
Neural Network Models of Sensory 
Integration for Improved Vowel Recognition 

Automatic speech recognizers currently perform poorly in the 
presence of noise. Humans, on the other hand, often compensate 
for noise degradation by extracting speech information from alter- 
native sources and then integrating this information with the 
acoustical signal. Visual signals from the speaker’s face are one 
source of supplemental speech information. We demonstrate that 
multiple sources of speech information can be integrated at a sub- 
symbolic level to improve vowel recognition. Feedforward and 
recurrent neural networks are trained to estimate the acoustic char- 
acteristics of the vocal tract from images of the speaker‘s mouth. 
These estimates are then combined with the noise-degraded 
acoustic information, effectively increasing the signal-to-noise ratio 
and improving the recognition of these noise-degraded signals. 
Alternative symbolic strategies, such as direct categorization of the 
visual signals into vowels, are also presented. The performances of 
these neural networks compared favorably with human perfor- 
mance and with other pattern-matching and estimation tech- 
niques. 

I .  INTRODUCTION 

We usually can communicate by using the acoustic 
speech signal alone, but often communication also involves 
visible gestures from the speaker’s face and body. In sit- 
uations where environmental noise i s  present or the l is-  
tener is hearing impaired, these visual sources of infor- 
mation become crucial to understanding what has been 
said. Our ability to comprehend speech with relative ease 
under a wide range of environmental circumstances is  due 
largelytoourabilitytofuse multiple sourcesof information 
in real time. Loss of information in the acoustic signal can 
be compensated for by using information about speech 
articulation from the movements around the mouth, or by 
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using semantic information conveyed by facial expressions 
and other gestures. At the same time, the listener can use 
knowledge of linguistic constraints to further compensate 
for ambiguities remaining in the received speech signals. 

Speech perception can be improved greatly by watching 
the face of the speaker [I], [2]. Normal hearing subjects 
tested on isolated word recognition in noise for a limited 
vocabulary were able to improve their performance from 
an initial 13% correct toa90% performance level when given 
visual access to the speakers in addition to the noise- 
degraded acoustic speech signal [3]. This produced an 
effective gain of 15 dB in the signal-to-noise ratio (SIN). Even 
when the acoustic signal is completelyabsent, as in the pro- 
foundly deaf, the visual signal alone i s  able to provide sig- 
nificant speech information through lipreading [4], [5]. Mul- 
timodal sensory integration can occur during speech 
recognition, but it i s  not clear how or at what level of pro- 
cessing this integration takes place [6].  

In contrast to human performance, the performance of 
automatic speech recognition systems are not as robust and 
tend to degrade rapidly in noisy environments [7]. Efforts 
have been made to reduce the noise in the acoustic signal 
[8] and much work has been done to formalize linguistic 
constraints [9], but few have attempted to use additional 
external information sources. One notable exception i s  a 
system built by Eric Petajan [IO] for isolated digit recog- 
nition that used vector-quantized binary images of the 
speaker’s mouth. In this system, the acoustic and visual 
speech information were independentlyencoded into sym- 
bol strings, and a set of rules was used to reconcile con- 
flicting interpretations. They symbolic intermediates were 
needed to perform the necessary processing and integra- 
tion in real time on the serial digital computers available. 

The massively parallel architectureof artificial neural net- 
works make it feasible to explore subsymbolic alternatives 
to Petajan’s system. The use of many-dimensional repre- 
sentations allows information from several sources to be 
combined “softly,” before being reduced to discrete sym- 
bols. In addition, learning algorithms provide a means of 
training networks to fuse these signals without explicit rules 
or restrictive a priori models. 

In this paper, visual speech signals are preprocessed with 
a neural network to improve automatic speech recognition. 
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The approach taken here is  to use the visual speech signals 
to clean up the acoustic signal. In effect, we are building 
a better microphone. Neural networks are trained to esti- 
mate the associated acoustic structure from the concurrent 
visual speech signal. This acoustic estimate i s  then fused 
with the noise-degraded acoustic information. By combin- 
ing the visual and acoustic sources of speech information, 
we demonstrate that the visual signal can be used to 
improve the performance of automatic vowel recognition 
in the presence of noise. This approach does not require 
categorical preprocessing or explicit rules. The results 
described here are based on vowels spoken by a single 
speaker. 

II. SPEECH 

There are many ways to characterize speech. Atone level, 
there are linguistic descriptions using abstract symbols. 
These representations are highly compact and efficiently 
represented on digital computers. At another level, there 
are acoustic descriptions of speech based on continuous, 
analog signals. They make minimal assumptions about the 
structure of speech, but require extensive storage and are 
difficult to work with on serial digital computers. Within the 
speech research community, the degree to which speech 
contains symbolic and subsymbolic structures remains 
controversial [Ill. 

