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Working memory is the ability to transiently hold and manip-
ulate goal-related information to guide forthcoming actions1,2.
The prefrontal cortex (PFC) is the brain structure most closely
linked to working memory, based on lesion, local inactivation
and brain imaging studies2–6. PFC neurons show elevated per-
sistent activity during delayed reaction tasks, when information
derived from a briefly presented cue must be held in memory
during a delay period to guide a forthcoming response 
(Fig. 1)2,5–9. Persistent delay period activity is often selectively
correlated with, and might thus encode, a previously presented
cue, a forthcoming response or expected choice situation, or a
particular contingency between cue and response7–13. If the per-
sistent activity is disrupted either by electrical stimulation or by
highly distracting stimuli presented during the delay period, or
if it breaks down spontaneously, the animal is highly likely to
make an error (Fig. 1b)2,5,7. This persistent activity in PFC neu-
rons could carry information about previously encountered
stimuli or future responses required to solve working memory
tasks. Thus, this type of short-term memory relies on the main-
tenance of elevated firing rates in specific subpopulations of neu-
rons rather than on synaptic plasticity, which might underlie
long-term memory.

The phenomena and mechanisms discussed here are not nec-
essarily unique to the PFC. Sustained, memory-related delay
activity is observed in many brain areas, including parietal cor-
tex, inferotemporal cortex, motor areas, hippocampus, and even
brain stem8,14–18. However, delay activity is more prominent in
the PFC than in other areas, and also more robust to interfer-
ing stimuli14, ensuring that delay activity is task-driven and does
not passively reflect sensory inputs.

Network models can explain electrophysiological observa-
tions and  cognitive aspects of working memory tasks. Models
have been developed on different levels of abstraction, includ-
ing highly abstract connectionist models, which neglect the tem-
poral and spatial dynamics of neurons and synapses, firing rate
models incorporating some biophysically meaningful time con-
stants, and biophysically detailed models of spiking neurons.
Different insights have been gained from each class of models.

This review focuses on firing-rate and spiking-neuron models.
These models are more closely related to the biophysical mech-
anisms of neurons and synapses than connectionist models,
which have been used to model normal behavior and clinical
conditions, learning, neuromodulation and activity profiles in
working memory tasks19–22.

Models of working memory can be broadly classified accord-
ing to how the persistent activity is generated, although these
classes are not mutually exclusive. One mechanism is based on
the idea that activity is sustained through strong recurrent exci-
tatory connections in a ‘cell assembly’23. Most research has been
conducted on this class of models. Another hypothesis is that
activity circulates in loops, called ‘synfire chains’24, consisting
of feedforward-connected subgroups of neurons with no direct
feedback links between successive groups. It is also possible that
single neurons can maintain activity by membrane currents that
allow cellular bistability25,26. Another distinction can be made
between models that have discrete attractor states representing
discrete memory items and models that support continuous
attractor states representing continuous variables like space. This
review is organized around these distinctions.

Persistent activity through recurrent excitation
Activity may be maintained in a neural network through recur-
rent excitation. This idea underlies the Hopfield model27 for
storing discrete memory items in the synaptic weight matrix of
a network and retrieving them as fixed-point attractors of the
activation dynamics. In this model, neurons that collectively
encode the same pattern are wired together reciprocally by
strong excitatory synaptic weights, forming a cell assembly,
whereas neurons that participate in different representations are
connected by weak or, in the original Hopfield model, inhibito-
ry synaptic weights (Fig. 2a). These long-term synaptic con-
nection patterns can be acquired through a Hebb-like learning
rule that reinforces connections between coactive neurons. A
working memory would correspond to the activation of one of
these synaptically stored patterns.

