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Abstract
Neuronal synchronization can be defined as a correlated appearance in time of two or more events
associated with various aspects of neuronal activity. Neuronal synchronization depends on chemical
and electrical synaptic as well as ephaptic and non-specific interactions. We consider two distinct
types of neuronal synchronization: local synchronization that is responsible for the generation of
local field potentials; and long-range synchronization, detected with distantly located electrodes and
mediated primarily via chemical synaptic interactions, which contributes to the EEG synchronization.
Neocortical synchronization during sleep and wakefulness is often associated with rhythmic
oscillations of neuronal activity: slow oscillation, delta, spindle, beta, gamma and ripples. Normal
thalamocortical oscillations [sleep or wake oscillations] are generated as a result of both local and
long-range synchronization. During paroxysmal [seizure] activity, the role of chemical synaptic
interactions decreases because of alterations in ionic composition that impairs synaptic transmission.
Synchronized activities in large population of neurons (such as neocortex) may occur as nearly
simultaneous patterns across an entire population or as propagating waves. Neocortical
synchronization is controlled by the activities in ascending systems: cholinergic, norepinephrinergic
and serotoninergic. The presence of cortico-thalamo-cortical feedback loops contribute to the
synchronization of cortical activities. We propose that all the types of neuronal interactions contribute
to the generation of synchronous oscillatory activities, but the ratio of their contribution is different
for different types of oscillations.

Neuronal synchronization can be distinguished into long-range and local synchronization. The
long-range synchrony is usually detected with two or more electrodes placed at some distance
apart. It leads to brain activity that is correlated at long distances and may be seen using both
local filed potential (LFP) and electroencephalogram (EEG) recordings. The first tool (i.e., the
LFP) provides a microscopic measure of brain activity summarizing electrical activities of
possibly thousands of neurons 1–4. The second type of recording (i.e., the EEG) is a result of
changes of electrical activity of multiple sources and ultimately represents activity patterns of
large populations of neurons and glial cells in the brain. The local or short-range synchrony
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can be detected either with one relatively large field potential electrode or with two or more
small, intracellular or extracellular unit (action potential) recording electrodes located at short
(less than 1 mm) distances from each other. Synchronous activity of a few neurons not
necessarily leads to measurable EEG signals, but can be seen using LFP recordings. Because
of the low-pass filtering properties of the extracellular media 5, high frequency electric field
associated with action potentials steeply attenuate and the large amplitude slow LFP and EEG
potentials are mainly generated from nearly simultaneously occurring de- and hyperpolarizing
events in a large number of neighboring cells with a major contribution of large pyramidal
neurons 6.

In general, synchronization of electrical activity in the brain occurs as the result of interaction
among sets of neurons. The following major types of interactions between brain cells (neurons
and glia) are possible: (a) Chemical synaptic transmission, which takes place when an action
potential that is fired by the presynaptic neuron, invades the nerve terminals, allowing Ca2+

entry, triggering neurotransmitter release, and finally causing de- or hyperpolarization of the
postsynaptic neuron 7,8; (b) Interactions between electrically coupled cells via gap
junctions 9; these interactions are bidirectional and work as a low-pass filter, i.e., fast processes
(for example: action potentials) are filtered out, but slow processes (for example: slow synaptic
potentials) are transmitted with minor attenuation 10; (c) Ephaptic interactions, which are
mediated by large extracellular currents and field potentials generated by cortical structures in
the absence of specialized contacts 11,12 (it should be noted that some researchers separate
ephaptic transmission from field effect interactions 13); (d) Non-specific interactions,
commonly achieved by alteration in the extracellular ionic balance caused by the activity of
brain cells 14–17.

MECHANISMS OF NEURONAL SYNCHRONIZATION
Neuronal synchronization is defined as correlated appearance in time of two or more events
associated with various aspects of neuronal activity at different levels, from single cell to the
whole brain.

A common scenario involves adjustment or phase locking of rhythms of two or more neurons
leading to a stable phase difference of membrane voltage oscillations (periodic or not), e.g.,
coincidence of action potentials. Such coincidence of electrical activities of many neurons
would lead to coordinated changes of extracellular ionic currents in close proximity to these
neurons, which can be then detected as changes of the LFP, which are reflected on the scalp
EEG. If individual neurons fire action potentials periodically, and these events are
synchronized among many cells, one would observe periodic LFP oscillations. Finally, if long-
range synchronization takes place among distinct brain areas, it would lead to global changes
of electrical activity usually associated with EEG rhythms.