The speech representation that i s  appropriate depends 
on many factors, including the tools one has available. 
Neural network models have aspects that allow for sym- 
bolic and subsymbolic representations. Information can be 
represented locally by associating a concept with a single 
unit. While the individual unit may represent a discretecat- 
egory, i t s  level of activation can be continuous. At the same 
time, information can also be distributed across awhole set 
of units, with a concept being represented by the joint acti- 
vation of a group of units. These characteristics allow net- 
work models for speech-processing to have representa- 
tions that extend across acoustic and linguistic levels. 

A. Speech as Symbols 

In a linguistic description, the phoneme is  the shortest 
distinguishing unit of a given language. For example, the 
words beet and neat are distinguished by the phonemes I 
bland In/, and boot and beet are distinguished by the pho- 
nemes /U/ and lil. While the phonemes /U/ and lil are lin- 
guistic abstractions, the speech sounds themselves are 
identified as phones and represented in brackets, [U] and 
[i]. Phones are descriptive of a set of speech sounds [12], 
whereas phonemes are functional characterizations that 
can distinguish one word from another. When the same 
word i s  pronounced differently bytwo individuals, then the 
same phoneme in that work may be represented by two 
different phones. 

The visual correlate of the phoneme is  the viseme: the 
smallest visiblydistinguishing unit of a given language [13]. 
The mapping between the phonemes and visemes is  gen- 
erally many to one; for example, the phonemes lpl, Ibl, and 
lmlare usuallyvisibly indistinguishable and treated asa sin- 
gle viseme [14]. 

The physical realities of speech signals are often difficult 
to reconcile with these linguistic units, and consequently 
it is  often impossible to find invariant features that define 

these speech segments. To provide a transition between 
these levels, a hierarchy of descriptive languages has 
evolved. Phonemes can be represented as sets of binary 
distinctive features [15]. For example, the difference 
between the sounds [z] and [SI i s  the absence or presence 
of the feature voicing. At an even lower level, the binary 
distinctive features can be represented by the continuously 
changing locations, movements and relative timing of the 
speech articulators [16]. Here the description of speech 
becomes closely related to the acoustic signal itself. 

B. Speech as Signals 

Acoustic speech signals are often represented by the 
magnitude of their short-term power spectrum. This rep- 
resentation assumes that the signals are approximately sta- 
tionary over a short time and that the phase information is 
not essential. Early experiments in machine synthesis indi- 
cated that the phase component of the spectrum does not 
play an important role i s  speech recognition [17]. It has also 
been found that phase information contributes little to 
speech intelligibility [8]. The ability to read spectrograms 
has been used as further evidence that the short-term power 
spectrum carries the necessary information to convey 
speech information [18]. Today, some form of the short-term 
power spectrum serves as a basic unit for most automatic 
speech recognition systems 191, 1191. 

The acoustic speech signal emitted from the mouth can 
be modeled as the response of the vocal-tract filter to a 
switchable sound source[20],[21]. In afirst-order vocal-tract 
model, the configuration of the articulators (such as the 
mouth opening, lips, teeth, tongue, velum, and glottis) 
defines the shape of the vocal-tract filter, which then deter- 
mines the filter’s frequency response. The resonances of 
the vocal-tract filter appear as peaks in the envelope of the 
short-term power spectrum of the acoustic signal and are 
called formants. 

A simplified model of the vocal tract for non-nasalized 
speech consists of a series of tubes of uniform length with 
different diameters. The acoustic characteristics of this 
model can be represented as an all-pole filter using linear 
predictive coding (LPC) [22], which allows for a compact 
representation of thevocal-tract filter using onlyafewtime- 
varying coefficients. Speech signals are routinely encoded, 
stored, and resynthesized by using LPC coefficients along 
with a characterization of the driving source. 

C. The Audio-visual Interaction 

Although some of the articulatory features are often vis- 
ible (for example, the lips, the teeth, and sometimes the 
tongue), other components of the articulatory system, such 
as the glottis and velum, are not. Those articulators that are 
visible tend to modify the acoustic signal in ways that are 
more susceptible to acoustic distortion than are those 
effects due to the hidden articulators [6], [IO]. For example, 
the quasi-periodic sound produced by the glottis i s  rather 
resistant to noise degradation. The information in the visual 
speech signal tends to complement the information in the 
acoustic signal. Consequently, phonemes, such as Ib l  and 
Ikl,  that are produced in visibly distinct manners, have 
acoustic correlates that are among the first pairs to be con- 
fused in the presence of noise. Conversely, phonetic seg- 
ments that arevisibly indistinguishable, such aslpl, lbl, and 
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lml, are among the most resistant to confusion when pre- 
sented acoustically [23], [14]. This complementary structure 
demonstrates how these two speech signals can interact to 
improve the perception of speech in noise. 

