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The types of representation and the styles of computation in the 
brain appear to be very different from the symbolic expressions and 
logical inferences that are used in sentence-logic models of cognition. 
In this chapter we explore the consequences that brain-style 
processing may have on theories of cognition. Connectionist models 
are used as examples to illustrate neural representation and 
computation in the pronouncing of English text, and in the extracting 
of shape parameters from shaded images. Levels of analysis are not 
independent in connectionist models, and the dependencies between 
levels provide an opportunity to co-evolve theories at all levels. This 
is a radical departure from the a priori, introspection-based strategy 
that has characterized most previous work in epistemology. 

1 .  How Do We Represent the World? 

The central epistemological question, from Plato on is this: How 
is representation of a world by a self possible? So far as we can tell, 
there is a reality existing external to ourselves, and it appears that 
we do come to represent that reality, and sometimes even to know 
that its initial appearance to our senses differs from how it actually 
is. How is this accomplished, and how is knowledge possible? How 
is science itself possible? 

The dominant philosophical tradition has been to try to resolve 
the epistemological puzzles by invoking mainly intuition and logic 
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to figure out such things as the organization of knowledge, the nature 
of the "mirroring" of the outer world by the inner world, and roles 
of reason and inference in the generation of internal models of reality. 
Epistemology thus pursued was the product of "pure reason", not 
empirical investigation, and thus epistemological theories were 
believed to delimit the necessary conditions, the absolute foundations, 
and the incontrovertible presuppositions of human knowledge. For 
this a priori task-a task of reflective understanding and pure 
reason-empirical observations by psychologists and neurobiologists 
are typically considered irrelevant, or at least, incapable of effecting 
any significant correction of the a priori conclusions. Plato, Descartes, 
and Kant are some of the major historical figures in that tradition; 
some contemporary figures are Chisholm (1966), Strawson (1966), 
Davidson (1974), and McGinn (1982). It is safe to say that most 
philosophers still espouse the a priori strategy to some nontrivial 
extent. 

In a recent departure from this venerable tradition of a priori 
philosophy, some philosophers have argued that epistemology itself 
must be informed by the psychological and neurobiological data that 
bear upon how in fact we represent and model the world. First 
articulated in a systematic and powerful way by Quine (1960)l, this 
new "naturalism" has begun to seem more in keeping with 
evolutionary and biological science and to promise more testable 
and less speculative answers. 

If, as it seems, acquiring knowledge is an essentially biological 
phenomenon, in the straightforward sense that it is something our 
brains do, then there is no reason to expect that brains should have 
evolved to have a priori knowledge of the true nature of things: not 
of fire, not of light, not of the heart and blood, and certainly not of 
knowledge, or of its own microstructure and microfunction. There 
are, undoubtedly, innate dispositions to behave in certain ways and 
to believe certain things, and to organize data in certain ways, but 
innateness is no guarantee of truth, and it is the truth that a priori 
reflections are presumed to reveal. Innate beliefs and cognitive 
structures cannot be assumed to be either optimal or true, because 
all evolution "cares" about is that the internal models enable the 
species to survive. Satisficing is good enough. It is left for science 
to care about the truth (or perhaps empirical adequacy), and the 
theories science generates may well show the inadequacies of our 
innately specified models of external reality. Even more dramatically, 
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they may show the inadequacy of our model of our internal reality- 
of the nature of our selves. 

The a priori insights of the Great Philosophers should be under- 
stood, therefore, not as The Absolute Truth about how the mind- 
brain must be, but as articulations of the assumptions that live deep 
in our collective conception of ourselves. As assumptions, however, 
they may be misconceived and empirically unsound, or at least they 
may be open to revision in the light of scientific progress. The 
possibility of such revision does not entail that the assumptions are 
ludicrous or useless. On the contrary, they may well be very 
important elements in the theoretical scaffolding as neurobiology and 
psychology inch their way toward empirically adequate theories of 
mind-brain function. The methodological point is that in science we 
cannot proceed with no theoretical framework, so even intuitive folk 
theory is better than nothing as the scientific enterprise gets 
underway. 

In addition to asking how the self can know about the external 
reality, Kant asked: How is representation of a self by a knowing 
self possible? One of his important ideas was that the nature of the 
internal world of the self is no more unmediated or given than is 
knowledge of the external world of physical objects in space and 
time. A modern version of this insight says: just as the inner thoughts 
and experiences may represent but not resemble the outer reality, 
so the inner thoughts may represent but not resemble the inner 
reality of which they are the representation. This idea, taken with 
Quine's naturalism, implies that if we want to know how we represent 
the world-the external world of colored, moving objects, and the 
internal world of thoughts, consciousness, motives and dreams-the 
scientific approach is likely to be the most rewarding. Inner 
knowledge, like outer knowledge, is conceptually and theoretically 
mediated-it is the result of complex information processing. Whether 
our intuitive understanding of the nature of our inner world is at all 
adequate is an empirical question, not an a priori, one. 

If empirical results are relevant to our understanding of how the 
mind-brain represents, it is also entirely possible that scientific 
progress on this frontier will be as revolutionary as it has been in 
astronomy, physics, chemistry, biology, and geology. With this 
observation comes the recognition that it may reconfigure our current 
assumptions about knowledge, consciousness, representations, and 
the self at least as much as Copernicus and Darwin reconfigured our 
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dearest assumptions about the nature of the universe and our place 
in it. Our intuitive assumptions, and even what seems phenomeno- 
logically obvious, may be misconceived and may thus undergo recon- 
figuration as new theory emerges from psychology and neurobiology. 

Philosophers-and sometimes psychologists, and occasionally even 
neuroscientists-generally make one of two responses to the 
naturalists' conception of the status of our self-understanding: 

(1) Philosophy is an a priori discipline, and the fundamental 
conceptual truths about the nature of the mind, of 
knowledge, of reason, etc. will come only from a priori 
investigations. In this way, philosophy sets the bounds for 
science-indeed, the bounds of sense, as Strawson (1966) 
would put it. In a more extreme vein, some existentialist 
philosophers would claim that the naturalistic approach is 
itself symptomatic of a civilizational neurosis: the 
'infatuation with science. On this view, the scientific 
approach to human nature is deeply irrational. Mandt 
(1986, p. 274) describes the existentialist criticism as 
follows: "that scientific modes of thought have become 
paradigmatic indicates the degree to which traditional 
modes of human life and experience have disintegrated, 
plunging civilization into a nihilistic abyss." 

(2) Even if a naturalistic approach is useful for some aspects 
of the nature of knowledge and representation, the 
neurosciences in particular are largely irrelevant to the 
enterprise. Neuroscience may be fascinating enough in its 
own right, but for a variety of reasons it is irrelevant to 
answering the questions we care about concerning 
cognition, representation, intelligent behavior, learning, 
consciousness, and so forth. Psychology and linguistics 
might actually be useful in informing us about such 
matters, but neurobiology is just off the book. 

2. Why Is Neurobiology Dismissed as Irrelevant to 
Understanding How the Mind Works? 

2.1 The Traditional Problem 

In its traditional guise, the mind-body problem can be stated thus: 
are mental phenomena (experiences, beliefs, desires. etc.) actually 
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phenomena of the physical brain? Dualists have answered No to this 
question. On the dualist's view, mental phenomena inhere in a 
special, nonphysical substance: the mind (also referred to as the soul 
or the spirit). The mind, on the dualist's theory, is the ghost in the 
machine; it is composed not of physical material obeying physical 
laws, but of soul-stuff, or "spooky" stuff, and it operates according 
to principles unique to spooky stuff. 