Despite its simplicity, the Hopfield model has many proper-
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ties that are characteristic of human memory, such as similarity-
based generalization, fault tolerance and content addressabili-
ty, which stem from the ability of a recurrent network to retrieve
a stored pattern from a degraded or partial input pattern. Sub-
sequent extensions brought this model closer to biology by sep-
arating excitatory and inhibitory cell types and enabling the
maintenance of activity at physiologically plausible spike rates
well below neural saturation levels, with temporal dynamics that
can be compared to in vivo observations28–32. In these models, a
neuron is described by two variables: the total synaptic input
current, I, and the resulting, monotonically related mean firing
rate, R. In Fig. 2b, all the fixed points (self-sustaining states) of
one cell assembly of such a network are plotted using variable I
(which will be the same for all neurons in a cell assembly if these
are identical) versus the afferent input to that assembly, which
represents an external stimulus. Suppose the neurons of this cell
assembly are stimulated along the afferent input lines (Fig. 2a)
with Iaff>0.4, starting from a silent (subthreshold) network state.
The total current will climb until it reaches the firing threshold,
at which point recurrent excitation will begin (Fig. 2b and c).
Then activity, boosted by recurrent excitation, will rise to the
stable suprathreshold fixed point (Fig. 2b, lower broken arrow).
When the stimulus is withdrawn (Iaff=0), the activity will fol-
low the upper suprathreshold curve in Fig. 2b and remain at a
suprathreshold level even at Iaff=0 (a phenomenon called hys-
teresis). Thus, once driven sufficiently above threshold, network
activity will persist in this high state even after removal of the
original stimulus (Fig. 2c). Depending on the input, different
cell assemblies corresponding to different (and thus selective)
persistent states will be stimulated.

The simplicity of this model has made it possible to study in
detail the stability conditions for selective states, the number of

activity patterns that can be stored, and Hebbian learning with
noisy input patterns28–32. Moreover, many salient properties of
neurons recorded in vivo during delay tasks are captured by the
model32–34. For example, during simulated delayed matching-
to-sample tasks, some model neurons respond only during cue
presentation, some only during the delay period, and others dur-
ing both phases; some model neurons respond to intervening
stimuli presented during the delay with brief increases in activ-
ity rising from the persistent level, others respond with brief
decreases, and some model neurons exhibit a ‘match enhance-
ment’ to the presentation of the target stimulus32–34. All these
response types are frequently observed in vivo5,7,14.

Empirical basis of cell assembly models
The common assumption underlying the models described
above and some biophysically detailed models discussed below
is that activity is maintained by recurrent excitation within cell
assemblies. Recurrent excitatory connections indeed have been
demonstrated anatomically and physiologically in vitro35–37,
and the excitatory interactions between cortical neurons dur-
ing the delay phases of working memory tasks have been probed
by simultaneous recordings from multiple neurons38. These
data do not conclusively show, however, whether recurrent exci-
tation is sufficient to maintain activity.

review

Fig. 1. Delay-period activity recorded in
the prefrontal cortex (PFC) in vivo. 
(a) Spike frequency histograms showing
direction-selective delay activity of a PFC
neuron in an oculomotor delayed
response task. In this task, a monkey is
required to saccade to a briefly presented
cue position after a delay, during which
the monkey has to fixate a fixation point
(FP) in the center of the field. Vertical
lines delimit the following task periods: C,
cue presentation; D, delay period (no
external cue present); R, response
period. The neuron shown maintained
activity during the delay only if the cue
was presented at the bottom (270°) loca-
tion and was significantly depressed when
it was presented in the upper visual field.
Reprinted with permission from Fig. 3 in
ref. 7. (b) Activity of a neuron in three tri-
als of a spatial delayed response task. Bars
indicate the period of cue presentation.
CR, correct right response; CL, correct
left response. During the third trial, a bio-
logically significant distracting stimulus
(monkey cries) was presented during the
period marked by the dots. In this case,
delay activity breaks down, and the mon-
key fails to respond. If interfering stimuli
are biologically less significant, delay
period activity can be maintained14.
Reprinted with permission from Fig. 10 in
ref. 5.
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Maintenance of selective activity within a cell assembly also
requires that specific synaptic connections be formed that
encode the stimulus or response type to be held active in work-
ing memory. The specific connections might arise through
training and familiarization with the stimuli and response types
before testing in delayed-reaction trials. Moreover, some work-
ing memory tasks like spatial delayed-response tasks might sim-
ply rely on a pre-existing synaptic structure forming
topographically organized memory fields in the PFC, even with-
out prior learning7,39. However, the need for a pre-existing
synaptic structure makes it difficult to explain the ability of
humans to retain completely novel stimuli for which no synap-
tic template might exist yet.