Chemical Synaptic Mechanisms of Synchronization
Synaptic interaction is a common mechanism of communication between neurons. Transmitter
release by presynaptic terminal leads to receptor activation on the postsynaptic cell and the
generation of inward or outward currents, which depolarize or hyperpolarize the postsynaptic
cell. Summation of activities from synchronized inputs enhances transmission of information
more effectively than raising discharge rates 18. Generally both excitatory and inhibitory
synaptic interaction may contribute to synchronization of neuronal activity. For example, in a
minimal circuit including synaptic connection from cell A to cell B the action potential in cell
A would trigger excitatory postsynaptic potential (EPSP) in cell B. If this potential is ample
enough, it can trigger an action potential in cell B, which may occur nearly simultaneously
(after small delay) with action potential in cell A.
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This process is more complex in real cortical networks. The amplitude of the single-axon EPSPs
is small and variable. In vitro, it ranges from 0.1 to 2 mV (but sometimes up to 9 mV), with a
mean of about 1 mV 19–23. In vivo, due to multiple factors associated with network activities
(e.g., shunting or frequency dependent attenuation), the amplitude of successful single axon
EPSPs is about 0.5 mV 15. Given the fact that the EPSP amplitude depends linearly on the
number of synaptic contacts formed by all the presynaptic neurons 21,23, only 40 to 50 synaptic
contacts are needed to bring the postsynaptic neuron membrane potential from resting level of
−75 mV to −80 mV to firing threshold of around −55 mV in vivo. On the other hand, the actual
rate of EPSPs received by a neocortical neuron in vivo may be much higher. Indeed,
spontaneous firing rates in vivo are at the order of 10 Hz 24,25. Large neocortical neurons
possess between 10,000 and 50,000 synapses 26. Assuming 25,000 synapses on average and
considering that eighty percent of these synapses are excitatory 27, about 200,000 synapses
may be activated each second, or 200 synapses each millisecond (80% from 25,000 synapses
* 10 Hz = 200.000 per sec or 200 per msec). The half-width of EPSPs in vivo is about 10 ms
and this time might be assumed as a period for efficient integration of presynaptic inputs. Thus,
a neocortical neuron can receive up to 2000 inputs during 10 ms window for the efficient
integration. Because the failure rates in vivo are very high (70–80%) 15 the neuron receives
EPSPs in the order of 400–800 within integrating period. This is still 10–20 times more than
the needed number of simultaneously firing presynaptic neurons to fire postsynaptic neuron
(40–50 synapses [see above]). Therefore, the mechanisms of cortical synchronization based
exclusively on excitatory intracortical connectivity would lead to over-excitation of the
network and cannot be considered as an efficient mechanism of cortical synchronization.

Efficient way to synchronize population of excitatory cells involves inhibition. Imagine a group
of excitatory neurons A1,…, An that generate action potentials, which are not synchronized
across cells. Imagine now that all these neurons receive common inhibitory input from
inhibitory cell B. Action potential in cell B would provide synchronous inhibitory postsynaptic
potentials (IPSPs) in neurons A1,…, An, so, when the IPSP terminates, all these neurons A1,
…, An can spike synchronously. If now some of these excitatory cells project back to inhibitory
neuron B, synchronous spiking between A1,…, An would trigger a new spike in cell B therefore
starting a new cycle of oscillation (Figure 1). This mechanism of synchronization commonly
referred to as “feedback inhibition” (see 28 for review of this topic), is involved in many brain
rhythms in different brain systems including, e.g., some types of gamma oscillations 29,30,
thalamic spindles 1,31 and others.

Figure 1. Effect of feedback inhibition in spike synchronization
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Top, eight pyramidal neurons (PYs, thin lines of different color) oscillate asynchronously in 20–25 Hz frequency range with no
inhibitory feedback. About 200 ms after inhibitory GABAergic synapse from the interneuron (IN, black thick line) to PYs was
activated (arrowhead), spikes in the pyramidal neurons became synchronized by IN-mediated IPSPs. Bottom, increase of PYs
synchronization was reflected in large amplitude LFP oscillations (Bazhenov, Timofeev, unpublished observation).

Gap Junctions and Synchronization
Gap junctions (i.e., electrical synapses) allow direct flux of ions between connected cells
therefore providing a mechanism of communication that is action potential
independent 32,33. If few cells are connected through electrical synapses, any change of
membrane voltage in one neuron would trigger current flow between coupled neurons leading
to corresponding changes of membrane voltage in the latter cells, therefore, providing
synchronizing effect. Because of the relatively high resistance of electrical synapses, they act
as low pass filters 10. In cortical networks, groups of GABA-releasing interneurons 34,35 and
glial cells 36 are interconnected via gap junctions. There is a set of indirect evidences suggesting
that electrical coupling may occur between axons of pyramidal neurons 37,38. The role of axonal
gap junctions in the generation of electrical activities is unclear. Intra-axonal recordings did
not reveal the presence of afterhyperpolarizing potentials (AHP) in axons 39,40. Low-pass filter
properties of gap junctions prevent efficient transmitting of fast spikes to coupled neurons and
absence of AHP prevents slower synchronization. Because of this and because of extreme
short-range of electrical coupling, while axo-axonal gap junctions may enhance already
existing synchronization manifested by slow membrane voltage oscillations, it is unlikely that
they play a primary role in establishing neocortical synchronization.