The most renowned of the substance dualists are Plato and 
Descartes, and more recently, J. C. Eccles (1977) and Richard 
Swinburne (1986). Because dualists believe the mind to be a wholly 
separate kind of stuff or entity, they expect that it can be understood 
only in its own terms. At most, neuroscience can shed light on the 
interaction between mind and body, but not on the nature of the 
mind itself. Dualists consequently see psychology as essentially 
independent of neurobiology, which, after all, is devoted to finding 
out how the physical stuff of the nervous system works. It might be 
thought a bonus of dualism that it implies that to understand the mind 
we do not have to know much about the brain. 

Materialism answers the mind-body question (are mental states 
actually states of the physical brain?) in the affirmative. The 
predominant arguments for materialism draw upon the spectacular 
failure of dualism to cohere with the rest of ongoing science. And 
as physics, molecular biology, evolutionary biology, and neuroscience 
have progressed, this failure has become more rather than less 
marked. In short, the weight of empirical evidence is against the 
existence of special soul-stuff (spooky stuff). (For a more thorough 
discussion of the failures of substance dualism, see P. S. Churchland 
1986.) Proponents of materialism include Hobbes in the seventeenth 
century, and in the twentieth, B. F. Skinner (1957, 1976), J. J. C. Smart 
(1959), W. V. 0. Quine (1960), D. C. Dennett (1978) and P. M. 
Churchland (1 984). 

Despite the general commitment to materialism, there are 
significant differences among materialists in addressing the central 
question of how best to explain psychological states. Strict 
behaviorists, such as Skinner, thought that explanations would take 
the form of stimulus-response profiles exclusively. Supporting this 
empirical hypothesis with a philosophical theory, philosophical 
behaviorists claimed that the mental terminology itself could be 
analyzed into sheerly physicalistic language about dispositions to 
behave. (For discussion, see P. M. Churchland 1988) Curiously, 
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perhaps, the behaviorists (both empirical and philosophical) share 
with the dualists the conviction that it is not necessary to understand 
the workings of the brain in order to explain intelligent behavior. 
On the behaviorists' research ideology, again we have a bonus: In 
order to explain behavior, we do not have to know anything about 
the brain. 

In contrast to behaviorism, identity theorists (Smart 1959, Enc 1983) 
claimed that mental states, such as visual perceptions, pains, beliefs, 
and drives, were in fact identical to states of the brain, though it would 
of course be up to neuroscience to discover precisely what brain 
states were in fact identical to what mental states. On the research 
ideology advocated by these materialists, explanation of behavior 
will have to refer to inner representations and hence to what the 
brain is doing. 

2.2. The Contemporary Problem: Theory Dualism 

Many philosophers who are materialists to the extent that they 
doubt the existence of soul-stuff nonetheless believe that psychology 
ought to be essentially autonomous from neuroscience, and that 
neuroscience will not contribute significantly to our understanding 
of perception, language use, thinking, problem solving, and (more 
generally) cognition. Thus, the mind-body problem in its 
contemporary guise is this: Can we get a unified science of the mind- 
brain? Will psychological theory reduce to neuroscience? 

A widespread view (which we call Theory Dualism) answers No 
to the above question. Typically, three sorts of reasons are offered: 

Neuroscience is too hard. The brain is too complex; there are too 
many neurons and too many connections, and it is a hopeless task 
to suppose we can ever understand complex higher functions in terms 
of the dynamics and organization of the neurons. 

The argument from multiple instantiability. Psychological states 
are functional states and, as such, can be implemented (instantiated) 
in diverse machines (Putnam 1967, Fodor 1975, Pylyshyn 1984). 
Therefore, no particular psychological state, such as believing that 
the earth is round or that 2 + 2 = 4, can be identified with exactly 
this or that machine state. So no functional (cognitive) process can 
be reduced to the behavior of particular neuronal systems. 

Psychological states have intentionality. That is, they are identified 
in terms of their semantic content; they are "about" other things; 
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they represent things; they have logical relations to one another. We 
can think about objects in their absence, and even of nonexistent 
objects. For example, if someone has the belief that Mars is warmer 
than Venus, then that psychological state is specified as the state it 
is in terms of the sentence "Mars is warmer than Venus", which has 
a specific meaning (its content) and which is logically related to other 
sentences. It is a belief about Mars and Venus, but it is not caused 
by Mars or Venus. Someone might have this belief because he was 
told, or because he deduced it from other things he knew. In cognitive 
generalizations states are related semantically and logically, whereas 
in neurobiological generalizations states can only be causally related. 
Neurobiological explanations cannot be sensitive to the logical 
relations between the contents of cognitive states, or to meaning or 
"aboutness". They respond only to causal properties. Neurobiology, 
therefore, cannot do justice to cognition, and thus no reduction is 
possible. 

2.3. What Is Wrong with Theory Dualism? 

In opposition to theory dualists, reductionists think we ought to 
strive for an integration of psychological and neurobiological theory. 
Obviously, a crucial element in the discussion concerns what is meant 
by "reduction"; hence, part of what must first be achieved is a proper 
account of what sort of business inter-theoretic reduction is. 

Roughly, the account is this: Reductions are explanations of 
phenomena described by one theory in terms of the phenomena 
described by a more basic theory. Reductions typically involve the 
co-evolution of theories over time, and as they ceevolve, one theory 
is normally revised, corrected and modified by its co-evolutionary 
cohort theory at the other level. This revisionary interaction can, 
and usually does, go both ways; from the more basic to the less basic 
theory and vice versa. It is important to emphasize the modification 
to theories as they co-evolve, because sometimes the modification 
is radical and entails massive reconfiguration of the very categories 
used to describe the phenomena. In such an event, the very data 
to be explained may come to be redescribed under pressure from 
the evolving theories. Examples of categories that have undergone 
varying degrees of revision, from the minor to the radical, include 
impetus, caloric, gene, neuron, electricity, instinct, life, and very 
recently, excitability (in neurons) (Schaffner 1976, P. M. Churchland 
1979, Hooker 1981). 
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Because reductionism is frequently misunderstood, it is necessary 
to be explicit about what is not meant. First, seeking reductions of 
macro-level theory to micro-level theory does not imply that one 
must first know everything about the elements of the micro theory 
before research at the macro-level can be usefully undertaken. Quite 
the reverse is advocated-research should proceed at all levels of 
the system, and coevolution of theory may enhance progress at all 
levels. Data from one level constrain theorizing at that level and at 
other levels. Additionally, the reduction of theories does not mean 
that the reduced phenomena somehow disappear or are discredited. 
The theory of optics was reduced to the theory of electromagnetic 
radiation, but light itself did not disappear nor did it become 
disreputable to study light at the macro level. Nor was the reduced 
theory cast out as useless or discredited; on the contrary, it was and 
continues to be useful for addressing phenomena at a higher level 
of description. As for the phenomenon, it is what it is, and it continues 
to be whatever it is as theories are reduced or abandoned. Whether 
a category is ultimately rejected or revised depends on its scientific 
integrity, and that is, of course, determined empirically. (For more 
detail on inter-theoretic reduction, see P. S. Churchland 1986.) 

Given this brief account of reduction as a backdrop, an outline of 
how the reductionist answers the theory dualist goes as follows: 

Neuroscience is hard, but with many new techniques now available, 
an impressive body of data is available to constrain our theories, and 
a lot of data are very suggestive as to how neural networks function 
(see Sejnowski and Churchland, 1987). We have begun to see the 
shape of neurobiological answers to functional questions, such as how 
information is stored, how networks learn, and how networks of 
neurons represent. 