The cell assembly models make a number of specific exper-
imental predictions. For example, as synaptic weights within
subgroups of neurons are gradually increased to build up a cell
assembly, stable persistent states appear abruptly due to a bifur-
cation in the network dynamics rather than emerging gradual-
ly28,29. If persistent states indeed come into existence this way,
they should suddenly disappear instead of gradually fading into
spontaneous activity as blockade of excitatory synapses with

AMPA/NMDA antagonists is gradually increased during suc-
cessive delay trials in vivo. Moreover, if a stimulus is not suffi-
ciently similar to any of the previously learned patterns, activity
should decay after removal of the stimulus to the spontaneous
level, as may indeed occur in some brain regions or task con-
texts40. On the other hand, overlearned stimulus–response asso-
ciations seem to evoke less activity in the PFC than relatively
novel stimuli10, indicating that other mechanisms or brain
regions might get involved after extensive training.

Low spontaneous and selective high-activity states
In contrast to the model in Fig. 2, PFC neurons in vivo are never
silent but fire spontaneously at rates of 1–10 Hz between differ-
ent trials of a working memory task, outside a task context, or
even during the delay phases if they are not tuned to the current
stimulus or response5,41–43 (Fig. 1). This raises the question of
how spontaneous network activity can remain stable without
driving the network automatically into a high-activity state.

This question was addressed using a mean-field approxima-
tion to a spiking neuron model where the input from a popu-
lation of neurons was replaced by its mean and variance29. This

Fig. 2. A firing rate
model28,30,31,34 of delay-
period activity in net-
works of PFC neurons.
(a) Structure of the net-
work model. Two pat-
terns (‘cell assemblies,’
green and yellow boxes)
coding for two different
objects are embedded in
the symmetric synaptic
weight matrix. Neurons
within the same cell
assembly are connected reciprocally by high synaptic weights (w+), whereas neurons not
belonging to the same assembly are connected by low synaptic weights (w–). Single neurons
might participate in more than one cell assembly (green/yellow box; this has also been
observed experimentally40,63). In addition to these local recurrent excitatory connections,
there is a global feedback inhibition (IN) driven by input from the excitatory neurons that
allows only one pattern to stay active at a time, and an external afferent input (Iaff) to each
unit in the network. Model neurons i are described by their total synaptic input current Ii,
which evolves in time according to the leaky-integrator differential equation:

τI dIi/dt = –Ii + Σ wij R(Ij) – G[Σ R(Ij)] + Iaff (1)

where τI is the integration time constant, wij ∈ {w–, w+} is the strength of the synaptic con-
nection from unit j to unit i, R(Ij) is the firing rate of neuron j, G is feedback inhibition that
depends on the overall activity level in the network, and Iaff is the afferent input. The firing
rate of a neuron is assumed to be R(Ii) = 0 as long as Ii stays below some firing threshold
θexc, and R(Ii) = ln(Ii/θexc) as soon as Ii crosses the threshold. (Other choices for R are pos-
sible.) Self-sustaining states (fixed points) of the system are given by the condition that 
dIi/dt = 0 for all units i, so that the network activity stays constant in time. (b) The fixed points (self-sustaining states) of one cell assembly are plotted
versus the afferent input (called a bifurcation diagram), assuming that all other neurons in the network are silent. θexc denotes the firing threshold as
defined above. For Iaff < –0.12, only one stable fixed point exists, which is subthreshold. Similarly, for Iaff > 0.4, only one stable fixed point exists, but it
is suprathreshold. Within the regime Iaff ∈ [-0.12; 0.4], three fixed points coexist; two are stable (solid curves), whereas the third (dashed curve) is
unstable. The stability of the fixed points can be determined by evaluating the time derivates (flow field) as given by Eq. 1 for Ii in the vicinity of these
points, as indicated by the solid arrows (which here indicate only the direction, not the speed of flow). In the vicinity of the subthreshold and upper
suprathreshold fixed points, the flow is toward these points (called their basin of attraction), whereas it is away from the lower suprathreshold fixed
point. The subthreshold and upper suprathreshold fixed points are therefore attractors that are stable against perturbations. The two black dots accen-
tuate the two attractor states for Iaff = 0 (labeled I1* and I2*). Different suprathreshold attractor states exist corresponding to the number of different
patterns stored in the network. (c) Delay-period activity in the network described above. A transient (∆t = 50) excitatory afferent input (Iaff = 1.0) at 
t =100 excites one of the synaptically stored patterns and switches the network into a selective persistent mode, whereas a transient inhibitory affer-
ent input (Iaff = –1.0) at t = 450 terminates persistent activity. (Such inhibitory inputs might originate as a feedback signal from motor systems after goal
achievement77.) Note that total synaptic current of the neurons in one cell assembly is plotted here as a function of time, whereas in (b) fixed points of
activity are plotted as a function of Iaff. The dots mark the same stable steady-state conditions for Iaff = 0 as in (b).
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analysis showed that global low spontaneous activity could be
another stable state if there is a slight dominance of local inhi-
bition over excitation, or if the integration time constant of the
excitatory neurons is much slower than the inhibitory ones.
However, this model assumed that only a small fraction of the
neurons in the network participate in encoding a given persis-
tent pattern (‘sparse coding’), in contrast to the in vivo finding
that a large percentage of the recorded neurons are active dur-
ing any given delay period5,9,14. The stability of spontaneous
states under these conditions needs to be examined further.