Ephaptic Interactions
Extracellular currents produced by electrical activity of neurons and constituting local field
potentials may directly influence electrical properties of neurons 13. This effect may include
depolarization or hyperpolarization of cell membrane, and therefore a change in excitability.
While being relatively weak, these effects have a global influence and may provide significant
impact when neuronal activity is already synchronized by means of other mechanisms.
Examples include slow-wave sleep oscillations or epileptic activity when a certain degree of
synchrony of electrical activity between neurons is already achieved through chemical or
electrical interactions. In that case, weak but global effect of ephaptic interaction further
enhances the synchrony. Not only internally generated fields can affect neuronal excitability.
The application of external electric field with an amplitude within the range of in vivo
endogenous fields modulates cortical slow oscillation 12,41 and potentiates memory 41.

Changes of the Extracellular Ionic Concentrations
Electrical activity of neurons is associated with opening and closing of different ionic channels
and therefore may lead to changes of extracellular ion concentrations. These effects include
primarily ions whose extracellular concentrations are low, such as K+ and Ca2+. Opening of
K+ channels (such as delayed rectifier voltage gated channels mediating hyperpolariziung
phase of action potential) or Ca2+ channels increase extracellular K+ concentration and
decrease extracellular Ca2+ concentration. While these local changes are normally
compensated by ionic pumps and interaction with glia, significant alternations of extracellular
ion concentrations triggered by electrical activity in one cell may diffuse to neighbor neurons
leading to changes of their excitability and, therefore, contribution to synchronization of
electrical activity between neighbor cells. Experimental evidences suggest that indeed a variety
of ions undergo activity-dependent changes in concentration 14,16. During active states of
cortical slow oscillation, due to activation of synaptic currents (primarily NMDA receptor-
mediated) and Ca2+ gated intrinsic channels, the extracellular concentration of Ca2+ decreases
from 1.2 mM to 1.0 mM 15,42. This leads to a dramatic increase in synaptic failure rates (up to
80 %) 15. Therefore, chemical synaptic interactions contributing to synchronization become
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largely impaired. On the other hand, lower concentrations of extracellular Ca2+ promote
opening of hemichannels 43 that increases effectiveness of gap junctions and therefore,
electrical coupling. The most dramatic changes in extracellular concentration of K+ and
Ca2+ occur during paroxysmal discharges. Extracellular K+ concentration reaches 7–18 mM
during spontaneous electrographic seizures in neocortex 44–46 and the extracellular Ca2+

concentration decreases to 0.4–0.7 mM 44,47,48. These changes dramatically reduce synaptic
excitability basically abolishing synaptic responses 49. Changes in ionic concentrations affect
reversal potential of a variety of intrinsic currents that contribute to neuronal excitability,
synchronization and generation of oscillatory activities, potentially promoting synchronized
oscillations during epileptic seizures 17,50. For example, hyperpolarization activated
depolarizing current (Ih) in neocortical neurons is relatively weak and in normal conditions it
is unlikely to play any significant role in the generation of cortical oscillations. However, during
seizure activity, when extracellular K+ concentration increases, the Ih reversal potential shifts
to a more depolarized value, allowing for this current to depolarize a set of cortical neurons to
the firing threshold, thus leading to the generation of spikes and onset of next cycles of spike-
wave discharges 51.

THALAMOCORTICAL OSCILLATIONS
Periodic oscillatory activity is a common result of neuronal synchronization and it is an
emerging property of the thalamocortical system. Neuronal oscillations enable selective and
dynamic control of distributed functional cell assemblies 52. The patterns and the dominant
frequencies of these oscillations are defined by the specific mechanisms involved and depend
on the functional state of the brain. Normal oscillatory activities include slow (0.1–15 Hz,
present mainly during slow-wave sleep or anesthesia), and fast (20–600 Hz) activities. The fast
activities may be present in various states of vigilance and frequently coexist with slower
rhythms. Each type of oscillation is generated by a particular set of intrinsic neuronal currents,
synaptic interactions and extracellular factors. Spontaneous brain rhythms during different
states of vigilance may lead to increased responsiveness and plastic changes in the strength of
connections among neurons, thus affecting information flow in the thalamocortical system.