High-level states are multiply instantiable. So what? If, in any given 
species, we can show that particular functional states are identical 
to specific neuronal configurations (for example, that being in REM 
sleep is having a specified neuronal state, or that one type of learning 
involves changing synaptic weights according to a Hebb rule), that 
will be sufficient to declare a reduction relative to that domain 
(Richardson 1979, Enc 1983, P. S. Churchland 1986; section 3 below). 
Very pure philosophers who cannot bring themselves to call these 
perfectly respectable domain-relative explanations "reductions" are 
really just digging in on who gets to use the word. 
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Moreover, it should be emphasized that the explanation of high- 
level cognitive phenomena will not be achieved directly in terms 
of phenomena at the lowest level of nervous-system organization, 
such as synapses and individual neurons. Rather, the explanation will 
refer to properties at higher structural levels, such as networks or 
systems. Functional properties of networks and systems will be 
explained by reference to properties at the next level down, and so 
on. What we envision is a chain of explanations linking higher to 
next-lower levels, and so on down the ladder of structural levels. 
(See Sejnowski and Churchland, in press.) The similarity of the 
information-processing function between two biological systems that 
are different at the level of the synaptic and cellular levels are 
probably a consequence of invariants that characterize dynamical 
systems in high-dimensional state spaces (Sejnowski, Koch, and 
Churchland 1988). 

Argument from intentionality. A theory of how states in a nervous 
system represent or model the world will need to be set in the context 
of the evolution and development of nervous systems, and will try 
to explain the interactive role of neural states in the ongoing neuro- 
cognitive economy of the system. Nervous systems do not represent 
all aspects of the physical environment; they selectively represent 
information a species needs, given its environmental niche and its 
way of life. Nervous systems are programmed to respond to certain 
selected features, and within limits they learn other features through 
experience by encountering examples and generalizing. Cognitive 
neuroscience is now beginning to understand how this is done 
(Livingstone 1988; Goldman-Rakic 1988; Kelso, Ganong, and Brown 
1986). Although the task is difficult, it now seems reasonable to 
assume that the "aboutness" or "meaningfulness" of representational 
states is not a spooky relation but a neurobiological relation. As we 
come to understand more about the dynamical properties of 
networks, we may ultimately be able to generate a theory of how 
human language is learned and represented by our sort of nervous 
system, and thence to explain language-dependent kinds of meaning. 

Because this answer is highly cryptic and because intentionality 
has often seemed forever beyond the reach of neurobiology, the next 
section will focus on intentionality: the theory dualist's motivation, 
and the reductionist's strategy. 
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3. Levels, Intentionality, and the Sentence-Logic Model of the 
Mind 

3.1 Sentential Attitudes and the Computer Metaphor 

Two deep and interrelated assumptions concerning the nature of 
cognition drive the third anti-reductionist argument: 

Cognition essentially involves representations and computations. 
Representations are, in general, symbolic structures, and 
computations are, in general, rules (such as rules of logic) for 
manipulating those symbolic structures. 

A good model for understanding mind-brain functions is the 
computer-that is, a machine based on the same logical foundations 
as a Turing machine and on the von Neumann architecture for a 
digital computer. Such machines are ideally suited for the manip- 
ulation of symbols according to rules. The computer metaphor 
suggests that the mind-brain, at the information processing level, can 
be understood as a kind of digital computer; the problem for cognitive 
psychology is to determine the program that our brains run. 

The motivating vision here is that cognition is to be modeled largely 
on language and logical reasoning; having a thought is, functionally 
speaking, having a sentence in the head, and thinking is, functionally 
speaking, doing logic, or at least running on procedures very like 
logic. Put this baldly, it may seem faintly ridiculous, but the theory 
is supported quite plausibly by the observation that beliefs, thoughts, 
hopes, desires and so forth are essential in the explanation of 
cognition, and that such states are irreducibly semantic because they 
are identified in virtue of their content sentences. That is, such states 
are always and essentially beliefs that p, thoughts that p, or desires 
that p, where for p we substitute the appropriate sentence, such as 
"Nixon was a Russian spy" or "Custard is made with milk". Such 
cognitive states-the so-called sentential attitudes-are the states they 
are in virtue of the sentences that specify what they are about. 
Moreover, a content sentence stands in specific logical and semantic 
relations to other sentences. The state transitions are determined by 
semantic and logical relations between the content sentences, not 
by casual relations among states neurobiologically described. Thus, 
cognitive states have meaning (i.e. content, or intentionality), and 
it might be argued, that it is precisely in virtue of their meaningfulness 
that they play the role in cognition that they do. 
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The fundamental conception is, accordingly, well and truly rooted 
in folk psychology, the body of concepts and everyday lore by means 
of which we routinely explain one another's behavior by invoking 
sentential attitudes (Stich 1983, P. M. Churchland 1988)--e.g. Smith 
paid for the vase because he believed that his son had dropped it 
and he feared that the store owner would be angry. In these sorts 
of intentional explanations, the basic unit of representation is the 
sentence, and state transitions are accomplished through the 
following of rules: deductive inference, inductive inference, and 
assorted other rules. 

Extending, the framework of folk psychology to get an 
encompassing account of cognition in general, this approach takes 
it that thinking, problem solving, language use, perception, and so 
forth will be understood as we determine the sequence of sentences 
corresponding to the steps in a given information-processing task; 
i.e., as we understand the mechanics of sentence crunching. 
According to this research paradigm, known as sententialism, it is 
the task of cognitive science to figure out what programs the brain 
runs, and neuroscience can then check these top-down hypotheses 
against the wetware to see if they are generally possible. (See 
especially Fodor 1975, Fodor 1981, and Pylyshyn 1984.) 

3.2. Is Cognition Mainly Symbol Manipulation in the Language of  
Thought? 

Although this view concerning the nature of cognition and the 
research strategy for studying cognition may be appealing (much of 
the appeal is derived from the comfortable place found for folk 
psychology), it suffers from major defects. Many of these defects have 
been discussed in detail by Anderson and Hinton (1981), P. S. 
Churchland (1986) and in various chapters of McClelland and 
Rumelhart (1986). A summary will call them to mind: 
0 Many cognitive tasks, such as visual recognition and answering 
simple true-or-false questions, can be accomplished in about half a 
second. Given what we know about conduction velocities and 
synaptic delays in neurons, this allows about 5 milliseconds per 
computational step, which means that there is time for only about 
100 steps. For a sequential program run on a conventional computer, 
100 steps is not going to get us remotely close to task completion. 
Feldman and Ballard (1982) call this the hundred-step rule. 
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Anatomically and physiologically, the brain is a parallel system, 
not a sequential von Neumann machine. The neural architecture is 
highly interconnected. Neurons such as Purkinje cells may have 
upwards of 80,000 input connections, and neurons in cerebral cortex 
can have upwards of 10,000 output connections (Anderson and 
Hinton 1981, Pellionisz and Llinas 1982, Sejnowski 1986). 

However information is stored in nervous systems, it appears to 
be radically unlike information storage in a digital computer, where 
storage and processing are separated and items are stored in memory 
according to addressable locations. In nervous systems, information 
seems to be stored in the connections between the same neurons 
that process the information. There does not appear to be a distinct 
storage location for each piece of stored information, and information 
is content addressable rather than location addressable. Information 

, storage is probably at least somewhat distributed rather than 
punctate, since memories tend to be degraded with damage to the 
system rather than selectively wiped out one by one. 