An intuitive way to see how spontaneous activity could be
stable is to focus on the dotted Iaff = 0 line in Fig. 2b, and to
note that transient suprathreshold current fluctuations will not
by themselves drive one of the cell assemblies into the upper
stable fixed point as long as these presumably random and non-
selective fluctuations stay below the curve marked by the unsta-
ble fixed point. Such fluctuations might be induced by
time-varying external inputs with a subthreshold mean (for
example, <Iaff> = 0) that occasionally drive neurons across
threshold and thus elicit spiking. Hence, spontaneous activity
might result from random non-selective perturbations around
a subthreshold resting state that do not get reinforced suffi-
ciently by recurrent excitation.

Synaptic basis of persistent activity 
Firing rate models provide insight into many aspects of attrac-
tor networks but generally ignore the wide range of biophysi-
cal time scales in cortical neurons, the consequences of single
spikes for dynamics, and the specific contributions of voltage-
gated and synaptic ion channels to delay activity. For example,
it is not at all clear whether robust delay activity, at frequencies
as low as the 15–20 Hz observed in vivo5,7,9,14, can actually be
achieved by recurrent excitation within a local network with
realistic synaptic time constants44,45. Given the fast decay of
AMPA receptor currents, only much higher firing frequencies,
on the order of the inverse of the AMPA current time course 
(> 50 Hz), might be reasonably robust to noise or distractors.

Recent biophysical models with spike output based on con-
ductance changes have shown that AMPA currents alone are

indeed insufficient to maintain robust delay activity at physi-
ologically realistic rates if slower negative feedback mechanisms
like synaptic short-term depression are present44. However,
NMDA receptor currents, which last over eighty milliseconds,
could enable robust delay activity in the 15–40 Hz range by pro-
viding a nearly constant synaptic drive45,46 (Fig. 3). These
results emphasize the critical importance of NMDA currents
to normal synaptic function, apart from their contribution to
synaptic plasticity. In contrast, increasing the relative contri-
bution of AMPA versus NMDA receptor currents leads to more
synchronized and less robust delay activity that is more vul-
nerable to noise and interfering input44–46. Interestingly, the
PFC has the highest NMDA receptor density of all cortical
areas47, forming a possible basis for its special role in sustaining
delay activity. These models predict that partial blockade of
NMDA currents should diminish delay activity, consistent with
observations that NMDA blockers interfere with working mem-
ory and delay activity48,49. In contrast, partial blockade of
AMPA currents should render delay activity more robust to dis-
tractors14,45.

Neuromodulation of working memory activity
Neuromodulators might alter the processing mode of prefrontal
networks to adjust them to specific tasks. The best-studied neu-
romodulatory system for working memory in the PFC is the
dopaminergic input from midbrain neurons in the ventral
tegmental area and substantia nigra pars compacta. Dopamin-
ergic activity increases during working memory tasks50,51 and
optimal stimulation of D1 receptors in the PFC is essential for
performance involving working memory52–55, but the function of
dopamine in working memory is not yet known.