The various oscillatory rhythms generated in the thalamocortical system may be divided in two
main classes: intrinsic, generated by a single neuron as a result of an interplay between specific
intrinsic currents [e.g. thalamic delta oscillation], and extrinsic, or network oscillations, which
require the interaction of excitatory and inhibitory cells within a neuronal population (e.g.
spindle oscillation, reviewed in 53). Intrinsic neuronal currents contribute to the generation of
network oscillations. Oscillations may also be generated in a population of non-pacemaker
neurons coupled through gap junctions.

a Near Steady or Infra-Slow Oscillation (<0.1 Hz)
This type of oscillatory activity has a period within the range of tens of seconds to a
minute 54. Prolonged metabolic disturbance, irritation of brain structures or afferent stimulation
intensify these activities, and phenobarbital or diethyl ether anesthesia as well as strong
electrical stimulation of cerebral cortex dramatically decrease or abolish this brain
activity 54. Very little is known about the underlying mechanisms of these oscillations.
Hypercapnia induced negative scalp DC shifts (~ −0.3 mV/CO2%) and hypocapnia induced
positive scalp DC shifts (~0.3 mV/CO2%) 55. Infra-slow activities likely have a cortical origin
given that they can be recorded from neocortical slabs 56. Indirect evidence suggests that infra-
slow oscillations (0.02–0.2 Hz) synchronize faster activities, modulate cortical excitability and
contribute to the aggravation of epileptic activity during sleep 57.
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b Slow oscillation
During slow-wave sleep (SWS) and some types of anesthesia the dominant activity pattern is
a slow oscillation occurring with a low frequency (0.3 – 1 Hz) 1,25,58–60. During slow
oscillation the entire cortical network alternates between silent (Hyperpolarizing, or Down)
and active (Depolarizing, or Up) states, each lasting 0.2–1 s (Figure 2). Silent periods are
periods of disfacilitation, i.e. periods of absence of synaptic activity, while active periods are
periods of intensive synaptic activity leading to the generation of fast oscillations within the
thalamocortical system 25,59,61–64. The survival of slow oscillations after extensive thalamic
lesions in vivo 65 and in cortical in vitro preparations 66, and the absence of slow oscillation in
the thalamus of decorticated cats 67 point to an intracortical origin of this rhythm.

Figure 2. Cortical sleep slow oscillation
At EEG level the slow oscillation appears as periodic alterations of positive and negative waves (indicated by + and − signs).
During EEG depth-positivity cortical neurons remain in hyperpolarized, silent state. During EEG depth-negativity cortical neurons
move to active states, reveal barrages of synaptic events and fire action potentials. (Modified from 53).

A particular feature of slow oscillation is that each cortical slow wave originates in a particular
location and propagates to involve other cortical regions. According to Massimini et al. 68, in
young adult humans (20–25 years old males) the preferential sites of origin of slow waves are
in frontal cortical regions. However, in this high density EEG study, it was unclear whether it
was active or silent states that propagated. Multisite intracellular experiments on cats
demonstrated that it was the onset of active state that propagated, but the onset of silent states
occurred more synchronously 69. Distinct from the above mentioned study 68, the active states
in cats more commonly start at the border between area 5 and 7 of parietal cortex 69. A very
recent study 70 demonstrates that propagation of slow activity in the human brain undergoes
progressive age-dependent changes. In preschool children (2–3 years old), the propagating
waves start from the occipital cortex. From early childhood to late adolescence, the location
on the scalp showing maximal slow wave activity undergoes a shift from posterior to anterior
regions. This suggests a progressive change in excitability of various cortical areas and that
slow oscillation in the brain of adult cat is generated in areas homotypical to human adolescent
brain. A propagation of activity suggests: (a) the presence of cortical regions with different
levels of excitability that start the active states and (b) the presence of active synaptic chains.
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At least three distinct mechanisms for the origin of slow cortical oscillations were proposed.
The first depends on spontaneous miniature synaptic activities (mPSP) 71 caused by the action
potential-independent release of transmitter vesicles and regulated at the level of single
synapses 72,73. Occasional summation of the miniature EPSPs during the hyperpolarized
(silent) phase of slow-sleep oscillations activates the persistent sodium current and depolarizes
the membrane of cortical pyramidal cells, which is sufficient for spike generation 74–76. This
triggers the active phase of the slow oscillation, which is maintained by synaptic activities and
the persistent sodium current. Modeling experiments suggest that short-term synaptic
depression and the activation of Ca2+-dependent K+ current were sufficient to terminate the
active state 75. More recent electrophysiological experiments demonstrated that the active
states terminate with high levels of synchrony 69. Because the short-term synaptic plasticity
and activity of intrinsic currents are very specific for each synapse or neuron, the occurrence
of nearly simultaneous termination of the active states over large distances suggests the
presence of active widespread (inhibitory) mechanism for the termination of active states.
Indeed, about 40% of inhibitory fast-spiking interneurons increase their firing rates at the end
of spontaneous active states during slow oscillation 77. These cells can contribute to the
synchronous termination of active states.