A task may fall gracefully on to one architecture, and not on to 
another. Certain kinds of tasks, such as numerical calculation, fall 
gracefully on to a von Neumann architecture, but others, such as 
learning or associative memory, do not. Things we humans find 
effortless (such as facial recognition and visual perception) are tasks 
which artificial intelligence has great difficulty simulating on a von 
Neumann architecture, whereas things we find it "effortful" to do 
(such as simple proofs in the propositional calculus or mathematical 
calculations) are straightforward for a digital computer (Anderson 
and Hinton 1981; Rumelhart, Hinton and McClelland 1986). This 
suggests that the computational style of nervous systems may be very 
unlike that suited to von Neumann architectures. 

The hardware-software analogy fails for many reasons, the most 
prominent of which are that nervous systems are plastic and that 
neurons continually change as we grow and learn. Related, perhaps, 
is the observation that nervous systems degrade gracefully and are 
relatively fault tolerant. A von Neumann machine is rigid and fault 
intolerant, and a breakdown of one tiny component disrupts the 
machine's performance. 

The analogy between levels of description in a conventional 
computer (such as the hardware-software distinction) and levels of 
explanation in nervous systems may well be profoundly misleading. 
Exactly how many of levels of organization we need to postulate 
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in order to understand nervous-system function is an empirical 
question, and it may turn out that there are many levels between 
the molecular and the behavioral. In nervous systems we may already 
discern as distinct descriptive levels the molecule, the membrane, 
the cell, the circuit, networks, the maps, brain systems, and several 
levels of behavior (from the reflexive to the highest levels of 
cognition). Other levels may come to be described as more is 
discovered about the nature of nervous systems. As is discussed 
below, the properties at one level may constrain the kind of 
properties realizable at another level. 

Nonverbal animals and infraverbal humans present a major 
problem for the sentence-logic theory of cognition: How is their 
cognition accomplished? On the sentence-logic theory of cognition, 
either their cognition resembles the human variety (and hence 
involves symbol manipulation according to rules and a language of 
thought replete with a substantial conceptual repertoire) or their 
cognitive processes are entirely different from the usual human ones. 
Neither alternative is remotely credible. The first lacks any evidence. 
At best, its defense is circular-it helps to save the theory. The second 
alternative entails a radical discontinuity in evolution-sufficiently 
radical that language-of-thought cognition is a bolt from the blue. 
This implies that evolutionary biology and developmental 
neurobiology are mistaken in some fundamental respects. Since 
neither alternative can be taken seriously, the hypothesis itself has 
diminished credibility. 

If cognition, then, is not, in general, to be understood on the 
sentencelogic model, the pressing questions then are these: How does 
the brain represent? How do nervous systems model the external 
world of objects in motion and the internal world of the nervous 
system itself? And when representations do stand in semantic and 
logical relations to one another, how is this achieved by neural 
networks? How is the semantic and logical structure of language- 
as we both comprehend and speak-represented in the brain? 
According to the rejected model, we postulate an internal 
organization-a language of thought-with the very same structure 
and organization as language. But if that model is rejected, what do 
we replace it with? 

These are, of course, the central questions, and getting answers 
will not be easy. But the difficulty should not make the language-of- 
thought hypothesis more appealing. In certain respects, the current 
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scientific state of a general theory of representation is analogous to 
the science of embryology in the nineteenth century. The develop- 
ment of highly structured, complex, fully-formed organisms from eggs 
and sperm is a profoundly amazing thing. Faced with this mystery, 
some scientists concluded that the only way to explain the emergence 
of a fully structured organism at birth was to assume that the structure 
was already there. Hence the homuncular theory of reproduction, 
which claimed that a miniature but complete human already exists 
in the sperm and merely expands during its tenure in the womb. 

We now know that there is structure in the sperm (and the egg)- 
not in the form of a miniature, fully structured organism, but mainly 
in the form of DNA-a molecule that looks not at all like a fully 
formed human. Thus, the structure of the cause does not resemble 
the structure of the effect. Accordingly, the homuncular theorists 

. were right in supposing that the highly structured neonate does not 
come from nothing, but they were wrong in looking for a structural 
resemblance between cause and effect. It was, of course, terribly hard 
to imagine the nature of the structural organization that enables 
development yet in no way resembles the final product. Only through 
molecular biology and detailed work in embryology have we begun 
to understand how one kind of structure can, through intermediate 
mechanisms, yield another, very different kind of structure. 

The parallel with cognitive neurobiology is this: The neuronal 
processes underlying cognition have a structure of some kind, but 
almost certainly it will not, in general, look anything like the 
semanticAogic structure visible in overt language. The organizational 
principles of nervous systems are what permit highly complex, 
structured patterns of behavior, for it is certain that the behavioral 
structure does not emerge magically from neuronal chaos. As things 
stand, it is very hard to imagine what those organizational principles 
could look like, and, just as in genetics and embryology, we can find 
answers only by framing hypotheses and doing experiments. 

Instead of starting from the old sentence-logic model, we model 
information processing in terms of the trajectory of  a complex 
nonlinear dynamical system in a very high-dimensional space. This 
structure does not resemble sentences arrayed in logical sequences, 
but it is potentially rich enough and complex enough to yield 
behavior capable of supporting semantic and logical relationships. 
We shall now explore what representing looks like in a particular 
class of nonlinear dynamical systems called connectionist models. 
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4. Representation in Connectionist Models 

As the name implies, a connectionist model is characterized by 
connections and differential strengths of connection between 
processing units. Processing units are meant to be like neurons and 
communicate with one another by signals (such as a firing rate) that 
are numerical rather than symbolic. Connectionist models are 
designed to perform a task by specifying the architecture: the number 
of units, their arrangement in layers and columns, the patterns of 
connectivity, and the weight or strength of each connection (figures 
1 and 2). These models have close ties with the computational level 
on which the task is specified, and with the implementation level 
on which the task is physically instantiated (Marr 1982). This species 
of network models should properly be considered a class of 
algorithms specified at various levels of organization-in some cases 
at the small-circuit level, in other cases at the system level. Both the 
task description and the neural embodiment are, however, crucially 
important in constraining the class of networks that will be explored. 
On the one hand the networks have to be powerful enough to match 
human performance of the computational tasks, and on the other 
hand they have to be built from the available materials. In the case 
of the brain, that means neurons and synapses; in the case of network 
models, that means neuron-like processing units and synapse-like 
weights. 

Digital computers are used to simulate neural networks, and the 
network models that can be simulated on current machines are tiny 
in comparison with the number of synapses and neurons in the 
mammalian brain. The networks that have been constructed should 
be understood, therefore, as small parts of a more complex processing 
system whose general configuration has not yet been worked out, 
rather than as simulations of a whole system. To avoid 
misunderstanding, it should be emphasized that connectionist models 
cannot yet support a full cognitive system. To begin to reach that 
goal will require both a computing technology capable of supporting 
more detailed simulations and a more complete specification of the 
nervous system. 

Granting these limitations, we may nonetheless be able to catch 
a glimpse of what representations might look like within the parallel- 
style architecture of the brain by taking a look inside a connectionist 
network. The place to look is in the dynamics of the system; that 
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is, in the patterns of activity generated by the system of inter- 
connected units. This approach has its roots in the work of previous 
generations of researchers-primarily the gestalt school of psychology 
and D. 0. Hebb (1949), who developed many ideas about learning 
and representation in neural assemblies. Only recently, however, has 
sufficient computer power been available to explore the 
consequences of these ideas by direct simulation, since the dynamics 
of massively parallel nonlinear networks is highly computation 
intensive. Parallel-network models are now being used to explore 
many different aspects of perception and cognition, (McClelland and 
Rumelhart 1986; Feldman and Ballard 1982; Cognitive Science, 
volume 9, special issue), but in this chapter we shall focus on two 
representative examples. The first is NETtalk, one of the most 
complex network models yet constructed, which learns to convert 
English text to speech sounds (Sejnowski and Rosenberg 
1987, 1988). The second is a network model that computes surface 
curvatures of an object from its gray-level input image. NETtalk will 
be used primarily to illustrate two things: how a network can learn 
to perform a very complex task without symbols and without rules 
to manipulate symbols, and the differences between local and 
distributed representations. 