The visible and acoustic speech signals combine using 
acommon representation that lies somewhere between the 
abstract linguistic segment and the continuous analog sig- 
nal. At one end, the two signals can be symbolically inter- 
preted and the visual signal provides a linguistic-level con- 
straint. At the other, the visual signal can provide an 
independent estimate of the vocal-tract transfer function 
and serve as a low-level acoustic constraint. Neural net- 
works provide a computational framework within which 
one can explore this full range of representations. 

1 1 .  NEURAL NETWORKS 

Thearchitectureof artificial neural networks i s  motivated 
by the computational style found in biological nervous sys- 
tems. The key features are a large number of relatively sim- 
ple nonlinear processing units and high degree of con- 
nectivity between these units. A unit performs a nonlinear 
transformation on the sum of its inputs to produce an out- 
put signal. When this output signal travels across a con- 
nection to another unit, the signal i s  attenuated or ampli- 
fied by the weight associated with that connection. 
Computation i s  performed by the interaction of these units 
and signals. Rather than having an explicit program, the 
computation is defined by the properties of the individual 
units and their interconnects. 

In terms of architectural abstraction, these models differ 
from actual neural networks found in the nervous systems. 
For example, the processing units used in this study simply 
add their weighted inputs and have a static sigmoidal non- 
linear output function, while neurons in real nervous sys- 
tems have more complex spatiotemporal nonlinearities and 
are capable of much more complex discriminations [24]. 
Nevertheless, in terms of architecture, these networks pro- 
vide alternative approaches to difficult computational 
problems. The architecture and weights needed to solve a 
particular problem can be either predefined or found using 
learning algorithms [25], [26]. These algorithms iteratively 
adjust the weights to reduce some error measure defined 
on a set of training examples. Neural networks have been 
constructed to solve a variety of problems, such as opti- 
mization problems, mapping text to speech, associative 
memories, and pattern classification [27]-[30]. 

A. Architecture 

Feedforward network architectures were used in this 
study. The units in a feedforward network are arranged in 
layers, with connections only allowed between layers, and 
only in one direction. The units that receive inputs from 
outsidethe networkare referred to as input units,and those 
thatareobservedfromoutsidethenetworkareoutput units. 
The remaining units are referred to as hidden, because they 
only exchange signals with other parts of the network. The 
units themselves use a nonlinear sigmoid squashing func- 
tion to transform the sum of their inputs. The standard mul- 
tilayered feedforward networks with arbitrary squashing 
functions are a class of universal approximators [31]. More- 
over, any nonlinear mapping can be learned by a network 
i f  there are sufficient data to characterize the mapping and 

if the number of parameters in the network matches the 
information content of the data [32], [33]. 

B. Training 

A modified backpropagation algorithm was used to train 
feedforward networks [26]. The gradient was calculated in 
the standard manner, but instead of using steepest descent, 
a conjugate-gradient algorithm was used to update the 
weights. In addition, the fixed-step size and momentum 
term associated with backpropagation were replaced with 
a line-search minimization [34].' 

The number of adjustable weights in a neural network 
can often exceed the number of training patterns. In these 
cases, the networks have too many free parameters and are 
subject to the problem of overfitting or overlearning the 
training data. The effects of overlearning can be minimized 
by increasing the size of the training data set, by reducing 
the number of hidden units, or by stopping the training 
before the network has completely converged. 

Iv. THE SPEECH SIGNALS 

The speech signals used in this study were obtained from 
video recordings of a seated speaker facing a camera under 
well-lit conditions. The visual and acoustic signals were 
stored on a laser disc [35] where the individual frames and 
their corresponding speech segments were indexed. The 
NTSC video standard of 30 framesls was used and each 
frame had 33 ms of speech associated with it. Phonemes 
usually are shortened or dropped altogether during fluent 
speech, so single video frames often span more than one 
phoneme. To avoid this problem, we selected speech sam- 
ples such as stressed vowels in isolated words or conso- 
nant-vowel-consonant (CVC) nonsense syllables that 
change relatively slowly. In these contexts, thevowels often 
were steady state over periods of 50-100 ms. 

For a given phoneme, a preliminary list of candidate 
words was identified from a transcription of the laser disc. 
Each word was then played acoustically to confirm the sus- 
pected pronunciation. A representative frame for thevowel 
was then isolated by alternately dropping a frame and then 
listening until the surrounding consonants were removed. 
The number of frames that remained after this process 
depended upon the degree to which that particular vowel 
was stressed. Stressed vowels, for example, can last up to 
132 ms or 4 frames, while an unstressed vowel in contin- 
uous speech will often not last the full 33 ms of a single 
frame. The acoustic signals of the remaining frames were 
digitized and visually examined to ensure that each signal 
was approximately in steady state. From this set, a single 
frame was selected only i f  the periodic waveform appeared 
relatively stable, neither increasing nor decreasing in 
amplitude. 

