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Sensory and motor variables are typically represented by a population
of broadly tuned neurons. A coarser representation with broader tuning
can often improve coding accuracy, but sometimes the accuracy may also
improve with sharper tuning. The theoretical analysis here shows that
the relationship between tuning width and accuracy depends crucially
on the dimension of the encoded variable. A general rule is derived for
how the Fisher information scales with the tuning width, regardless of
the exact shape of the tuning function, the probability distribution of
spikes, and allowing some correlated noise between neurons. These re-
sults demonstrate a universal dimensionality effect in neural population
coding.

1 Introduction

Let the activity of a population of neurons represent a continuous D-dimen-
sional vector variable x = (x1, x2, . . . , xD). Randomness of spike firing im-
plies an inherent inaccuracy, because the numbers of spikes fired by these
neurons differ in repeated trials; thus, the true value of x can never be
completely determined, regardless of the method for reading out the in-
formation. The Fisher information J provides a good measure on encoding
accuracy because its inverse is the Cramér-Rao lower bound on the mean
squared error:

E
[
ε2
]
≥ 1

J
, (1.1)

which applies to all possible unbiased estimation methods that can read
out variable x from population activity without systematic error (Paradiso,
1988; Seung & Sompolinsky, 1993; Snippe, 1996). The Cramér-Rao bound can
sometimes be reached by biologically plausible decoding methods (Pouget,
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Zhang, Deneve, & Latham, 1999; Zhang, Ginzburg, McNaughton, & Se-
jnowski, 1998). Here the square error in a single trial is

ε2 = ε2
1 + ε2

2 + · · · + ε2
D, (1.2)

with εi the error for estimating xi. The Fisher information J can be defined
by

1
J
=

D∑
i=1

{
E

[(
∂

∂xi
ln P(n | x, τ )

)2
]}−1

, (1.3)

where the average is over n = (n1,n2, . . . ,nN), the numbers of spikes fired
by all the neurons within a time interval τ , with the probability distribution
P depending on the value of the encoded variable x. The definition in equa-
tion 1.3 is appropriate if the full Fisher information matrix is diagonal. This
is indeed the case in this article because we consider only randomly placed
radial symmetric tuning functions for a large population of neurons so that
the distributions of estimation errors in different dimensions are always
identical, and uncorrelated. A recent introduction to Fisher information can
be found in Kay (1993).

2 Scaling Rule for Tuning Width

The problem of how coding accuracy depends on the tuning width of neu-
rons and dimensionality of the space being represented was first studied
by Hinton, McClelland, and Rumelhart (1986) and later by Baldi and Heili-
genberg (1988), Snippe and Koenderink (1992), Zohary (1992), and Zhang
et al. (1998). All of these earlier results involved specific assumptions on the
tuning functions, the noise, and the measure of coding accuracy.

Here we consider the general case using Fisher information as a measure
and show that there is a universal scaling rule. This rule applies to all meth-
ods that can achieve the best performance given by the Cramér-Rao bound,
although it cannot constrain the tuning properties of suboptimal methods.

The tuning function refers to the dependence of the mean firing rate f (x)
of a neuron on the variable of interest x = (x1, x2, . . . , xD). We consider only
radial symmetric functions

f (x) = Fφ
( |x− c|2

σ 2

)
, (2.1)

which depend on only the Euclidean distance to the center c. Here σ is the
tuning width, which scales the tuning function without changing its shape,
and F is the mean peak firing rate, given that the maximum of φ is 1. This
general formula includes all radial symmetric functions, of which gaus-
sian tuning is the special case: φ(z) = exp(−z/2). Other tuning functions
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can sometimes be transformed into a radial symmetric one by scaling or a
linear transformation on the variable. If x is a circular variable, the tuning
equation, 2.1, is reasonable only for sufficiently narrow tuning functions, be-
cause a broad periodic tuning function cannot be scaled uniformly without
changing its shape.

Suppose the probability for n spikes to occur within a time window of
length τ is

P(n | x, τ ) = S(n, f (x), τ ). (2.2)

This general formulation requires only that the probability be a function of
the mean firing rate f (x) and the time window τ .

These general assumptions are sufficient conditions to prove that the
total Fisher information has the form

J = ησD−2Kφ(F, τ,D), (2.3)

where η is a number density—the number of neurons whose tuning cen-
ters fall into a unit volume in the D-dimensional space of encoded variable,
assuming that all neurons have identical tuning parameters and indepen-
dent activity. We also assume that the centers of the tuning functions are
uniformly distributed at least in the local region of interest. Thus, η is pro-
portional to the total number of neurons that are activated. The subscript
of Kφ implies that it also depends on the shape of function φ. Equation 2.3
gives the complete dependence of J on tuning width σ and number density
η. The factor σD−2 is consistent with the specific examples considered by
Snippe and Koenderink (1992) and Zhang et al. (1998), but the exponent is
off by one from the noiseless model considered by Hinton et al. (1986).