Connectionist models can be applied on a large scale to model 
whole brain systems or, on a smaller scale, to model particular brain 
circuits. NETtalk, is on a large scale, since the problem of 
pronunciation is constrained mainly by the abstract cognitive 
considerations and since its solution in the brain must involve a 
number of systems, including the visual system, the motor- 
articulatory system, and the language areas. The second example 
is more directly related to smaller brain circuits used in visual 
processing; the representational organization achieved by the 
network model can be related to the known representational 
organization in visual cortex. 

In the models reviewed here, the processing units sum the inputs 
from connections with other processing units, each input weighted 
by the strength of the connection. The output of each processing unit 
is a real number that is a nonlinear function of the linearly summed 
inputs. The output is small when the inputs are below threshold, and 
it increases rapidly as the total input becomes more positive. Roughly, 
the activity level can be considered the sum of the postsynaptic 
potentials in a neuron, and the output can be considered its firing 
rate (figure 1). 



Neural Representation and Neural Computation / 359 

4.1. Speech Processing: Text to Speech. 

In the simplest NETtalk system2 there are three layers of proces- 
sing units. The first level receives as input letters in a word; the final 
layer yields the elementary speech sounds, or phonemes (table 1); 
and an intervening layer of "hidden units" which is fully connected 
with the input and output layers, performs the transformation of 
letters to sounds (figure 3). On the input layer, there is local 
representation with respect to letters because single units are used 
to represent single letters of the alphabet. Notice, however, that the 
representation could be construed as distributed with respect to 
words, inasmuch as each word is represented as a pattern of activity 
among the input units. Similarly, each phoneme is represented by 
a pattern of activity among the output units, and phonemic 
representation is therefore distributed. But each output unit is coded 
for a particular distinctive feature of the speech sound, such as 
whether the phoneme was voiced, and consequently each unit is local 
with respect to distinctive features. 

NETtalk has 309 processing units and 18,629 connection strengths 
(weights) that must be specified. The network does not have any 
initial or built-in organization for processing the input or (more 
exactly) mapping letters onto sounds. All the structure emerges 
during the training period. The values of the weights are determined 
by using the "back-propagation" learning algorithm developed by 
Rumelhart, Hinton, and Williams (1986). (For reviews of network 
learning algorithms, see Hinton, 1988, and Sejnowski, 1988.) The 
strategy exploits the calculated error between the actual values of 
the processing units in the output layer and the desired values, which 
is provided by a training signal. The resulting error signal is 
propagated from the output layer backward to the input layer and 
used to adjust each weight in the network. The network learns, as 
the weights are changed, to minimize the mean squared error over 
the training set of words. Thus, the system can be characterized as 
following a path in weight space (the space of all possible weights) 
until it finds a minimum (figure 4). The important point to be 
illustrated, therefore, is this: The network processes information by 
nonlinear dynamics, not by manipulating symbols and accessing 
rules. It learns by gradient descent in a complex interactive system, 
not by generating new rules (Hinton and Sejnowski 1986). 

The issue that we want to focus on next is the structural 
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organization that is "discovered" by the network, in virtue of which 
it succeeds in converting letters to phonemes and manages to 
pronounce, with few errors, the many irregularities of English. If there 
are no rules in the network, how is the transformation accomplished? 
Since a trained network can generalize quite well to new words, some 
knowledge about the pattern of English pronunciation must be 
contained inside the network. Although a representational 
organization was imposed on the input and output layers, the network 
had to create new, internal representations in the hidden layer of 
processing units. How did the network organize its "knowledge"? 
To be more accurate: How did the equivalence class of networks 
organize its knowledge? (Each time the network was started from 
a random set of weights, a different network was generated.) 

The answers were not immediately available, because a network 
does not leave an explanation of its travels through weight space, 
nor does it provide a decoding scheme when it reaches a resting 
place. Even so, some progress was made by measuring the activity 
pattern among the hidden units for specific inputs. In a sense, this 
test mimics at the modeling level what neurophysiologists do at the 
cellular level when they record the activity of a single neuron to try 
to find the effective stimulus that makes it respond. NETtalk is a 
fortunate "preparation", inasmuch as the number of processing units 
is relatively small, and it is possible to determine the activity patterns 
of all the units for all possible input patterns. These measurements, 
despite the relatively small network, did create a staggering amount 
of data, and then the puzzle was this: How does one find the order 
in all this data? 

For each set of input letters, there is a pattern of activity among 
the hidden units (figure 5). The first step in the analysis of the activity 
of the hidden units was to compute the zverage level of activity for 
each letter-to-sound correspondence. For example, all words with 
the letter c in the middle position yielding the hard-c sound /k/ were 
presented to the network, and the average level of activity was 
calculated. Typically, about 15 of the 80 hidden units were very highly 
activated on average, and the rest of the hidden units had little or 
no activity. This procedure was repeated for each of the 79 letter-to- 
sound correspondences. The result was 79 vectors, each vector 
pointing in a different direction in the 80-dimensional space of 
average hidden-unit activities. The next step was to explore the 
relationship among the vectors in this space by cluster analysis. It 
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is useful to conceive of each vector as the internal code that is used 
to represent a specific letter-to-sound correspondence; consequently, 
those vectors that clustered close together would have similar codes. 

Remarkably, all the vectors for vowel sounds clustered together, 
indicating that they were represented in the network by patterns 
of activity in units that were distinct from those representing the 
consonants (which were themselves clustered together). (See figure 
6.) Within the vowels, all the letter-to-sound correspondences that 
used the letter a were clustered together, as were the vectors of e, 
i, o, and u and the relevant instances of y. This was a very robust 
organizational scheme that occurred in all the networks that were 
analyzed, differences in starting weights notwithstanding. The coding 
scheme for consonants was more variable from network to network, 
but as a general rule the clustering was based more on similarities 
in sounds than on letters. Thus, the labial stops /p/ and /b/ were 
very close together in the space of hidden-unit activities, as were 
all the letter-to-sound correspondences that result in the hard-c sound 
/k/. 

Other statistical techniques, such as factor analysis and multi- 
dimensional scaling, are also being applied to the network, and 
activity patterns from individual inputs, rather than averages over 
classes, are also being studied (Rosenberg 1988). These statistical 
techniques are providing us with a detailed description of the 
representation for single inputs as well as classes or inputautput pairs. 

Several aspects of NETtalk's organization should be emphasized: 
The representational organization visible in the trained-up 

network is not programmed or coded into the network; it is found 
by the network. In a sense it "programs" itself, by virtue of being 
connected in the manner described and having weights changed by 
experience according to the learning algorithm. The dynamical 
properties of this sort of system are such that the network will settle 
into the displayed organization. 

The network's representation for letter-to-sound correspondences 
is neither local nor completely distributed; it is somewhere in 
between. The point is, each unit participates in more than one 
correspondence, and so the representation is not local, but since it 
does not participate in all correspondences, the representation is not 
completely distributed either. 

The representation is a property of the collection of hidden units, 
and does not resemble sentence-logic organization. 



362 / Patricia Smith Churchland / Terrence J. Sejnowski 

The organization is structured, which suggests that emergent 
subordinate and superordinate relations might be a general principle 
of network organization that could be used as input for other 
networks assigned other tasks, if NETtalk were embedded in a larger 
system of networks. 