This paper describes results obtained using data from a 
single male speaker. A data set was constructed of 108 
images of 9 different vowels in 12 sets. The vowels were 

'Our neural networksweresimulatedonaMIPSM/120computer 
and an ANALOGIC AP5000 array processor. Because of the con- 
jugate-gradient learning algorithm, the time it took to perform on 
backpropagation step varied depending upon the number of eval- 
uations required in the line-minimization search. For a network 
with 2559 weights it took the MIPS M1120 approximately 35 msec 
to perform one evaluation. 
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taken from words and CVCs. Because these words and syl- 
lables were spoken deliberatelyand in isolation, thesevow- 
els were isolated easily. In other experiments not presented 
here data from a female speaker were also studied [36]. 

A. Preprocessing the Images 

Instead of searching for an optimal encoding of the input 
images, we chose a simple representation that seemed to 
contain the relevant information. A rectangular area-of- 
interest was automatically defined and centered about the 
mouth. The image was further reduced to produce an image 
that could be comfortably handled by out network simu- 
lations. Within the rectangle, the average value of each 4 
x 4 pixel squares was computed to produce a topograph- 
ically accurate gray-scale image of 20 x 25 pixels (Fig. 1). 
Rather than attempting to extract special features, this 
encoding represented a form that could be obtained easily 
through an array of analog photoreceptors. 

Two methods of processing these images of the speaker's 
mouth were explored. In the first approach, we treated the 
images categorically and attempted to make hard pho- 
nemic decisions directly from the images. Such linguistic 
identifications can be used to constrain the linguistic inter- 
pretation of a noise-degraded acoustic signal. In the second 
approach, we obtained acoustic information directly from 
the images by estimating the transfer function of the vocal 
tract. These independent estimates were then used to con- 
strain the acoustic interpretation of the noise-degraded 
acoustic signal directly. 

100.0 

V. CATEGORIZATION 

Neural networks were trained to identify the vowel 
directly from the image. The images were presented across 
500 input units, and the output consisted of 9 output units, 
each representing one of the nine vowels in the data. An 
input image was correctly categorized when the activation 
value of the correct vowel unit was larger than all the other 
output units. The data set of 108 images was split into a test 
set and a training set of 54 images, each containing a bal- 
anced set of vowels. The number of hidden units varied. 

A network was trained until the categorization of all 54 
images in the training set was perfect. Overtraining was 
minimized by immediately terminating the training at this 
point, before the output units were driven to saturation. In 
a few cases, the network would learn all but one or two 
tokens and then take an excessive amount of time to learn 
the last few cases. Often thisadditional training would result 
in poorer performance on the test set. The training was 
thereforestoppedat 500epochswhetheror not all the train- 
ing data were categorized correctly. After the network was 
trained, it then was tested on the second set of 54 images 
from the same speaker. 

A. Results 

The results reported hereare based on networks with five 
hidden units; fewer than five hidden units produced worse 
results. Performance levels were averaged across eight net- 
works initialized with different random weights. The net- 
works were trained on 54 patterns. For half of the networks, 
the training and test sets were reversed. The eight networks 
trained on the male data obtained an average performance 
of 76% correct categorizations for the images in the test set. 
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This performance compared favorably with the tradi- 
tional categorization technique of nearest neighbor. A 
nearest-neighbor classifier (NN) was constructed using the 
training data as the set of stored templates. The individual 
images from the test set were correlated with the stored 
templates, and the image was classified according to its 
closest match. The process was repeated, but with the test 
and training sets reversed. The NN classifier correctly clas- 
sified and male data set with an average accuracy of 79%. 

The performance of the network also compared favor- 
ably with two human subjects tested and trained on the 
same data. After 5 training sessions, the two subjects 
obtained an average of 70% on the images in  the test set, 
with performances in some follow-up sessions approach- 
ing 80%. In Fig. 2, the types of errors made by the human 
subjects in these experiments are compared to those made 
by the network. 

NETWORK RESPONSE 

i l e e =  a ~ o u  

00.0 
16.7 66.7 12.5 

54.2 45.8  
16.7 7 9 . 2  

8.3 79.2 
12.5 45.8 37.5 

8 . 3  8 .3  83.3 
91.7 8 

(a) 

H U M A N  RESPONSE 
i l e ~ i e a h o u  . .  - .  

37.5 62.5 
12.5 83.3 

79.2 20.8 
95.8 

87.5 12.51 

(b) 

Fig. 2. Confusion matrices for a) networks trained to cate- 
gorize individual images by vowel and b)well-trained human 
subjects categorizing the same images. The networks results 
are accumulated from four different networks. The human 
responses are accumulated from four trials by two subjects. 
Percentages less than4.3% wereomitted in order to simplify 
the matrix. 