Another possible mechanism accounting for the generation of active states during slow-sleep
oscillation may be the generation of spontaneous activity by layer V cortical neurons 66,78.
Using a cortical slice preparation, it was shown that oscillatory activity in the frequency range
of slow sleep oscillation could be generated at a concentration of extracellular K+ of 3.5 mM,
which is slightly higher than in vivo (i.e., 3.2 mM) 66. This activity was usually initiated in
layer V and propagated over the whole slice.

The third hypothesis attributes transitions from silent to active states to the selective
synchronization of spatially structured neuronal ensembles involving a small number of
cells 79. The ‘‘selective synchronization’’ hypothesis predicts that even during the silent states,
some neurons of the network still generate irregular spontaneous firing.

A group of recent in vitro studies suggests that thalamocortical neurons encompass an intrinsic
mechanism that may act as secondary oscillator supporting slow rhythm 80. Cortical activity
can recruit, through cortico-thalamic synapses, intrinsic oscillatory mechanisms in
thalamocortical neurons 81, which could then increase synchrony among cortical inhibitory
interneurons. Our current studies indicate that thalamic mechanisms may be responsible for
the maintenance of active states with properties observed in vivo 82,83.

A recent in vivo study on anesthetized or sleeping cats demonstrated that spontaneous active
states could originate from any cortical layer, but most often they start from deep layers and
propagate toward more superficial layers 76. It was shown indeed that numerous spontaneous,
spike-independent synaptic events detected during network silent states summate prior to the
onset of active states in all recorded neurons. The pyramidal layer V neurons are the biggest
cortical neurons 26; they possess the biggest number of synapses that contribute to the highest
likelihood of these neurons to summate spontaneous synaptic events to a threshold level for
action potential generation and initiate the active network states. During silent network states,
the levels of extracellular Ca2+ are increased and contribute to the increase in synaptic release
of neurotransmitter 15, facilitating the onset of the active network states.

Regardless of the specific mechanisms involved in sleep slow oscillation generation, long-
range excitatory and inhibitory synaptic connectivity likely plays a major role in
synchronization of transitions between active and silent states of slow oscillation leading to
periodic LFP and EEG oscillations observed in animals and humans during deep sleep.

Page 7

Neuronal Synchronization and Thalamocortical Rhythms in Sleep, Wake and Epilepsy

Jasper's Basic M
echanism

s of the Epilepsies
Jasper's Basic M

echanism
s of the Epilepsies



c Delta oscillation
Field potential recordings from neocortex in human and animal models during sleep reveal the
presence of delta oscillations (1–4 Hz). The delta oscillation likely has two different
components, one of which originates in the neocortex and the other in the thalamus. Neocortical
delta activity was significantly enhanced after surgical removal of thalamus 84 and chronically
isolated neocortical slabs 85. Little is known about the cellular mechanisms mediating cortical
delta oscillation. One of the hypotheses suggests that cortical delta activity could be driven by
the discharge of intrinsically bursting neurons 86. On the other hand, thalamic delta rhythm is
a well known example of rhythmic activity generated intrinsically by thalamic relay neurons
as a result of an interplay between their low-threshold Ca2+ current (IT) and hyperpolarization
activated cation current (Ih) 86b. As such, the delta oscillation may be observed during deep
sleep when thalamic relay neurons are hyperpolarized sufficiently to deinactivate IT 87–90. It
was also shown that at a certain level of leak current (Ileak), the ‘window’ component of IT in
thalamocortical neurons, may create oscillations similar in frequency to the intrinsic thalamic
delta oscillation 91. While specific intrinsic mechanisms are responsible for the generation of
oscillatory activity in individual thalamic neurons, these oscillations would not be
synchronized and would not lead to the observed LFP and EEG rhythms unless spiking/bursting
activity of individual neurons become synchronized by chemical and electrical synapses as
described earlier in this chapter.

Slow wave sleep may be essential for memory consolidation and memory formation 92–95. It
has been proposed that synaptic plasticity associated with slow and delta oscillations could
contribute to the consolidation of memory traces acquired during wakefulness 96.