Dopamine has multiple effects on voltage-gated and synap-
tic currents in PFC neurons in vitro. For example, it enhances
persistent Na+ and NMDA-receptor conductances56–59. When
these ionic and synaptic effects of dopamine were included in
biophysically detailed network models of PFC neurons, the
robustness of delay-period activity to distracting stimuli and
noise was greatly enhanced34,45. This was a consequence of non-
linear interactions between the dopamine-regulated currents
and network activity that strengthened the currently active cell
assembly but suppressed spontaneous activity and competing,
currently inactive assemblies. By increasing the robustness of
working memory representations, dopamine might ensure that
actions remain directed toward behaviorally relevant goals over
extended periods of time in the face of competing and distract-
ing stimuli.

These models predict that local application of dopamine ago-
nists at low doses in the PFC should make delay-type activity more
robust to distractor stimuli, whereas high doses might overstabi-
lize representations so that they persist even between trials, result-

review

Fig. 3. (Asynchronous) delay activity at physiologically plausible firing
rates is not stable if excitatory synapses are too fast. The network
model is simulated in the presence of strong recurrent inhibition. The
speed of the excitatory synaptic kinetics is varied, whereas the steady-
state synaptic drive and the mean firing rate are maintained. (a) With a
decay time constant for the excitatory synapses of τE = 80 ms, a brief
current injection turns the network on to a persistent state, with a
mean firing rate of the excitatory neurons of RE ∼ 33 Hz. (b) With 
τE = 18 ms, the persistent state is still stable, but the firing rate shows
large fluctuations in time. (c) With τE = 17 ms, the fluctuations eventu-
ally bring RE(t) too close to zero, and the network returns to the rest
state. Reprinted with permission from ref. 44, Fig. 8.

a

b

c

© 2000 Nature America Inc. • http://neurosci.nature.com
©

 2
00

0 
N

at
u

re
 A

m
er

ic
a 

In
c.

 •
 h

tt
p

:/
/n

eu
ro

sc
i.n

at
u

re
.c

o
m



1188 nature neuroscience supplement •  volume 3  •  november 2000

review

ing in response perseveration—the inability of an animal to switch
to a new response type34,45. Another prediction is related to the
observation that a dopamine-induced increase in GABAA recep-
tor currents was necessary to suppress the spontaneous activation
of task-irrelevant representations in the model. As a consequence,
partial blockade of GABAA receptor currents in vivo in the PFC
might enhance delay activity but should reduce working memo-
ry performance45, in line with experimental results60.

Recent evidence suggests that the effects of dopamine on pre-
frontal neurons might depend on time, agonist concentration and
the receptor subtype activated57–59,61, possibly producing complex
outcomes that should be addressed in future modeling studies.

Persistent activity through synfire chains
An alternative way to sustain activity locally at delay-period rates
as observed in vivo is a ‘synfire chain’—a wave of synchronous
activity that travels through feedforward-connected subgroups
of neurons arranged in a chain and which might be maintained
through closed loops within the chain24,62. Thus, activity is prop-
agated from subpopulation to subpopulation through asym-
metric connections as opposed to the dense reciprocal
connectivity that maintains activity within cell assemblies.

Activity in synfire chains might seem vulnerable to either
decay or blowup, but stable, noise-tolerant propagation of activ-
ity packets through subpopulations of neurons is possible as
long as the total activity and dispersion in spiking times stay
within some reasonable limits forming a basin of attraction62.
During delay periods synchronous spiking occurs in the motor
cortex with higher than chance frequency and different sub-
groups of neurons become synchronized during different task
periods63, consistent with activity in a synfire chain. 

These experimental findings do not, however, rule out any of
the competing models. Moreover, synfire chains might require
more neurons to sustain activity because the lack of a dense
recurrent connectivity makes sustained activity along the chain
more sensitive to loss of feedforward connections. Activity in a
synfire chain might also be less robust to interference than
NMDA-mediated recurrent excitation since it requires some
synchrony in spiking times62 which makes it more vulnerable
to noise and GABAergic inhibition44,46. 