B. Discussion 

Since steady-state vowels are relatively easy to identify 
acoustically, why i s  the performance less than perfect on 
the test images? Was itthe lackof information in the images, 
or was it the lack of clear categories? To address the second 
part of this question, the short-term spectra of the corre- 
sponding acoustic data were examined. Networks were 
trained to categorize the acoustic spectra using the same 
procedures as used for the visual speech signals. The per- 
formance on the acoustic signals was almost identical to 
that of the visual signals, with the network obtaining 82% 
on the testing set. This suggests that some of the discrep- 
ancy between the performance on the training and test sets 
can be attributed to inherent ambiguity of the categories. 

It i s  difficult, if not impossible, to correctly identify iso- 
lated speech segments out of context. The particular pro- 
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nunciation of a given vowel varies depending upon the par- 
ticular context in which it i s  produced. This phenomena, 
called coarticulation, produces large variations in the pro- 
ductionof agivenvowel. Forexample,the samevowel takes 
on quitedifferent physical realizations depending upon the 
surrounding phonemic context. In automatic speech rec- 
ognition, the best performances have been obtained when 
commitment to acategorical decision i s  delayed to a higher 
level of processing that takes into account more contextual 
information [;7, [9]. This allows additional constraints from 
both internal and external sources to be introduced and to 
assist in the decision making. 

The problem becomes more acute when the speech seg- 
ments are taken from continuous speech. When a vowel i s  
in a stressed position within an isolated word, the coarti- 
culation is significantly less dramatic than when the vowel 
i s  extracted from the middle of continuous discourse. The 
effect of these differences i s  seen in machine recognition, 
where unstressed words are harder to recognize than are 
stressed words [9]. To demonstrate this, we constructed a 
seconddatasetof 108 imagestaken from continuousspeech 
spoken by a second speaker. The data had the same dis- 
tribution of vowels and the networks were trained in the 
same manner as before. On  this data, the networks were 
able to achieve only 40% on the test set.2 

VI. SUBSYMBOLIC PROCESSING 

Summerfield has proposed and evaluated a variety of 
ways in which information in the acoustic and visual signals 
might merge [6]. He concluded from psychoacoustic exper- 
iments that information from the two modalities must be 
integrated before phonetic or lexical categorization takes 
place. One striking observation was that an auditorially pre- 
sented larynx-frequency pulse can be used to improve 
lipreading even though there is not enough information in 
the pulse alone to phonetically segment the signal. 

The assumption made is that the acoustic and visual sig- 
nal streams share a common representation at their conflux 
[6]. In this section, we propose that the vocal tract transfer 
function can serve as this common representation, and we 
show that networks can be designed for integrating visual 
and acoustic speech signals using this representation. An 
estimate of the vocal tract’s acoustic characteristics are 
obtained directly from images of the speaker’s mouth. This 
estimate then serves as an independent source of acoustic 
information and i s  used to constrain the interpretation of 
the acoustic signal. 

A. The Corresponding Acoustic Signal 

The acoustic speech signal is produced by a source signal 
that passes through the vocal tract and i s  emitted from the 

2Differences in experimental design make it difficult to compare 
our results with the performance of human lip-readers measured 
in other studies. In most experiments, human subjects are usually 
exposed to dynamic information as vowels are presented within 
a larger context. Berger et a/. tested the identification of twelve 
vowels in CV and VC syllables within a context, using live pre- 
sentation [34.  His data show that lipreaders without training per- 
formed at a 53% accuracy level. Jackson et al. used 15 vowels and 
diphthongs in an /h/-V-lgl context, and found that the average per- 
formance level across 10 viewers to be 54% correct [38]. Mont- 
gomeryand Jackson repeated these experiments and found a mean 
performance level of 54.2% [4]. 

mouth [20]. For voiced speech, the driving signal i s  a quasi- 
periodic pulse train convolved with the glottal waveform. 
This driving signal’s contribution to the short-term acoustic 
spectrum i s  a series of harmonics reducing in amplitude by 
-12 dB per octave. This reduction i s  partially compensated 
by the radiation of the acoustic signal from the lips, which 
producesan effectivegain of +6dB peroctave.The spectral 
envelope of the short-term spectrum that remains after 
these two effects are removed i s  the frequency response 
of the vocal-tract filter. The transfer function of the vocal 
tract can be estimated by measuring the short-term spectral 
amplitude envelope (STSAE) of the acoustic signal. 

