro experiments, although
it would have to be modified to reflect the most
recent findings.

2. Model

2.1. Mathematical model for receptor-controlled
[ 2 �]Ca -oscillationsi

� �The model 16 , used in this study is summa-
rized by the following equations:
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� �d G �GTP� � ��k G �GDPg �d t
4� � � ��4k G �GTP PLCp �

� � Ž .�h G �GTP 1g �

� �d DAG �� � � � Ž .�k PLC �h DAG � l 2d d dd t

� 2� �d Ca i

d t
3� �IP3 2�� � Ž .�� k �h Ca � l 3ic c c33½ 5� �K � IPS 3

� � �d PLC 4 �� � � � � ��k G �GTP PLC �h PLCp � pd t
Ž .4

Ž . � �Eq. 1 describes the change of G -GTP due to�

Ž .the conversion of G -GDP to G -GTP Fig. 1b .� �

� �The second term describes the loss of G -GTP�

Ž � .to build up the activated enzyme PLC PLC . In
Ž .Eq. 1 , k is assumed to be ‘proportional’ to theg

Žtime-varying agonist concentration in units of
�1 � �.s ; see Chay et al. 16 , i.e. the concentration of

the extracellular hormone. Therefore, the value
of k could not become negative for physiologicalg
reasons.

The three kinetic parameters k , h , k arep p d
assumed to take the following forms:

2� �DAG Ž .k �k� 5n n 22 � �K � DAGD

where k �k , h or k and k� �2�10�7 nM�4
n p p d p

s�1, h� �0.5 s�1, k� �700 s�1. The remainingp d
kinetic constants are K �25 nM and h which isD g

�1 Ž .set to 0.0 s in a first approximation. Eq. 2
Žmodels the change of DAG and IP h �1003 d

�1 �1. Ž .s , l �250 nM s Fig. 1a . For simplicity, itd
� � � �is assumed that DAG and IP increase with the3
Ž .same rate. Eq. 3 describes the change of the

� 2�� Žintracellular calcium concentration Ca �ki c
�9.0�104 nM s�1, K �300 nM, �h �1.0 s�1,s c

�1 .� l �200 nM s . The first term in the curlyc
brackets is a Hill function which models co-oper-
ativity for binding of IP to the tetrameric recep-3

Ž .tor on the ER endoplasmic reticulum , resulting
in the release of Ca2�. Since 3 M of IP are3
required to release Ca2� from the ER, the expo-
nent 3 occurs in this equation. The second term

� 2�� 2�describes a loss of Ca due to Ca -ATPase-i
pumps. The third term expresses the pouring in of
Ca2�-ions to the cell to keep it at its basal
� 2��Ca -level in the absence of external stimuli.i

� 2�� Ž .The � value is related to Ca . Eq. 4 modelsER
the formation of PLC from PLC through the
action of G -GTP. The second term describes the�

loss of PLC by the hydrolysis of the complex to
G -GDP. The exponent 4 occurs again in the first�

term of this equation since 4 M of G -GTP are�

required to form PLC. For a detailed explanation
� �of all the parameters, see Chay et al. 16 .

� 2�� Ž .Fig. 2. Each Ca -spike train, x t , was simulated for 18.000 s on a Sun SPARCstation 20 using source code written in MATLABi
Ž .MathWorks Inc., Natick, MA . The system of differential equations was integrated using a modified Rosenbrock formula stiff

Ž .solver variable integration time step .
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A qualitative explanation for the generation of
� 2��Ca -spike trains in this model is as follows:i
Ca2� is released from intracellular Ca2�-stores
Ž . � � � �such as the ER when G -GTP and thus IP� 3
reach a critical threshold level. The Ca2�-re-

� �sponse is blocked when G -GTP is too low and�

the agonist stimulus is delivered prematurely. De-
tails of the numerical simulation of this model are
given in the legend of Fig. 2. To analyze the
dynamic behavior of this model, we constructed a
bifurcation diagram as a function of the stimulus

Žamplitude k using the AUTO program Fig. 6,g
� �.35 .