Working memory through cellular bistability
Models based on recurrent excitation and synfire chains can deal
with novel stimuli or combinations of features only through
synaptic learning, which might be too slow to account for our
ability to generalize immediately to novel stimuli in trial-unique
working-memory tasks64. A possible solution to this problem is
based on cellular bistability, in which single neurons have two
different stable states, one resting state and one continuously
spiking ‘up’ state. Thus, this mechanism does not rely on a spe-
cific synaptic matrix formed by prior learning to maintain activ-
ity. The up state could either be sustained completely
independently of synaptic inputs, by voltage/Ca2+-gated mem-
brane currents, or might exist only in the presence of sufficient
synaptic drive. Input-independent cellular bistability has been
used in connectionist and spiking neuron models to store novel
information and represent memory items consisting of arbitrary
combinations of features20,65,66. One disadvantage of input-inde-
pendent cellular bistability is that the state of the single neurons
maintaining the representation may be more sensitive to dis-
tractors or noise than if delay activity depended also on synaptic
feedback from other neurons.

The nonlinear current–voltage relationship of the NMDA
receptor could provide a basis for selective bistability that does
not depend on a specific pattern of synaptic connectivity,
although it does depend on synaptic inputs26. Because of the
voltage dependence of the NMDA receptor conductance, the
current is zero at its reversal potential around 0 mV, approach-
es zero again for very negative membrane potentials, and peaks
in between. This property, in the right combination with AMPA
and GABAA receptor currents, can produce two stable fixed
points of the membrane potential (Fig. 4a), where the higher
fixed point corresponds to a form of NMDA-receptor-mediat-
ed dendritic plateau potential (Fig. 4b). An arbitrary subgroup
of neurons could be locked into the higher fixed point, such
that selective persistent activity is due to recurrent synaptic
drive and to the dendrites of this subgroup settling at a higher
membrane voltage, which removes the Mg2+ block of dendrit-
ic NMDA receptor channels. Neurons in the network not depo-
larized to this level would remain at the lower fixed point of the
membrane potential and hence have much less NMDA receptor

Fig. 4. Maintenance of selective work-
ing memory by NMDA-receptor-
induced cellular bistability. The
structure of the network was the same
as in Fig. 2a, with the important differ-
ence that all recurrent synaptic
weights were the same; that is, there
was no prestructured synaptic matrix.
(a) Steady-state current–voltage curve
for the neuron’s synaptic conduc-
tances, I = gGABA (V – VGABA) + gAMPA V +
gNMDA V/(1 + 0.15 e–0.08V). Solid dots
mark three zero crossings (fixed
points) in the solid middle curve; two
of these occur at voltages where the
slope is positive and the neuron is
therefore bistable. If the GABA receptor conductance (top) or the AMPA receptor con-
ductance (bottom) is increased, bistability disappears. (b) Network simulation showing
that pyramidal cells that received external input (thick vertical bar) continue to fire after
input ceases, whereas cells that were not stimulated remain silent (top). Each dot in the
raster plot represents a spike. Bottom, dendritic membrane potential (Vd) and NMDA
current (INMDA) for two pyramidal cells (one active, one inactive). Reprinted with permis-
sion from ref. 26, Fig. 1.
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current, while receiving the same synaptic input.
There is some experimental evidence for cellular bistability

in prefrontal neurons in vivo mediated by NMDA receptors and
modulated by dopamine (H. Moore et al., Soc. Neurosci. Abstr.
24, 823.8, 1998; B.L. Lewis & P. O’Donnell, Soc. Neurosci. Abstr.
25, 664.3, 1999). Single PFC neurons in vitro also show bistabil-
ity following application of muscarinic agonists that enhance an
afterdepolarizing, Ca2+-activated mixed cationic current67. This
current can sustain spiking that outlives the short period of stim-
ulation. Thus, acetylcholine, a neuromodulator that is also
involved in working memory68, might promote cellular bistabil-
ity in PFC neurons that is independent from synaptic input.
However, more experimental evidence is needed to support the
idea of cellular bistability and its possible role in persistent activ-
ity in the PFC, on its possible ionic basis, and its dependence on
neuromodulators and synaptic inputs. For example, whether
NMDA receptor currents can indeed produce a dendritic plateau
potential26 could be tested in vitro.