There i s  not enough information in the visual speech sig- 
nal to completely specify the vocal-tract transfer function. 
Many different acoustic signals can be produced by vocal- 
tract configurations that correspond to the same visual sig- 
nal. Thus, the visual signals can provide only a partial 
description of the vocal-tract filter. Nonetheless, it may be 
possible to obtain agoodestimateof thevocal-tracttransfer 
function if additional constraints are considered. Neural 
networks with the architecture shown in Fig. 3 were trained 

Acoustic Spectral Envelope 
I across 32 output units 

Input Image of 20 x 25 pixels 

Fig. 3. Network architecture for estimating acoustic struc- 
ture from visual speech signals. This feedforward network 
has all units in layer i connected to all units in layer i + 1. 
The output layer consisted of 32 units, each of which rep- 
resented the amplitude of the vocal tract transfer function 
at a particular frequency and bandwidth. 

to estimate the STSAE of the acoustic signal directly from 
the visual signals around the mouth. The estimate of the 
STSAE was then combined with estimates from acoustic 
information to improve the S/N ratio prior to recognition. 

The same images of the male speaker used in the cate- 
gorization experiments were used in these experiments. 
Each video frame had 33 ms of acoustic speech associated 
with it. The short-term power spectra of the corresponding 
acoustic data were calculated and the spectral envelopes 
were obtained using cepstral analysis [22.]. Each smoothed 
envelope was sampled at 32 frequencies to produce a vec- 
tor of scalar values. These vectors were used to represent 
the vocal-tract transfer functions corresponding to the 
images. 

B. Training 

The network shown in Fig. 3 was trained to produce the 
STSAE across its 32 output units when a visual signal was 
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presented to the network across the input units. The net- 
work had five hidden units as in the categorization exper- 
iment. However, there were now 32 output units, each rep- 
resenting the linearly spaced samples of the short-term 
spectrum’s envelope. 

One of the consequences of training a network on a con- 
tinuous mapping, rather than on a discrete categorization, 
was the problem of deciding when to stop training. We 
attempted to identify the point at which overlearning began 
by dividing the test set into two subsets. One subset was 
used to track the error during training by testing the subset 
after each training epoch as a measure of generalization. 
When the error of the tracking set started to increase, the 
training was stopped and the weights in the network were 
saved. This procedure was unnecessary when the training 
was simply stopped at 500 iterations. 

C. Evaluation 

Vowels are largely identified by their spectral shape, and 
in particular by the location of their spectral peaks, or for- 
mants [39], [40]. Nevertheless, evaluating the quality of these 
spectral estimates i s  significantly more difficult than judg- 
ing the accuracyof acategorization because the perceptual 
processes involved in processing the spectral peaks are not 
well understood. To assay our spectral estimates, a simple 
vowel-recognition system was constructed (Fig. 4). The 

,l-r 
Integration I I 
of both 
Channels 

R R 
I I  

Neural 1 Network I R 
@e Noise 

T 
Visual Speech Acoustic Speech 

Sianal Sianal 

Fig. 4. System used to combine visual and acoustic speech 
information. A simple vowel recognizer was constructed to 
receive speech signals from the two modalities. Indepen- 
dent estimates of the vocal tract transfer function were pro- 
duced and then combined with a weighted average before 
being passed to the ret0gnizer.A neural network wastrained 
to perform the mapping of the image into the estimated 
envelope of the acoustic spectra. Noise was introduced into 
the acoustic speech signal and the improvement due to the 
visual information was assessed. 

vowel recognizer at the top of Fig. 4 was constructed using 
a simple feedforward network trained to recognize nine 
vowels from their STSAEs. The network was trained on 6 
examples each of 9 different vowels until its performance 

was 100% on the training data. This network served as aper- 
fect recognizer of the noise-free training data and was used 
to assess the benefit of the visually estimated spectra when 
combined with the noise-degraded acoustic spectra. 

The vowel recognizer was presented with a STSAE 
through two channels. The path shown on the right in Fig. 
4 was for information obtained from the acoustic signal, 
while the path on the left provided spectral estimates 
obtained independently from the corresponding visual 
speech signal. 

The first step was to test the performance of the recog- 
nizer when the acoustic spectral envelopes were degraded 
by noise. Zero-mean random vectors were normalized and 
added to the training STSAEs to produce signals with SIN 
ratios rangihg from -12 dB to 24 dB. Noise-corrupted vec- 
tors were produced at 3 dB intervals from -12 dB to 24 dB. 
At each noise level, 12 different vectors were produced for 
each of the STSAE in the set. At each level, the performances 
of the recognizer on the degraded signals were averaged. 
The overall performance on the training data fell with 
decreased SIN ratios. At - 12 dB, the recognizer operated 
at the chance level, which was 11 % with nine vowels in the 
data set (Fig. 5). 
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-20 - 1 0  0 10 20 30 
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Fig. 5. Intelligibility of noise-degraded speech as a func- 
tion of speech-to-noise ratio in dB. The lower curve shows 
the performance of the recognizer under varying signal-to- 
noise conditions using only the acoustic channel. The inter- 
mediatedashedcurveshowstheperformancewhen thetwo 
independent estimates are equally weighted. The top curve 
shows the improved performance by using a weighting 
function based on the signal-to-noise. When the visual sig- 
nal is used alone, the percent correct is 55% across all SIN 
levels. 