2.2. Effect of additi�e Gaussian noise on
transmembrane signal transduction

The effect of different intensities of additive
bandlimited Gaussian distributed white noise

Ž . � 2��GN on the generation of repetitive Ca -tran-i
sients by periodically applied extracellular stimuli
was investigated using the model described above
Ž . Ž .Fig. 3 . We added the constant mean level GN
of the respective noise signal to the extracellular

Ž .subthreshold stimulus as a control Fig. 3c . The
interpulse intervals used in this numerical study
ranging from 30 to 180 s were chosen according
to the experimental data on Ca2�-signalling in

� �hepatocytes 15 . The pulse duration was 5 s. The
maximum noise amplitude was varied from 0.0 to
3.0�10�2 s�1, corresponding to a noise variance

�5 �2 Ž .between 0.0 and 1.5�10 s r.m.s. and a
corresponding mean level between 0.0 and 1.5�
10�2 s�1, which increased with the variance. In
contrast to studies on stochastic resonance in
sensory neurons where zero-mean noise has been
added, this is not possible in our study. To add
zero-mean noise would require negative values

Ž . 2�Fig. 3. Generation of pulsatile stimuli with and without Gaussian distributed noise GN and intracellular Ca -responses based on
Ž . Ž . Ž .Eqs. 1 � 4 . The interpulse interval of the stimulus was 60 s and the pulse duration was 5 s. a Stimulus composed of a noiseless

Ž . � 2�� Ž . Ž .subthreshold pulsatile signal and input GN; b corresponding Ca -response to the stimulus in a ; c stimulus composed of ai
2�Ž . Ž . Ž . � �noiseless subthreshold pulsatile signal with the mean level of the GN in a added to GN ; and d corresponding Ca -spikei

Ž .train to the stimulus in c .
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for the noise. Since we assume that the pulsatile
stimulus plus the noise is proportional to the

Ž Ž ..concentration of the agonist rate k in Eq. 1g
we are restricted to values larger than or equal to
zero. Before GN was added to the stimulus signal,
it was filtered with a low-pass filter with cut-off
frequencies f ranging from 0.05 to 1 Hz.c

3. Results

3.1. Effect of additi�e Gaussian noise �s. mean
stimulus le�el on signal transduction

Ž .Adding Gaussian noise GN to the subthresh-
Ž .old stimuli Fig. 3a leads to the generation of

� 2�� Ž .repetitive Ca -spikes Fig. 3b at lower noisei
intensities and variances respectively than adding

Ž .the mean level of the Gaussian noise GN to the
Ž .stimulus as a control Fig. 3c,d . At higher noise

variances, the behavior of transmembrane signal
transduction from the extracellular stimulus to

� 2��the Ca -spikes were similar for additive GNi
Ž .and additive GN Fig. 4 . This phenomenon of

enhanced transmembrane signal transduction by
adding GN could be observed for all interpulse

Ž .intervals used in the simulations Fig. 5 . The
difference between adding GN and the respective
GN with respect to the initiation of signal trans-
duction declined with growing cut-off frequencies
for the filtered GN. Higher cut-off frequencies
led to GN with high-frequency oscillations around
the GN which approximated GN more closely.
We have proposed a mathematical model that

� 2��allows for the on-line decoding of Ca -spikei

trains into cellular responses represented by the

� 2��Fig. 4. Frequency of Ca -spikes as a function of the noise variance. The stimuli were chosen as displayed in Fig. 3. Low levels ofi
� 2��noise did not induce a transduction of the extracellular periodic stimulus into Ca -oscillations. In all of the simulations thei

Ž .added GN led to earlier signal transduction than the corresponding GN Fig. 5 . The mean level of the additive noise is increasing
with the variance.
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Ž .Fig. 5. Adding Gaussian noise GN to the subthreshold pulsatile stimulus leads to earlier signal transduction than adding a
Ž .constant GN with the same mean level as GN. This difference is expressed as the noise variance and is a function of the cut-off

frequency of filtered GN and the interpulse interval of the periodic stimulus. This is a qualitative look on the systems behavior
Ž .obtained by interpolation of the datapoints origins of � .