General properties of the hierarchical organization of letter-to- 
sound correspondences emerged only at the level of groups of units. 
This organization was invariant across all the networks created from 
the same sample of English words, even where the processing units 
in distinct networks had specialized for a different aspect of the 
problem. 

Different networks created by starting from different initial 
conditions all achieved about the same level of performance, but the 
detailed response properties of the individual units in the networks 
differed greatly. Nonetheless, all the networks had similar functional 
clusterings for letter-to-sound correspondences (figure 6). This 
suggests that single neurons only code information relative to other 
neurons in small groups or assemblies (Hebb 1949). 

The representational organization in NETtalk may illustrate 
important principles concerning network computation and 
representation, but what do they tell us about neural representations? 
Some of the principles uncovered might be generally applicable to 
a wide class of tasks, but it would be surprising if the details of the 
model bore any significant resemblance to the way reading skills are 
represented in the human nervous system. NETtalk is more of a 
demonstration of certain network capacities and properties than a 
faithful model of some subsystem of the brain, and it may be a long 
time before data concerning the human neurobiology of reading 
become available. Nevertheless, the same network techniques that 
were used to explore the language domain can be applied to problems 
in other domains, such as vision, where much more is known about 
the anatomy and the physiology. 

4.2. Visual Processing: Computing Surface Curvature from Shaded 
Images 

The general constraints from brain architecture touched on in 
section 3 should be supplemented, wherever possible, by more 
detailed constraints from brain physiology and anatomy. Building 
models of real neural networks is a difficult task, however, because 
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essential knowledge about the style of computation in the brain is 
not yet available (Sejnowski 1986). Not only is the fine detail (such 
as the connectivity patterns in neurons in cerebral cortex) not known, 
but even global-level knowledge specifying the flow of information 
through different parts of the brain during normal function is limited. 
Even if more neurophysiological and neuroanatomical detail were 
available, current computing technology would put rather severe 
limits on how much detail could be captured in a simulation. 
Nevertheless, the same type of network model used in NETtalk could 
be useful in understanding how information is coded within small 
networks confined to cortical columns. The processing units in this 
model will be identified with neurons in the visual cortex. 

Ever since Hubel and Wiesel (1962) first reported that single 
neurons in the cat visual cortex respond better to oriented bars of 

, lights and to dark/light edges than to spots of light, it has been 
generally assumed, or at least widely hoped, that the function of these 
neurons is to detect boundaries of objects in the world. In general, 
the inference from a cell's response profile to its function in the wider 
information-processing economy is intuitively very plausible, and if 
we are to have any hope of understanding neural representations 
we need to start in an area-such as visual cortex-where it is possible 
to build on an impressive body of existing data. The trouble is, 
however, that many functions are consistent with the particular 
response properties of a neuronal population. That a cell responds 
optimally to an oriented bar of light is compatible with its having 
lots of functions other than detecting object boundaries, though the 
hypothesis that it serves to detect boundaries does tend to remain 
intuitively compelling. To see that our intuitions might really mislead 
us as we try to infer function from response profiles, it would be useful 
if we could demonstrate this point concretely. In what follows we 
shall show how the same response properties could in fact serve in 
the processing of visual information about the regions of a surface 
between boundaries rather than about the boundaries themselves. 

Boundaries of objects are relatively rare in images, yet the 
preponderance of cells in visual cortex respond preferentially to 
oriented bars and slits. If we assume that all those cells are detecting 
boundaries, then it is puzzling that there should be so many cells 
whose sole function is to detect boundaries when there are not many 
boundaries to detect. It would, therefore, seem wasteful if, of all the 
neurons with oriented fields, only a small fraction carried useful 
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information about a particular image. Within their boundaries, most 
objects have shaded or textured surfaces that will partially activate 
these neurons. The problem accordingly is this: Can the information 
contained in a population of partially-activated cortical neurons be 
used to compute useful information about the three-dimensional 
surfaces between the boundaries of objects in the image? 

One of the primary properties of a surface is its curvature. Some 
surfaces, such as the top of a table, are flat, and have no intrinsic 
curvature. Other surfaces, such as cylinders and spheres, are curved, 
and around each point on a surface the degree of curvature can be 
characterized by the direction along the surface of maximum and 
minimum curvature. It can be shown that these directions are always 
at right angles to each other, and the values are called the principle 
curvatures (Hilbert and Cohn-Vossen 1952). The principal curvatures 
and the orientation of the axes provide a complete description of 
the local curvature. 

One problem with extracting the principal curvatures from an 
image is that the gray-level shading depends on many factors, such 
as the direction of illumination, the reflectance of the surface, and 
the orientation of the surface relative to the viewer. Somehow our 
visual system is able to separate these variables and to extract 
information about the shape of an object independent of these other 
variables. Pentland (1984) has shown that a significant amount of 
information about the curvature of a surface is available locdly. Can 
a network model be constructed that can extract this information 
from shaded images? 

Until recently it was not obvious how to begin to construct such 
a network, but network learning algorithms (see above) provide us 
with a powerful method for creating a network by giving it examples 
of the task at hand. The learning algorithm is being used in this 
instance simply as a design tool to see whether some network can 
be found that performs the task. Many examples of simple surfaces 
(elliptic paraboloids) were generated and presented to the network. 
A set of weights was indeed found with this procedure that, 
independent of the direction of illumination, extracted the principal 
curvatures of three-dimensional surfaces and the direction of 
maximum curvature from shaded images (Lehky and Sejnowski 
1988a,b). 

The input to the network is from an array of on-center and off- 
center receptive fields similar to those of cells in the lateral geniculate 
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nucleus. The output layer is a population of units that conjointly 
represent the curvatures and the broadly tuned direction of maximum 
curvature. The units of the intermediate layer, which are needed to 
perform the transformation, have oriented receptive fields, similar 
to those of simple cells in the visual cortex of cats and monkeys that 
respond optimally to oriented bars and edges (figure 7). It is important 
to emphasize that these properties of the hidden units were not put 
into the network directly but emerged during training. The system 
"chose" these properties because they are useful in performing a 
particular task. Interestingly, the output units, which were required 
to code information about the principal curvatures and principal 
orientations of surfaces, had properties, when probed with bars of 
light, that were similar to those of a class of complex cells that are 
end-stopped (Lehky and Sejnowski 1988a,b). The surprising thing, 
given the plausible receptive-field-to-function inference rule, is that 
the function of the units in the network is not to detect bounding 
contours, but to extract curvature information from shaded images. 
Whether or not curvature is directly represented in visual cortex can 
be tested by designing experiments with images of curved surfaces. 

What the shape-from-shading network demonstrates is that we 
cannot directly infer function from receptive field properties. In the 
trained-up network the hidden units represent an intermediate 
transformation for a computational task quite different from the one 
that has been customarily ascribed to simple cells in visual cortex- 
they are used to determine shape from shading, not to detect 
boundaries. It turns out, however, that the hidden units have 
receptive fields similar to those of simple cells in visual cortex. 
Therefore, bars and edges as receptive-field properties do not 
necessarily mean that the cell's function is to detect bars and edges 
in objects; it might be to detect curvature and shape, as it is in the 
network model, or perhaps some other surface property such as 
texture. The general implication is that there is no way of determining 
the function of each hidden unit in the network simply by "recording" 
the receptive-field properties of the unit. This, in turn, implies that, 
despite its intuitive plausibility, the receptive-field-to-function 
inference rule is untenable. 