d Sleep spindle oscillations
Sleep spindle oscillations consist of waxing-and-waning field potentials at 7–14 Hz, which last
1–3 seconds and recur every 5–15 seconds. In vivo, spindle oscillations are typically observed
during the early stages of sleep or during active phases of sleep slow oscillation. In vivo, in
vitro and in silico studies suggest that the minimal substrate accounting for spindle oscillations
consists in the interaction between thalamic reticular and relay cells (Figure 3) 31,97–100. Burst
firing of reticular thalamic neurons induces inhibitory postsynaptic potentials in
thalamocortical neurons. This deinactivates IT, inducing rebound burst firing in thalamocortical
neurons, which, in turn, excite reticular thalamic neurons allowing the cycle to start again.
During the early phase of spindles, the reticular nucleus single-handedly drives the spindle
oscillation via intrinsic mechanisms 100–103. The second component of spindles, on the other
hand, primarily develops as a result of interactions between reticular and relay
neurons 104,105. Additionally, cortical firing contributes to spindle synchronization through
cortico-thalamic feedback connections, thereby imposing simultaneous excitation of reticular
and relay neurons 106,107. The waning phase of spindles occurs as a result of network
desychronization 103,107a and of Ca2+-induced cAMP-dependent up-regulation of the
hyperpolarization activated cation current, Ih, in relay cells 108–110. It is important to mention
that reticular thalamic neurons are interconnected via gap junctions, which aid in synchronizing
spindles 111,112.
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Figure 3. Cellular basis of spindle activity
A, In vivo recordings. Three phases of a spindle sequence. Dual intracellular recording of cortical (area 4) and thalamocortical
(TC) neurons from ventro-lateral (VL) nucleus of the thalamus. B, Computational model. Spindle oscillations in the circuit of 2
reticular thalamic (RE) and 2 TC cells. RE cells fire every cycle of oscillations while TC cells skip every other cycle. Black and
red colors are used to distinguish two different neurons. (Modified from 53).

While spindle oscillations propagate in thalamic slices 113, thalamocortical synaptic
interactions promote large-scale synchrony of spindle oscillations in vivo 114. Human sleep
spindles are highly synchronous across the scalp when measured by EEG, but not when
measured simultaneously with magnitoencephalogram (MEG) 115. MEG signals show low
correlation and low coherence with each other or with EEG signals. Principle Components
Analysis shows that the MEG field pattern is more complex than the EEG pattern implying
that MEG signals are produced from multiple partially independent cortical generators,
whereas EEG may instead be dominated by a weak, but widespread spindle generator. It was
proposed that the differential activity patterns in the core (thalamocortical neurons forming
specific, focused projections to cortical layers IV and VI) and matrix (thalamocortical neurons
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forming diffuse projections to layer I) subsystems may explain discrepancies between the
temporal patterns of spindles simultaneously observed in EEG and MEG recordings 116.

Recent studies show that sleep related spindle oscillations are essential for memory
formation 92 and demonstrate short- and middle term synaptic plasticity (reviewed in 96).
Spindling may activate the protein kinase A molecular “gate”, thus opening the door for gene
expression 117 and allowing long-term changes to take place following subsequent inputs.

e Beta-gamma oscillation
The waking state of the brain is characterized by the predominance of frequencies in the beta
(15–30 Hz) and gamma (30–80 Hz) ranges 118,119. These fast rhythms are also synchronized
between neighboring cortical sites during some forms of anesthesia, natural slow-wave sleep,
and REM sleep 62,120,120a when consciousness is suspended and thoughts are either absent or
bizarre. During slow-wave sleep the fast rhythms follow the onset of depth-negative EEG wave
(Figure 4). In vitro experiments and computational models demonstrated that gamma activity
generation depends on the activity of inhibitory interneurons 121–126. Gamma activity can exist
in transient and persistent forms. Experimentally, transient (hundreds of milliseconds) gamma
oscillations can be induced by tetanic stimulation of the hippocampus 124,127. Persistent gamma
activity is found in CA3 128 and neocortex 129; this form of gamma oscillation can be induced
by bath-application of carbachol or kainate and it can last for minutes to hours. During
persistent gamma activity, the interneurons fire on every cycle or every two cycles and
pyramidal cells fire at much lower frequencies suggesting that active inhibition is involved in
the generation of this particular rhythm. Finally, it was found that GABAergic interaction in
isolated interneuron networks may lead to network oscillation in the gamma frequency
range 130,131. In both computational models and in vitro experiments, it was shown that the
frequency of these oscillations depends on the conductance and decay time of GABAA
currents 130. Large-scale network simulations revealed that coherent gamma range oscillations
may appear through occasional increases in spiking synchrony within local groups of cortical
neurons 132. It was shown that even local synaptic connectivity may explain long-range
synchrony of gamma oscillations 133.
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Figure 4. Gamma oscillation is an important component of slow oscillation of sleep
Depth- EEG recoding from area 5. Slow oscillation, spindles and gamma activities are indicated. Below, Fast Fourier
Transformation of the recoding shown above. (Modified from 53).