More generally, when different neuron groups have different tuning
widths σ and peak firing rates F, we have

J = η
〈
σD−2Kφ(F, τ,D)

〉
, (2.4)

where the average is over neuron groups, and η is the number density
including all groups so that J is still proportional to the total number of con-
tributing neurons. Equation 2.4 follows directly from equation 2.3 because
Fisher information is additive for neurons with independent activity.

Equations 2.3 and 2.4 show how the Fisher information scales with the
tuning width in arbitrary dimensions D. Sharpening the tuning width helps
only when D = 1, has no effect when D = 2, and reduces information en-
coded by a fixed set of neurons for D ≥ 3 (see Figure 1A). Although sharp-
ening makes individual neurons appear more informative, it reduces the
number of simultaneously active neurons, a factor that dominates in higher
dimensions where neighboring tuning functions overlap more substantially.
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Figure 1: The accuracy of population coding by tuned neurons as a function
of tuning width follows a universal scaling rule regardless of the exact shape
of the tuning function and the exact probability distribution of spikes. The ac-
curacy depends on the total Fisher information, which is here proportional to
the total number of both neurons and spikes. (A) Sharpening the tuning width
can increase, decrease, or not change the Fisher information coded per neuron,
depending on the dimension D of the encoded variable, but (B) sharpening
always improves the Fisher information coded per spike and thus energy ef-
ficiency for spike generation. Here the model neurons have gaussian tuning
functions with random spacings (average in each dimension taken as unity), in-
dependent Poisson spike distributions, and independent gamma distributions
for tuning widths and peak firing rates (the average is 25 Hz).
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2.1 Derivation. To derive equation 2.3, first consider a single variable,
say, x1, from x = (x1, x2, . . . , xD). The Fisher information for x1 for a single
neuron is

J1(x) = E

[(
∂

∂x1
ln P(n | x, τ )

)2
]

(2.5)

= Aφ

( |x− c|2
σ 2 ,F, τ

)
(x1 − c1)

2

σ 4 , (2.6)

where the first step is a definition and the average is over the number of
spikes n. It follows from equations 2.1 and 2.2 that

∂

∂x1
ln P(n | x, τ ) =

T
(

n,Fφ
( |x− c|2

σ 2

)
, τ

)
Fφ′

( |x− c|2
σ 2

)
2(x1 − c1)

σ 2 , (2.7)

where φ′(z) = dφ(z)/dz and function T is defined by

T(n, z, τ ) = ∂

∂z
ln S(n, z, τ ). (2.8)

Therefore, averaging over n must yield the form in equation 2.6, with func-
tion Aφ depending on the shape of φ. Next, the total Fisher information for
x1 for the whole population is the sum of J1(x) over all neurons. The sum
can be replaced by an integral, assuming that centers of tuning functions
are uniformly distributed with density η in the local region of interest:

J1 = η
∫ ∞
−∞

J1(x) dx1 · · · dxD (2.9)

= ησD−2
∫ ∞
−∞

Aφ(ξ
2,F, τ )ξ2

1 dξ1 · · · dξD (2.10)

≡ ησD−2Kφ(F, τ,D)D, (2.11)

where new variables ξi = (xi − ci)/σ have been introduced so that

|x− c|2
σ 2 = ξ2

1 + · · · + ξ2
D ≡ ξ2, (2.12)

dx1 · · · dxD = σDdξ1 · · · dξD. (2.13)

Finally, the Fisher information for all D dimensions is J = J1/D, because the
mean squared error in each dimension is the same. The result is equation 2.3.
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2.2 Example: Poisson Spike Model. A Poisson distribution is often used
to approximate spike statistics:

P(n | x, τ ) = S(n, f (x), τ ) = (τ f (x))n

n!
exp(−τ f (x)). (2.14)

Then equation 2.4 becomes

J = η
〈
σD−2F

〉
τkφ(D), (2.15)

where

kφ(D) = 4
D

∫ ∞
−∞

(φ′(ξ2)ξ1)
2

φ(ξ2)
dξ1 · · · dξD, (2.16)

with ξ 2 = ξ2
1 + · · · + ξ2

D. For example, if the tuning function φ is gaussian,

kφ(D) = (2π)D/2/D. (2.17)

One special feature of Poisson spike model is that Fisher information in
equation 2.15 is proportional to the peak firing rate F.

3 Fisher Information per Spike

The energy cost of encoding can be estimated by the Fisher information per
spike:

Jspikes = J/Nspikes. (3.1)

If all neurons have identical tuning parameters, the total number of spikes
within time window τ is

Nspikes = η
∫ ∞
−∞

τ f (x) dx1 · · · dxD (3.2)

= ησDFτ
∫ ∞
−∞

φ(ξ2) dξ1 · · · dξD (3.3)

≡ ησDFτQφ(D), (3.4)

where f (x) is mean firing rate given by equation 2.1 and ξ2 = ξ2
1 + · · · + ξ2

D.
More generally, when tuning parameters vary in the population, we have

Nspikes = η
〈
σDF

〉
τQφ(D). (3.5)
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For example,

Jspike =
〈
σD−2〉

D
〈
σD
〉 (3.6)

holds when the neurons have gaussian tuning functions, independent Pois-
son spike distributions, and independent distributions of peak firing rates
and tuning widths. As shown in Figure 1B, sharpening the tuning saves
energy for all dimensions.