The function of a unit is revealed only when its outputs-its 
"projective field", (Lehky and Sejnowski, 1988a,b)-are also ex- 
amined. It is the projective field of a unit that provides the information 
needed to interpret the unit's computational role in the network. In 
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the network model the projective field could be examined directly, 
but in real neural networks, it can only be inferred indirectly by 
examining the next stage of processing. 

4.3. NextGeneration Networks 

NETtalk and the shape-from-shading network are important 
examples because they yield clues to how the nervous system can 
embody models of various domains of the world. Parallel-network 
modeling is still in a pioneering stage of development. There are 
bound to be many snags and hitches, and many problems yet 
undreamt of will have to be solved. At this stage, the representational 
structure of networks has not yet been explored in detail, nor is it 
known how well the performance of network models will scale with 
the number of neurons and the difficulty of the task. (That is, will 
representations and computations in a cortical column with 200,000 
neurons be similar to those in a model network comprising only a 
few hundred processing units?) 

Moreover, taken literally as a model of functioning neurons, back- 
propagation is biologically implausible, inasmuch as error signals 
cannot literally be propagated back down the very same axon the 
signal came up. Taken as a systems-level algorithm, however, back- 
propagation may have a realization using feedback projections that 
do map onto neural hardware. Even squarely facing these cautionary 
considerations, the important thing is that something with this sort 
of character at least lets us see what representational structure- 
good, meaty, usable structure-could look like in a neuronal network. 

Temporal chaining of sequences of representations is probably a 
prominent feature of many kinds of behavior, and it may turn out 
to be particularly important for language acquisition and use. It is 
conceivable that structured sequences-long, temporally extended 
sequences-are the elements of an abstract sort of neural state space 
that enable humans to use language. Sereno (1986) has suggested 
something along these lines, pointing out that DNA, as a spatially 
extended sequence of nucleotides, allows for encoding; by analogy, 
one may envision that the development of mechanisms for generating 
temporally extended sequences of neuronal (abstract) structures may 
allow for a kind of structured behavior (i.e. language) that short 
sequences do not allow for. (See also MacKay 1987; Dehaene et al. 
1987.) 
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One promising strategy will be to try first to unscramble the more 
fundamental kinds of representing accomplished by nervous systems, 
shelving until later the problem of complex representations such as 
linguistic representations. To solve such problems, the solutions 
discovered for simpler representations may be crucial. At the most 
basic level, there appears to be an isomorphism between cell 
responses and external events (for example cells in visual cortex 
responding to bars of light moving in a specific direction). At higher 
levels the receptive field properties change (Allman et al. 1985, 
Andersen 1987), and it may be that the lower-level isomorphism gives 
way to more complicated and dynamic network effects. Motivation, 
planning, and other factors may at this level, have roles in how a 
representation is generated. At still higher levels, still other principles 
may be operative. Once we understand the nature of representing 
in early sensory processing, as we have indeed begun to do, and go 
on to address the nature of representations at more and more abstract 
levels, we may finally be able to address how learning a language 
yields another kind of representation, and how symbols can be 
represented in neural networks. Whatever the basic principles of 
language representation, they are not likely to be utterly unrelated 
to the way or ways that the nervous system generates visual 
representations or auditory representations, or represents spatial 
maps and motor planning. (On semantic relations in connectionist 
models, see Hinton 1981, 1986.) 

5. Dogmas and Dreams: George Boole, Ramon y Cajal, David 
Marr 

The connectionist models discussed are valuable for the glimpse 
of representational and computational space that they provide, for 
it is exactly such glimpses that free us from the bonds of the intuitive 
conceptions of representation as language-like and computation as 
logic-like. They thus free us from what Hofstadter (1982) called the 
Boolean Dream, where all cognition is symbol-manipulation 
according to the rules of logic. 

Equally important, they also free us from what we call the 
Neurobiologists' Dream (perhaps, with all due respect, it might be 
called Cajal's Dream), which is really the faith that the answers we 
seek will be manifest once the fine-grain details of each neuron (its 
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morphology, physiology, and connections) are revealed. These 
models also teach the tremendously important lesson that system 
properties are not accessible at the single unit level. In a system, what 
we need to know is how the elements in large set of elements interact 
over time. Until we have new physiological techniques for supplying 
data of that sort, building network models is a method of first resort. 

To be really useful, a model must be biologically constrained. 
However, exactly which biological properties are crucial to a model's 
utility and which can be safely ignored until later, are matters that 
can be decided only by hunches until a mature theory is in place. 
Such 'bottom-up' constraints are crucial, since computational space 
is immensely vast, too vast for us to be lucky enough to light on the 
correct theory simply from the engineering bench. Moreover, the 
brain's solutions to the problems of vision, motor control, and so forth 
may be far more powerful, more beautiful, and even more simple 
than what we engineer into existence. This is the point of Orgel's 
Second Rule: Nature is more ingenious than we are. And we stand 
to miss all that power and ingenuity unless we attend to 
neurobiological plausibility. The point is, evolution has already done 
it, so why not learn how that stupendous machine, our brain, actually 
works? 

This observation allows us to awake from Marr's Dream of three 
levels of explanation: the computational level of abstract problem 
analysis, the level of the algorithm, and the level of physical 
implementation of the computation. In Marr's view, a higher level 
was independent of the levels below it, and hence computational 
problems could be analyzed independently of an understanding of 
the algorithm that executes the computation, and the algorithmic 
problem could be solved independently of an understanding of the 
physical implementation. Marr's assessment of the relations between 
levels has been reevaluated, and the dependence of higher levels 
on lower levels has come to be recognized. 

The matter of the interdependence of levels marks a major 
conceptual difference between Marr and the current generation of 
connectionists. Network models are not independent of either the 
computational level or the implementational level; they depend in 
important ways on constraints from all levels of analysis. Network 
models show how knowledge of brain architecture can contribute 
to the devising of likely and powerful algorithms that can be 
efficiently implemented in the architecture of the nervous system 
and may alter even how we construe the computational problems. 
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On the heels of the insight that the use of constraints from higher 
up and lower down matters tremendously, the notion that there are 
basically three levels of analysis also begins to look questionable. 
If we examine more closely how the three levels of analysis are meant 
to map onto the organization of the nervous system the answer is 
far from straightforward. 

To begin with, the idea that there is essentially one single 
implementational level is an oversimplification. Depending on the 
fineness of grain, research techniques reveal structural organization 
at many strata: the biochemical level; then the levels of the 
membrane, the single cell, and the circuit; and perhaps yet other 
levels such as brain subsystems, brain systems, brain maps, and the 
whole central nervous system. But notice that at each structurally 
specified stratum we can raise the functional question: What does 
it contribute to the wider, functional business of the brain? 

This range of structural organization implies, therefore, that the 
oversimplification with respect to implementation has a companion 
over-simplification with respect to computational descriptions. And 
indeed, on reflection it does seem most unlikely that a single type 
of computational description can do justice to the computational niche 
of diverse structural organization. On the contrary, one would expect 
distinct task descriptions corresponding to distinct structural levels. 
But if there is a ramifying of task specifications to match the ramified 
structural organization, this diversity will probably be reflected in 
the ramification of the algorithms that characterize how a task is 
accomplished. And this, in turn, means that the notion of the 
algorithmic levels is as oversimplified as the notion of the 
implementation level. 

Similar algorithms were used to specify the network models in 
NETtalk and the shape-from-shading network, but they have a quite 
different status in these two examples. On this perspective of the 
levels of organization, NETtalk is a network relevant to the systems 
level, whereas the shape-from-shading network is relevant to the 
circuit level. Since the networks are meant to reflect principles at 
entirely different levels of organization, their implementations will 
also be at different scales in the nervous system. Other computational 
principles may be found to apply to the single cell or to neural maps. 