During waking, gamma activity is associated with attentiveness 134,135, focused arousal 136,
sensory perception 137, movement 138,139 and prediction 140. It has been proposed that
synchronization in the gamma frequency range is related to cognitive processing and is
important for temporal binding of sensory stimuli 18,141,142. Gamma activity with low levels
of coherence is present within active phases of slow-wave sleep 62,64,143,144. However, the
role of this activity is unknown. During REM sleep, highly coherent gamma activity 143 may
contribute to the generation of dreams.

f Ripples
Fast oscillations (>100 Hz), termed ripples, were initially described in CA1 hippocampal area
and perirhinal cortex, where they were associated with bursts of sharp potentials during
anesthesia, behavioral immobility, and natural sleep 145–149. In the neocortex, fast oscillations
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(>200 Hz, up to 600 Hz) have been found in sensory-evoked potentials in the rat barrel
cortex 150,151, during high-voltage spike-and-wave patterns 152. The neocortical network
seems to be sufficient for the generation of ripples, as demonstrated using isolated cortical slab
preparations 153. In addition to active inhibition 149,153, the electrical coupling mediated by
gap junctions contributes to ripple synchronization 154–156. The electrical coupling may occur
between axons of principal cells 157 as well as via a network of inhibitory
interneurons 10,34,35,158,159. Since ripples are also recorded in glial cells, the electrical coupling
between gial cells could also play a role in the synchronization of ripples 155. The field
potentials increase neuronal excitability, and by a positive feedback loop they could also be
involved in the generation of neocortical ripples 160. In non-anesthetized brain the highest
amplitude of ripples in neocortex occurs during active phases of slow-wave sleep, it is lower
during both REM sleep and waking state, and it reaches lowest values during silent phases of
slow-wave sleep 153.

Neocortical ripples are generated during large amplitude spontaneous or evoked field potential
deflections. These ample changes in the field potential are associated with synchronous activity
of many neurons. This suggests that ripples may “alarm” the brain network about the presence
of a large firing neuronal constellation. The danger of such a focal synchronous excitation of
a neuronal pool is that it may overcome a certain threshold of excitability, leading to the onset
of seizures 155,160.

Short- and Long-Range Synchrony during Experimental Epilepsy
Cortically generated electrographic seizures arise without discontinuity from sleep
oscillations 161. These seizures are accompanied by the generation of large amplitude field
potentials, suggesting the presence of enhanced local synchrony 161 and are characterized by
spike-wave (SW) or spike-wave/polyspike-wave (SW/PSW) complexes at 1–2.5 Hz,
intermingled with episodes of fast runs at ~7–16 Hz 162–165. The evolvement of these seizures
from the cortically generated slow oscillations may be shaped by the thalamus 81,163,166–169.
The electrographic pattern of SW/PSW seizures as well as their occurrence during slow-wave
sleep resembles the seizures accompanying the Lennox-Gastaut syndrome in humans 170–
173.

These seizures could be classified as primarily focal and secondarily generalized (see Figure
3 in 174); visual inspection suggests that on most occasions they start and stop almost
simultaneously in all recorded areas. Precise measurements of synchrony during SW/PSW
seizures suggest that long-range synchrony recorded on a wave-by-wave basis is rather
loose 161,168,174,175. The coefficient of correlation of field potentials recorded during SW
complexes fluctuates between 0.3 and 0.8 176. However, the field potentials recorded during
these seizures are of large amplitude, often exceeding the amplitude of slow waves recorded
during natural slow-wave sleep 176 or during anesthesia-induced slow oscillation 161,163,
suggesting existence of high local synchrony. Within the fast runs, the patterns of
synchronization recorded in different electrodes are as follows: (i) synchronous, in phase, (ii)
synchronous, with phase shift, (iii) patchy, repeated in phase/phase shift transitions and (iv)
non-synchronous, with slightly different frequencies in different recording sites or absence of
oscillatory activity in one of the recording sites; the synchronous patterns (in phase or with
phase shifts) were most common 174. All these patterns could be recorded in the same pair of
electrodes during different seizures or even during different periods of fast runs within the
same seizure. An example of such recording is shown in the figure 5. Here, during the first
period of fast runs, which started and terminated almost simultaneously at both the intracellular
and the EEG levels, the field potential and the neuron recorded 2 mm apart oscillated with
different frequencies, and thus there was no synchronization. During the next period of fast
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run, both the neuron and the field potential signal oscillated in perfect synchrony, and the
neuron fired constantly during the descending phase of the field potential deflection.

Figure 5. Variability in neuron – field synchronization during fast runs
A. Depth-EEG and simultaneous intracellular recordings during an electrographic seizure. The distance between field potential
electrode and the intracellularly recorded neuron was 2 mm. B. A superposition of field potential (upper panels) and intracellular
recordings (lower panels) during fast runs for the two consecutive periods of fast runs. Note the different frequencies of oscillations
in the EEG and intracellularly recorded neuron during the first period and in phase synchronization during the second period. C.
The distribution of patterns of synchronization for 312 periods of fast runs. The coherent patterns (0 time lag or with phase shift)
constituted 70 % of the cases. “Arrhythmic” stands for periods of fast runs recorded at one electrode, while the activity in another
electrode was not rhythmic (adapted from 174).