� �activation of proteins 36 . Using this model to
� 2��decode the simulated Ca -spike trains into thei

phosphorylation of cellular target proteins we
found an analogous behavior of enhanced signal
transduction under additive GN compared to GN
Ž .data not shown .

[ 2 �]3.2. Dynamical properties of the model for Ca -i
oscillations

The dynamical structure of this model for
� 2��Ca -oscillations can be seen clearly in thei
bifurcation diagram which was produced as a
function of k , the amplitude of the extracellularg

Ž .stimulus Fig. 6 . The AUTO program predicts two
Ž .Hopf bifurcations, the left Hopf bifurcation LHB

at k �0.008906 and the right Hopf bifurcationg
Ž .RHB at k �0.044919. Hopf bifurcations occurg
in two-dimensional systems when a stable fixed

point becomes unstable to form a limit cycle, or a
stable limit cycle becomes unstable to a fixed
point as a control parameter is varied. Both LHB
and RHB are subcritical. If the direction of the
bifurcating branch is opposite to the direction at
which stability of the main branch is lost, the
branch is called subcritical and it is generally
unstable.

In biological systems, subcritical Hopf bifurca-
tions occur, e.g. in the dynamics of nerve cells
� �37 . The steady-state branch is shown by the
dashed line and the oscillatory branch is shown by
the solid line. In this study, it is of major interest
to see what happens when GN is added in the
area of LHB. Note that from LHB to the left

Ž .periodic limit LPL k �0.008816, there exists ag
bistable region. Also note that the periodic state
rises sharply. These features make the system
very sensitive to noise, i.e. when the stimulus
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Fig. 6. Bifurcation analysis by the AUTO program showing the effect of the concentration of the agonist, k , on the generation ofg
2� � 2��Ca -spikes. The amplitude of Ca is plotted as a function of k . LHB and RHB are standing for left and right Hopfi g

bifurcation. Inset shows lower left corner on an expanded scale.

strength plus noise passes slightly above the
Ž .threshold stimulus i.e. LPL , the model gives rise

� 2��to a Ca -spike in response to a hormone pulse.i

4. Discussion

Besides its deterministic pulsatile structure,
most temporal profiles of hormone concentra-
tions and neurotransmitter levels exhibit en-
dogenous noise caused by factors such as the
secretory process itself or turbulence induced by
the architecture of the blood vessel system. Tradi-
tionally, noise in biological information process-
ing has been regarded as detrimental to informa-
tion transfer.

In our numerical study of hormone induced
� 2��Ca -oscillations, we demonstrate that weaki
subthreshold stimuli only yield a cellular response

by adding external GN, whereas adding the con-
Ž .stant mean level GN of noise does not exhibit

this type of behavior. It has been shown experi-
� 2��mentally that the frequencies of Ca -tran-i

sients occurring naturally optimally encode dis-
tinct aspects of neuronal differentiation and might
implement an intrinsic developmental program
� � � 2��12,13 . The complex pattern of Ca -transientsi

found in our model situation fits to experimen-
tally obtained data when applying weak external

� �stimuli close to the threshold level 38 . Thus, the
� 2��Ca -patterns found in our simulations mighti

mimic the physiologically occurring patterns of
� 2��Ca -transients.i

Future experiments could investigate the ef-
fects of a varying signal amplitude on the GN
amplitude required to effect signal transduction.
In addition, future research on this topic might be
based on a more elaborate model of the signal
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transduction, e.g. by letting the receptor concen-
tration dependence follow a saturation isotherm
and not a linear function, as we used here, which
holds only for ligand concentrations well below
the dissociation constant for receptor�ligand
binding.

Endogenous noise may not only improve the
transduction of a single extracellular stimulus to
the intracellular pathways by a cooperative effect
between the deterministic and the stochastic sig-
nal; it may also function in the cooperative behav-
ior of the ‘cross talk’ between apparently unre-
lated intracellular pathways and induce a cellular
response to subthreshold stimuli. The under-
standing of malfunctioning in the interaction of
these pathways leading to diseases such as dia-

� �betes and cancer is of major importance 39,40 . It
will be necessary to test these predictions by
investigating the impact of noise in hormonal
systems on the cellular and subcellular level.
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