Once we look at them closely, Marr's three levels of analysis and 
the brain's levels of organization do not appear to mesh in a very 
useful or satisfying manner. So poor is the fit that it may be doubted 
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whether levels of analysis, as conceived by Marr, have much 
methodological significance. Accordingly, in light of the flaws with 
the notion of independence, and in light of the flaws with the tripartite 
character of the conception levels, it seems that Marr's dream, 
inspiring though it was for a time, must be left behind. 

The vision that inspires network modeling is essentially and 
inescapably interdisciplinary. Unless we explicitly theorize above the 
level of the single cell, we will never find the key to the order and 
the systematicity hidden in the blinding minutiae of the neuropil. 
Unless our theorizing is geared to mesh with the neurobiological data, 
we risk wasting our time exploring some impossibly remote, if 
temporarily fashionable, corner of computational space. Additionally, 
without the constraints from psychology, ethology and linguistics to 
specify more exactly the parameters of the large-scale capacities of 
nervous systems, our conception of the functions for which we need 
explanation will be so woolly and tangled as to effectively smother 
progress. 

Consequently, cross-disciplinary research, combining constraints 
from psychology, neurology, neurophysiology, linguistics, and 
computer modeling, is the best hope for the co-evolution that could 
ultimately yield a unified, integrated science of the mind-brain. It has 
to be admitted, however, that this vision is itself a dream. From within 
the dream, we cannot yet reliably discern what are the flaws that 
will impede progress, what crucial elements are missing, or at which 
points the vague if tantalizing hunches might be replaced by palpable 
results. 

Notes 

1. An earlier exploration of these ideas is to be found in Kenneth Craik's 
book The Nature of Explanation (Cambridge University Press, 1943). 

2. NETtalk networks can differ in how input letters and output phonemes 
are represented, and in the number and arrangement of hidden units. 
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Table and Figure Legends 

Table 1: List of phonemes used in NETtalk and examples (italicized letters). 
Fig. 1: 

Fig. 2: 

Fig. 3: 

- .  
Left Sdhematic model of a neuron-like processing unit that receives 
synapse-like inputs from other processing units. Right: Nonlinear 
sigmoid-shaped transformation between summed inputs and the 
output "firing rate" of a processing unit. The output is a continuous 
value between 0 and 1. 
Schematic model of a three-layered network. Each input unit makes 
connections with each of the hidden units on the middle layer, 
which in t u n  projects to each of the output units. This is a 
feedforward architecture in which information provided as an input 
vector flows through the network, one layer at a time, to produce 
an output vector. More complex architectures allow feedback 
connections from an upper to a lower layer and lateral interactions 
between units within a layer. 
Schematic drawing of the NETtalk network architecture. A window 
of letters in an English text is fed to an array of 203 input units 
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Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

arranged in 7 groups of 29 units each. Information from these units 
is transformed by an intermediate layer of 80 hidden units to 
produce a pattern of activity in 26 output units. The connections 
in the network are specified by a total of 18,629 weight parameters 
(including a variable threshold for each unit). During the training, 
information about the desired output provided by the Teacher is 
compared with the actual output of the network, and the weights 
in the network are changed slightly so as to reduce the error. 
Schematic drawing of a path followed in weight space as the 
network finds a minimum of the average error over the set of 
training patterns. Only two weights out of many thousands are 
shown. The learning algorithm only ensures convergence to a local 
minimum, which is often a good solution. Typically, many sets of 
weights are good solutions, so the network is likely to find one of 
them from a random starting position in weight space. The learning 
time can be reduced by starting the network near a good solution; 
for example, the pattern of connections can be limited to a geometry 
that reduces the number of variable weights that must be searched 
by gradient descent. 
Levels of activation in the layer of hidden units for a variety of 
words. The input string in the window of seven letters is shown 
to the left, with the target letter emphasized. The output from the 
network is the phoneme that corresponds to the target letter. The 
transformation is accomplished by 80 hidden units, whose activity 
levels are shown to the right in two rows of 40 units each. The 
area of each white square is proportional to the activity level. Most 
units have little or no activity for a given input, but a few are highly 
activated. 
Hierarchical clustering of hidden units for letter-to-sound 
correspondences. The vectors of average hidden unit activity for 
each correspondence ("I"-p for letter "1" and phoneme p) were 
successively merging from right to left in the binary tree. The scale 
at the top indicates the Euclidean instance between the clusters. 
(From Sejnowski and Rosenberg 1987.) 
Hinton diagram showing the connection strengths in a network that 
computes the principal curvatures and direction of minimum 
curvature from shaded images in a small patch of the visual field 
corresponding roughly to the area represented in a cortical column. 
There are 12 hidden units which receive connections from the 122 
inputs and project to each of the 23 output units. The diagram shows 
each of the connection strengths to and from the hidden units. Each 
weight is represented by one square, the area of which is 
proportional to the magnitude of the weight. The color is white 
if the weight is excitatory and black if it is inhibitory. The inputs 
are two hexagonal arrays of 61 processing units each. Each input 
unit has a concentric oncenter (top) or off-surround (bottom) 
receptive field similar to those of principal cells in the lateral 
geniculate nucleus. The output consists of 24 units that conjointly 
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Symbol 
/a/ 
/b/ 
/c/ 
/d/ 
/e/ 
/ f /  
/g/ 
/h/ 
/i/ 
/k/ 
/I /  
/m/ 
/n/ 
/o/ 
/PI 
/r/ 
/s/ 
/t/ 
/u/ 
/v/ 
/w/ 
/x/ 
/Y/ 
/z/ 
/A/ 

represent the direction of maximum curvature (six columns) and 
principal curvature (four rows: two for each principal curvature.) 
Each of the 12 hidden units is represented in the diagram in a way 
that reveals all the connections to and from the unit. Within each 
of the 12 gray background regions, the weights from the inputs 
are shown on the bottom and the weights to the output layer are 
shown above. To the left of each hidden unit, the lone square gives 
the threshold of the unit, which was also allowed to vary. Note that 
there emerged two different types of hidden units as revealed by 
the "projective field". The six units in the bottom row and the fourth 
and fifth from the left in the top row were mainly responsible for 
providing information about the direction of minimum curvature, 
while others were responsible for computing the signs and 
magnitudes of the two principal curvatures. The curvature-selective 
units could be further classified as convexity detectors (top row, 
third from left) or elongation filters (top row, second and sixth from 
left). 

Table 1 

Symbols for Phonemes 

Phoneme 
father 
bet 
bought 
debt 
bake 
fin 
guess 
head 
Pete 
Ken 
let 
met 
net 
boat 
Pet 
red 
sit 
test 
lute 
vest 
wet 
about 
Yet 
zoo 
bite 

Symbol 
/C/ 
/D/ 
/E/ 
/G/ 
/I /  
/J/ 
/K/ 
/L/ 
/M/ 
/N/  
/o/ 
/Q/ 
/R/ 
/S/ 
/T/ 
/u/ 
/W/ 
/X/ 
/Y/ 
/z/ 
// 
/!/ 
/#/ 
/ * /  

Phoneme 
chin 
this 
bet 
sing 
bit 
gin 
sexual 
bottle 
absym 
button 
boy 
quest 
bird 
shin 
thin 
book 
bout 
excess 
cute 
leisure 
bat 
Nazi 
examine 
one 
logic 
but 
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Fig. 1 
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Fig. 2 
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Fig. 4 
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-- v-Y -<-> f-f 

i - i  ,-t 
P-P 

r b-b - 9-Q 
u-Y -- u-X 

" - "-1 

Fig. 5 
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Fig. 6 
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Fig. 7 