Why is the local synchrony during seizures enhanced as indicated by large amplitude field
potentials, and why is the long-range synchrony impaired, as shown by a variety of synchrony
patterns (Figure 5)? We propose the following scenario that explains both enhanced local and
decreased long-range synchrony. Seizures are associated with activation of a large variety of
neuronal currents 161,177. During seizures, the extracellular levels of K+ increase, and the
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extracellular levels of Ca2+ decrease. While diffusion potentially reduces ion gradients in the
extracellular space, a limited diffusion rate, further reduced by cell swelling during seizure,
allows formation of local areas of “abnormal” ion concentrations. These changes are commonly
found in different structures, including neocortex and hippocampus, and in both in vivo and
in vitro recordings 44,47,178,179. The changes in extracellular concentration of K+ and Ca2+

occur simultaneously 47,180,181. Low levels of extracellular levels of Ca2+ significantly dampen
synaptic transmission 8,182. Thus, chemical synaptic transmission cannot play a leading role
in synaptic interactions during seizures. In addition, our recent data show that in high (12 mM)
extracellular K+ conditions, the action potential generation is impaired and action potentials
fail to propagate via axons (Figure 6), probably due to a depolarizing block and decreased input
resistance 49. Therefore, action potentials do not reach target structures. All these factors lead
to an impairment of long-range synchronization during seizures because the neurotransmitter
mediating these interactions is not released. On the other hand, low Ca2+ conditions could favor
local synchronization via gap junctions. Indeed, when extracellular levels of Ca2+ drops to 1
mM and lower, as it is observed during seizures, the hemichannels that form gap junctions
remain open 43, while they are half closed at physiological Ca2+ conditions (1.2 mM). This
strengthens electrical coupling between glial cells 183 and cortical interneurons 34,35 that
mediate local synchrony. Furthermore, elevated extracellular levels of K+ enhances cell
excitability and promotes bursting activity 17,50,184 that is transmitted better through gap
junctions than single action potentials. Potentially, electrical coupling between axons of
pyramidal cells 37 could also contribute to local synchronization, although the major type of
activities recorded in axons are action potentials, which could not be efficiently transferred via
gap junctions, because they constitute a low pass filter. Accordingly, the use of halothane, a
gap junction blocker, effectively blocks seizure generation 155.
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Figure 6. High K+ concentration impairs generation of action potentials in neocortical neurons
A. Responses of a cortical neuron to depolarizing current pulses in control (2.8 mM) and ‘paroxysmal’ (12 mM) K+ conditions.
When 12 mM K+ was used the neuron became depolarized and generated maximum one spike in response to intracellularly applied
current pulse. When the membrane potential was returned close to control values (−58 mV) by injection of a negative holding
current, action potentials were not generated. B. Electrical stimulation of neighboring cortical tissue induced antidromic and
orthodromic responses in recorded neurons. Both anti- and orthodromic spikes were abolished when 12 mM K+ was used,.
(Seigneur, Timofeev, unpublished observations).

Hence, the decrease in extracellular levels of Ca2+ and the increase in extracellular levels of
K+ to those concentrations that occur during seizures, significantly impair long-range neuronal
synchronization, due to a decrease in neuronal firing ability and a diminution of transmitter
release. However, the same changes may increase local synchrony, mediated via gap junctions
and possibly ephaptic interactions.
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CONCLUSIONS
We propose that neocortical synchronization can be achieved via intracortical and
thalamocortical mechanisms. Four leading mechanisms of synchronization play a distinct and
important role: (i) chemical synaptic transmission, (ii) electrical coupling, (iii) ephaptic
interactions and (iv) activity-dependent changes in ionic concentrations. Major types of cortical
rhythmic activities (slow oscillation, delta, spindles, beta-gamma, ripples, paroxysmal spike-
waves and fast runs) are generated using these mechanisms. It is difficult, however, to identify
the exact contribution of each mechanism to a specific type of oscillation. It is clear that long-
range synchronization is achieved using chemical synaptic interactions. Due to the low-pass
filtering properties of gap junctions, electrical coupling should play a smaller role in
synchronization of fast rhythmic activities as compared to slower activities. Nevertheless
gamma rhythm depends on activity of interneurons, which are known to be interconnected via
gap junctions; therefore, gap junctions should play a critical role in the generation of these
oscillations. Weak electrical fields in the EEG range synchronize effectively cortical activities
at low, but not at high frequencies. Finally, activity-dependent ionic changes may influence
local synchronization by modulating neuronal excitability; however, since ionic changes also
affect synaptic transmitter release, this could result in impairment of long-rage synchrony.
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