Models with continuous attractors
The recurrent networks discussed so far have connectivity that
supports discrete, multistable attractor states, which are points
in the space spanned by the firing rates of the neurons and/or
their spatial positions in the network. To address the question
of how continuously-valued variables like spatial position or
stimulus frequency can be maintained in memory, recurrent
network models have been developed that approximate a con-
tinuum of stable states that have the topology of lines and sur-
faces in time-averaged quantities like the firing rates. That is,
activity states of these systems are stable against perturbations
that push the system away from these lines or surfaces, but not
necessarily to perturbations that move the system along these
lines or surfaces. Wilson and Cowan69 and Amari70 were among
the first to explore such dynamics in firing rate models.

An example of a system with continuous attractors is the
compass cells found in various limbic areas of the rat brain,
which represent the direction of the rat’s head. This activity per-
sists in the dark and does not depend on visual input71. A firing
rate network model with activity states that can move around a
circle shares several properties of compass cells72. However, with-
out visual input, there is a slow drift in the spatial position of
the activity profile, which is reproduced in the model when some
noise is added, indicating that the state of the system is indeed
not stable against perturbations along the attractor continuum.
Another example is the spatial position of a cue in the oculo-
motor delayed response task7 (Fig. 1a), which could be encoded
by a continuum of spatially tuned activity profiles in the PFC73.
This latter model also used cellular bistability, ensuring stabili-
ty against perturbations along the spatial quasi-continuum,
although the bistability per se was not needed to maintain activ-
ity. In all these models, the continuity of attractor states is
achieved by synaptic connections that are symmetrical along
points in space and a decreasing function of the spatial distance
between neurons, such that activity profiles can be localized any-
where in the neural space.

A spatial continuum of activity patterns constitutes one way
to represent continuous variables like location or direction.
Another possibility is to represent continuous-valued sensory
or motor attributes by a continuum of persistent firing rates.
For example, PFC neurons recorded in vivo in a parametric
working memory task encode the flutter frequency of tactile
inputs monotonically with firing rate during the delay74. Similar
activity patterns occur in integrator neurons in the oculomotor

system, which linearly encode in their firing rates the current
eye position even without persistent visual input16. This behav-
ior was recently reproduced in a biophysically detailed model
that has a continuous range of quasi-stable states of persistent
firing75. A nearly continuous range of self-sustaining activity
levels was achieved by precisely tuning all synapses such that,
with rising activity levels, the increasing saturation in recurrent
synaptic inputs was compensated by recruiting more and more
neurons into the active state, resulting in a fine-tuned balance.
However, this model is highly sensitive to the exact tuning of
the synapses, and there may be more robust ways to represent
a continuum of persistent firing rates.

Conclusions
Network models have provided general insights into the specif-
ic mathematical conditions that allow networks to have multiple
selective and stable persistent memory states in addition to non-
selective spontaneous states. Detailed realistic models were used
recently to explore the specific ionic mechanisms that may
underlie robust persistent activity and working memory per-
formance. By making much closer contact to in vitro and in vivo
data than earlier models, it has also been possible to make phys-
iologically more specific predictions. Moreover, new ideas have
been introduced for fast and flexible coding in working mem-
ory, for how neuromodulators affect working memory, and for
continuous attractors that represent continuous variables.

The different cellular and network mechanisms reviewed
here are not mutually exclusive, but may co-occur in the PFC
and other brain structures to allow a large variety of strategies
for flexible coding and manipulation of information. For exam-
ple, cellular bistability could be used to actively maintain novel
items, but might not be sufficiently robust to distractors and
noise. Through mechanisms for synaptic plasticity, more per-
manent representations of these items might be formed that
enhance  robustness of sustained activity and enable fast pro-
cessing at lower, metabolically economical firing rates.