The next step was to compensate for the noise degra- 
dation by providing an independent estimate of the STSAE 
frotn the visual signal, as shown on the left side of Fig. 4. 
The network on this pathway was trained to estimate the 
spectral envelopes corresponding to the input images. The 
data used to train this network were different from the data 
used to train the recognizer. The noise-degraded acoustic 
signal was then combined with the output from the net- 
work processing the images to provide a single estimate 
which i s  then passed on to the recognizer. When the two 
estimates were simply averaged together, the recognition 
rates were improved, as shown by the dashed curve in Fig. 
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5. At a SIN ratio of - 12 dB the recognizer performed at 35% 
compared to 11% without the visual signal. 

However, averaging the two independent sources of 
information was far less than optimal at the extremes. Using 
the STSAE estimated from the visual signal alone, the recog- 
nizer was capable of a 55% recognition level. When these 
estimateswere combined with the noise-degraded acoustic 
signal, the performance fell to as low as 35% at -12 dB S/ 
N. Similarly, at very high S/N ratios, the fused inputs pro- 
duced poorer results than the acoustic signal presented 
alone. Clearly, the acoustic and visual signals needed to be 
weighted according to their relative information content to 
compensate for the degraded performance at the S/N ratio 
extremes. 

The two estimates of the spectral estimates of the vocal 
tract transfer function, Svlsuallyestlmated and SaCOUStlC were com- 
bined with a weighting factor cy that depends on the S/N 
ratio: 

scombined = asv isua l l y  estimated + (1 - a)spcou(tic (1) 

At each SIN ratio, cy was varied to optimize performance. 
The optimal cy was found empirically to vary approximately 
linearly with the SIN ratio to 0 to 24 dB. The improved per- 
formance is evident in Fig. 5. 

A third method of fusing the two spectra was accom- 
plished using a U-7r neural network. These second-order 
networks took the estimated STSAE, the noise-degraded 
acoustic STSAE and a measure of the signal-to-noise ratio 
as input, and tried to produce a noise-free STSAE as output. 
In contrast to the simple weighted sum used by first-order 
units, the units in  these second-order networks determine 
the activation level by summing the weighted product or 
other units’ output [26]. The results from this method were 
mixed: although the squared-error between the estimated 
and actual spectra was significantly lower, its categoriza- 
tion was poorer. These results suggest that the vowel recog- 
nizer i s  doing something more complicated than simply 
making acomparison based upon asquared-error measure. 
They also raise questions as to the appropriateness of the 
squared-error measure used for training. 

D. Comparing Performance 

The qualityof the networks’ estimates were compared to 
acombination of two optimal linear-estimation techniques. 
The first step was to encode the images using a Hotelling 
or Karhunen-Loeve transform [41]. The images were 
encoded as five-dimensional vectors defined by the largest 
principal components of the covariance matrix of the 
images in  the training set. This i s  an optimal encoding of 
the images with respect to a least-squared-error (LSE) mea- 
sure. The next step was to find a mapping from these 
encoded image vectors to their corresponding short-term 
spectral amplitude envelopes (STSAEs). The fit was found 
using a linear least-squares fit. 

The estimates obtained by this two-stage process were 
significantly poorer in overall mean-squared error. The 
mean-squared error of the estimates made by the networks 
was 46% better on the training set and 12% better on the 
test set. The main objective of this comparison was to show 
that arbitrary encoding of the images may result in a loss 
of relevant information. In contrast, the network learning 
algorithm allows the network to produce i t s  own encoding 
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at the hidden layer based upon relevant features. The acti- 
vation levels of the five hidden units served to encode the 
image as did the five-dimensional vectors obtained using 
principal components. The primary difference i s  that the 
encoding found by the network optimized the desired out- 
put, whereas the principal components optimized the LSE 
reconstruction of the images. 

E. Discussion 

The recognition rates of noise-degraded acoustic signals 
were improved by introducing speech information 
extracted from the visual speech correlates. The relative 
improvement provided by fusing these signals varied with 
the S/N ratio, agreeing with the experimental data pre- 
sented by Sumby and Pollack in their seminal 1954 paper 
[3]. This was accomplished without making hard decisions 
on the separate acoustic and visual sensory channels, and 
no explicit rules were needed to combine the information. 
In general, the psychoacoustic evidence suggests that the 
visual and acoustic speech signals interact in the human 
perceptual systems even before categorical cognitive pro- 
cesses are activated [42]-[451, [6]. 

In acoustic speech recognition, significant improve- 
ments can be made with existing systems by improving the 
quality of the signal at the earliest levels [9]. The approach 
described above provides a means of improving the input 
to existing speech recognition systems. The strength of this 
approach is more evident when networks are used on non- 
segmental speech structures where categorical identifi- 
cation becomes even more difficult. 