4 Scaling Rule Under Noise Correlation

The example in this section shows that scaling law still holds when firing-
rate fluctuations of different neurons are weakly correlated, and the differ-
ence is a constant factor. Assume a continuous model for spike statistics
based on multivariate gaussian distribution, where the average number of
spikes ni for neuron i is

µi = E [ni] = τ fi(x) = τFφ
( |x− ci|2

σ 2

)
, (4.1)

and different neurons have identical tuning parameters except for the loca-
tion of the centers. The noise correlation between neurons i and j is

Cij = E
[
(ni − µi)(nj − µj)

] = {C2
i if i = j,

qCiCj otherwise,
(4.2)

where

Ci = ψ(µi) = ψ(τ fi(x)), (4.3)

with ψ an arbitrary function. For example, ψ(z) ≡ constant and ψ(z) = az
are the additive and multiplicative noises considered by Abbott and Dayan
(1999), and ψ(z) = √z corresponds to the limit of a Poisson distribution.

For large population and weak correlation, we obtain the Fisher infor-
mation

J = ησD−2
(

1
1− q

Aφ,ψ(F, τ,D)+
(

1+ 1
1− q

)
Bφ,ψ(F, τ,D)

)
, (4.4)

ignoring contributions from terms slower than linear with respect to the
population size. Here

Aφ,ψ(F, τ,D) = 4τ 2F2

D

∫ ∞
−∞

(
φ′(ξ2)ξ1

ψ(ζ )

)2

dξ1 · · · dξD, (4.5)

Bφ,ψ(F, τ,D) = 4τ 2F2

D

∫ ∞
−∞

(
φ′(ξ2)ψ ′(ζ )ξ1

ψ(ζ )

)2

dξ1 · · · dξD, (4.6)
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with ξ2 = ξ2
1 + · · · + ξ2

D and

ζ = τFφ
(
ξ2
)
. (4.7)

Thus, the only contribution of noise correlation is the constant factor 1/(1−
q), which slightly increases the Fisher information when there is positive
correlation (q > 0). This result is consistent with the conclusion of Abbott
and Dayan (1999). Notice that now the scaling rule for tuning width remains
the same, and the Fisher information is still proportional to the total number
of contributing neurons.

Equation 2.15 for the Poisson spike model can be recovered from equa-
tion 4.4 when ψ(z) = √z with a large time window and high firing rates so
that the contribution from ψ ′ or Bφ,ψ can be ignored. The only difference is
an additional proportional constant 1/(1− q).

5 Hierarchical Processing

In hierarchical processing, the total Fisher information cannot increase when
transmitted from population A to population B (Pouget, Deneve, Ducom,
& Latham, 1998, 1999). This is because decoding a variable directly from
population B is indirectly decoding from population A and therefore must
be subject to the same Cramér-Rao bound. Assuming a Poisson spike model
with fixed noise correlation (cf. the end of section 4), we have

NA

1− qA

〈
σD−2F

〉
A
≥ NB

1− qB

〈
σD−2F

〉
B
, (5.1)

where the averages are over all neurons of total numbers NA and NB in
the two populations. This constrains allowable tuning parameters in the
hierarchy.

6 Concluding Remarks

The issue of how tuning width affects coding accuracy was raised again
recently by the report of progressing sharpening of tuning curves for in-
teraural time difference (ITD) in the auditory pathway (Fitzpatrick, Batra,
Stanford, & Kuwada, 1997). In a hierarchical processing system, the total
information cannot be increased at a later stage by altering tuning parame-
ters because of additional constraints such as inequality 5.1. (See the more
detailed discussion by Pouget et al., 1998.)

For a one-dimensional feature such as ITD, more information can be
coded per neuron for a sharper tuning curve, provided that all other factors
are fixed, such as peak firing rate and noise correlation. For two-dimensional
features, such as the spatial representation by hippocampal place cells, cod-
ing accuracy should be insensitive to the tuning width (Zhang et al., 1998).
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In three and higher dimensions, such as the multiple visual features repre-
sented concurrently in the ventral stream of primate visual system, more
information can be coded per neuron by broader tuning.

For energy consumption, narrower tuning improves the information
coded per spike, provided that the tuning width stays large enough com-
pared with the spacing of tuning functions. Therefore, it is advantageous
to use relatively narrow tuning for one- and two-dimensional features, but
there is a trade-off between coding accuracy and energy expenditure for
features of three and higher dimensions.

The scaling rule compares different system configurations or the same
system under different states, such as attention. For example, contrary to
popular intuition, sharpening visual receptive fields should not affect how
accurately a small, distant target can be localized by the visual system,
because the example here is two-dimensional. The results presented here
are sufficiently general to apply to neural populations in a wide range of
biological systems.
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