Holding onto information, and the stimulus-selective, sus-
tained activity associated with it, is just one aspect of working
memory. During in vivo recordings, transitions between dif-
ferent types of activity are observed, with stimulus-related activ-
ity often decreasing and response- or expectancy-related activity
slowly increasing during the delay8,10,43,74. These findings reveal
a much richer dynamic repertoire than has been addressed so
far with models. It is also not clear how these electrophysio-
logical phenomena relate to cognitive processes in the PFC.
Another open issue is how performance in delayed-reaction
tasks can be acquired through a series of conditioning proce-
dures as used in animal experiments10. This question has been
addressed in connectionist models20 but not yet in biophysi-
cally realistic models. Finally, neural models should be extend-
ed to provide insights into the dynamics underlying higher
cognitive functions of the PFC that are based on working mem-
ory, such as planning and problem solving4,76, thus fully
addressing the question of ‘working with memory’ in the con-
text of goal-directed behavior.
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Viewpoint • Facilitating the science in computational neuroscience
‘Computational neuroscience’ means different things to different people, but to me, a defining feature of the computational approach is
that the two-way bridge between data and theory is emphasized from the beginning. All science, of course, depends on a symbiosis
between observation and interpretation, but achieving the right balance has been particularly challenging for neuroscience. Here I
discuss some of the difficulties facing the field, and suggest how they might be overcome.

The first problem is that quantitative experiments are generally difficult and time consuming, and it is simply not possible to do all the
experiments that one might think of. Nor is it possible to publish all the data that any given experiment generates. Given that so much
must be excluded, it is essential that the experiments should be guided by theory, if they are to yield more than an arbitrary collection of
unfocused facts. Conversely, theory needs to be informed by experimental data: too many theoretical papers present hypotheses that are
incompatible with known facts about biology, and this problem is exacerbated by the difficulty theorists face in keeping up with a large
and ever-expanding experimental literature.

How might the situation be improved? One step would be to ensure that theoretical papers are reviewed by experimentalists. This
would help theoreticians not only to keep current with the experimental literature, but also to develop a better appreciation of how data
are presented. Theoreticians are often tempted, for example, to extract quantitative information from representative examples of ‘raw’
data, failing to realize that ‘representative’ usually means ‘best typical’, thus compromising any practical utility.

Theoreticians also need to improve the presentation of their own models. It is taken for granted that experimental papers should
contain sufficient information for others to replicate the results, but unfortunately, much theoretical work neglects this basic principle.
Attempts to reproduce published computer models often fail, and it is difficult to know whether such failures reflect something profound,
or whether they arise simply because the documentation of models with many parameters is naturally prone to error.

Experimental neuroscientists are not likely to pay serious attention to theoretical models until this problem is resolved. One solution is to
develop a standard format for expressing model structure and parameters, and indeed this goal is evident in various neuroscience database
projects currently underway. Supplying model source code is usually not enough. The format should be efficient and concise, yet allow a
level of generic expression readable by humans and readily translatable for different simulation and evaluation tools. These requirements
suggest exploiting programming languages oriented toward symbolic as well as numeric relations. It will be encouraging if such a standard
is adopted at the publication level, because this will facilitate a more thorough review process as well as provide an accessible database for
the reader. Eventually, this approach can contribute to a seamless database covering the entire field of neuroscience.

Finally, it is vital for this young field that the scientific and funding environment allow many interdisciplinary flowers to bloom.
Support is needed for the marriage of theory and experiment at all levels of neuroscience, ranging from the biophysical basis of neural
computation, to the neural coding of the organism’s external and internal worlds, all the way up to the mysterious but (we assume)
concrete link between brain and mind. Progress at the first level in particular will be essential if any rational medical therapeutics are to
emerge from all this work. Core neuroscience courses should include a theoretical component, demonstrating its fundamental relevance
to experimental neuroscience. At the same time, an ongoing critical examination of this marriage is necessary for the evolution of
computational neuroscience. Perhaps we could learn lessons from physics, in which there is a more mature liaison between theory and
application. As neuroscientists we may not avoid the occasional wild goose chase, but we can at least hope that a theory or two may be
falsified in the process, clearing the path a bit for the next go-around and making it all worthwhile.

LYLE BORG-GRAHAM

Unité de Neurosciences Intégratives et Computationnelles, 

Institut Federatif de Neurobiologie Alfred Fessard, CNRS, 

Avenue de la Terrasse, 91198 Gif-sur-Yvette, France

e-mail: lyle@cogni.iaf.cnrs-gif.fr

© 2000 Nature America Inc. • http://neurosci.nature.com
©

 2
00

0 
N

at
u

re
 A

m
er

ic
a 

In
c.

 •
 h

tt
p

:/
/n

eu
ro

sc
i.n

at
u

re
.c

o
m