VII. DYNAMICS AND SPEECH 

In the work described above, attention was restricted to 
static visual images, which are inherently ambiguous 
because they contain incomplete information about the 
speech articulators. Speech i s  a dynamic process and the 
articulators are physical structures that move. As a given 
moment, their current positions are part of larger dynamic 
trajectories. These trajectories are constrained by the 
mechanics of the physical system and by the linguistic rules 
of the language. Dynamic dependencies could provide 
additional constraints that can serve to restrict the acoustic 
interpretation of the visual speech signal. In this section, 
we outline an approach to introducing dynamic constraints 
in neural network models. 

One way to include temporal constraints is to map time 
into space, as in NETtalk [28]. In NETalk, consecutive letters 
were translated into a string of concurrent stimuli and pre- 
sented to the network in groups of seven. The network was 
given a sequence of letters and asked to provide a phonetic 
transcription of the centrally located letter. A similar 
approach, called a time-delay neural network model, has 
been effective in acoustic speech-recognition systems [46], 

A differentway to introduce dynamic constraints i s  to use 
feedback connections that provide temporal memory. One 
approach is to have projectionsfrom theoutput units to the 
input layer [a]. A second approach i s  to have projections 
from hidden units to the input layer [49]. These architec- 
tures are based on feedforward networks with a subset of 
the input units, called state units, receiving information 
from previous time steps. Thus, at time t ,  the network 
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receives inputs I ( t )  and a subset of activations from the 
upper layers at previous time t - 1. 

When working with static images, it was possible to use 
a simple vowel recognizer to test the quality and utility of 
the acoustic spectra estimated from static images. The suc- 
cess of the vowel recognizer depended on the careful selec- 
tion of vowels from isolated words or syllables. For con- 
tinuous speech, however, i t  isdifficult andoften impossible 
to make these definitive identifications of short speech seg- 
ments taken out of context, so alternative assessments are 
necessary. 

Networkswith feedbackwere used toestimatetheSTSAE 
from images within a larger context. The performance of 
the network on continuous speech was evaluated on its 
ability to preserve the salient features of the spectral 
sequences, such as the resonances, or formants, of the esti- 
mated vocal-tract filter. The perception of vowels by humans 
depend upon the location and amplitude of these formants 
[39], with some of the highest quality machine speech being 
produced using formant-based synthesizers [50]. To see 
how well these formats were identified by the network, the 
sequences of spectra were arranged in a visual display sim- 
ilar to a spectrogram. The spectrogram shown in Fig. 6 was 

Actual acoustic spectra Estimated spectra 

tlme - m e  - 
Fig. 6. Spectrograms created from the actual acoustic spec- 
tra are compared to visually estimated spectra for the sen- 
tence: “We will weigh you.” Individual spectral estimates 
were converted to a grey scale and then aligned by fre- 
quency as a function of time. Actual acoustic data from the 
test set are shown on the left and estimates produced by the 
feedback neural network model are shown on the right. 

created from spectra estimated from a sequence of images 
not in the training set. In this form, we can observe the 
changes of energy in the different frequency bands as a 
function of time. Clearly, much of the acoustic structure 
was being estimated in  these sequences. The ultimate test 
will be to either resynthesize the acoustic speech signal 
from these estimated acoustic parameters, or to feed the 
fused spectra into a full-scale speech recognizer. 

VIII. CONCLUSIONS 

Under noisyconditions, speech recognition can be aided 
by extracting information from the visual speech signals 
and combining it with residual acoustic information. In this 
article we have examined two representations for the 
speech information in  the visual signal, both of which can 
be combined with information from the acoustic signal. In 
the first casethevisual signal wastreated symbolically,while 
in the second it was used to provide subsymbolic infor- 
mation about the corresponding acoustic signal. These two 
cases are two points on a continuum of speech descrip- 
tions. Other descriptions, such as description of the artic- 
ulators themselves [51] could also have been used. 

A better understanding of thevisual and acoustic sensory 
systems in humans and other animals will lead to better arti- 
ficial sensors and their effective integration. Acoustic 
speech recognition systems, by using models of the human 
cochlea as a preprocessor, are already benefitting from what 
is known about the human auditory system [191, [52]. Syn- 
thetic cochleas that can process massive amounts of sen- 
sorydata i s  real timealready have been fabricated in analog 
VLSl[53].The output of these chips i s  a highly distilled, par- 
allel and distributed representation of the acoustic signal. 
Our results arean encouraging first step toward solvingthe 
problem of fusing multiple sources of distributed sensory 
data. Massively parallel network models could provide the 
means by which distributed representation can be inte- 
grated in real time for producing rapid recognition and 
decisive actions for automated systems. 
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