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Abstract 

In this contribution we investigate a simple pattern formation process [9,10] based on Hebbian learning and competitive interac- 
tions within cortex. This process generates spatial representations of afferent (sensory) information which strongly resemble patterns 
of response properties of neurons commonly called brain maps. For one of the most thoroughly studied phenomena in cortical de- 
velopment, the formation of topographic maps, orientation and ocular dominance columns in macaque striate cortex, the process, for 
example, generates the observed patterns of receptive field properties including the recently described correlations between orientation 
preference and ocular dominance. Competitive Hebbian learning has not only proven to be a useful concept in the understanding of 
development and plasticity in several brain areas, but the underlying principles have have been successfully applied to problems in 
machine learning [22]. The model's universality, simplicity, predictive power, and usefulness warrants a closer investigation. 
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I. Introduction 

Pattern formation by self-organization is a common 
phenomenon in brain development. The enormous num- 
ber of neurons and their connections makes it impossible 
for organisms to completely specify neural connectivity 
patterns within the genome. Instead organisms seem to 
code for processes which interact with themselves and 
with the environment thereby generating the patterns 
which are observed in the brain. These processes are sup- 
posedly much simpler to describe than the actual patterns, 

and it is our hope that there are only few and that they can 
be cast into a small set of simple rules. 

One prominent pattern formation process is the ability 
of the brain to form spatial representations of sensory 
information. These patterns are commonly called brain 
maps and are characterized by the facts (i) that neurons 
within them respond strongly to certain features in the 
afferent signals, and (ii) that neurons with different re- 
sponse properties are arranged across cortex in a system- 
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atic fashion. Well known examples are the multiple topo- 
graphic representations of the body surface in the 

somatosensory areas [8], the various types of acoustic 
maps in the auditory areas [20], and the retinotopic maps 
[26], as well as orientation and ocular dominance columns 
[3] in the primary visual areas of several species. Model- 
ling studies have shown that the formation and the plas- 
ticity properties of brain maps can be described by simple 
dynamical systems (see e.g. [ 14,18,25]). It thus seems that 
the phenomenon of brain maps and their formation pro- 
vide an example for our hypothesis: that a small set of 
'primitives' of information processing and development 
exists which could account for the variety of phenomena 
encountered in brain development and function. 

In the following we will investigate a promising candi- 
date for such a developmental primitive: a simple pattern 
formation process which was originally invented by T. 
Kohonen [9,10]. This process describes certain activity 
dependent developmental processes in the neocortex and 
has proven to be particularly successful in modelling the 
distribution of neurons with various response properties in 
so called cortical maps. In section 2 we will introduce the 
process and describe a few of its properties. In section 3 
we will describe a particularly well studied application: the 
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formation of orientation and ocular dominance columns in 
monkey striate cortex. Section 4 will summarize our find- 
ings. 

2. A simple self-organizing process 

L e t u s  consider an idealized neural structure whose 
properties are affected by incoming sensory signals 
(Fig. 1). The structure is two-dimensional in order to ac- 
count for the columnar organization of neural response 
properties found in several cortical areas. We assume that 
the neural structure responds to afferent activity patterns, 
for example to sensory signals, and we describe its re- 
sponse properties at each location by a set of parameters, 
which we will call 'receptive field properties' from now on. 
These parameters change their values as a result of sen- 
sory stimulation: afferent signals generate an activation 
pattern across the neural structure and both, the afferent 
signals and the activation pattern, drive the parameters 
slowly towards their stationary values. The final, stable 
pattern of receptive field properties in our model is then 
identified with the mature brain map, while the path lead- 
ing to this pattern is identified with the process of corti- 
cal map development. 

Next we have to make a few assumptions about the 
nature of this process. These are: 
1. Locality: the change in receptive field properties de- 

pends only on the local sensory input and the local 
activiation at a given time. Hebb's rule [7], which we 
will use below, is local. 

2. Global competition: the lateral interactions between 
distant regions in the neural structure are such that 
neurons in these regions effectively inhibit each other. 
These type of interactions enhance the activation of 
already highly active areas at the expense of areas which 
are activated less. 

3. Local cooperation: the lateral interaction between 
closeby regions in the neural structure is such that neu- 

activity 

afferent activity patterns 
Fig. 1. Ideal ized neural  structure. 

rons effectively excite each other. These types of inter- 
actions lead to the spread of activity laterally. 

Formally [ 16], we describe receptive field properties at 
each location ~ in the neural structure by a feature vector 
v~;, whose components denote receptive field properties. 
In our example from macaque visual cortex, which is 
shown in section 3, the components denote the position of 
the receptive field in retinotopic space, orientation prefer- 
ence, orientation tuning strength and ocnlar dominance. 
Afferent signals are described by a pattern vector f of 
similar dimension which is drawn at random according to 
a given probability distribution P(~). Pattern formation is 
an iterative process and receptive field properties are 
changed at every step according to: 

dt 
(1) 

where 

~(~) = rnin I~ - ~;I. (2) 
r 

~(~) is the location in the map where the neurons respond 
best to the stimulus f. The function h(?,~(9)) describes the 
'activity' at location ~ for the presentation of pattern ~. It 
will be greatest (and the learning fastest) for locations near 
the best response in the map. Rule 2 is called 'winner take 
all'-rule and formally implements global competition, while 
the finite range of the function h('f,d) ensures local coop- 
eration. Locality, finally, is implemented by rule 1, which 
is a Hebbian learning rule with a decay term. f is the pr- 
esynaptic term, h(f,d(f)) is the postsynaptic term, and the 
decay term limits the learning when the network reaches 
a mature state. If h(~,~) is a Gaussian function of the ar- 
gument ~ -  X, the process (1)-(2) is amenable to math- 
ematical analyses [4,5,16,22,24]. 

Note, that we implicitly assume that suitable lateral in- 
teractions are present before the cortical map is mature. 
We have not made any statement about the nature of those 
interactions, however: activity could be electrical as well 
as chemical, and interactions between cells could arise due 
to synaptic connections between neurons, due to electri- 
cal coupling, or due to diffusive substances. It is impor- 
tant, however, that the coupling between neurons is non- 
linear and gives rise to global competition and local 
cooperation. 

Given these assumptions and an appropriate implemen- 
tation, receptive field properties and their (stationary) dis- 
tribution across the neural structure are determined by the 
properties of the ensemble of afferent patterns. When these 
afferent patterns are generated by localized stimuli on a 
sensory surface, for example, the process generates spatial 
receptive fields and a topographic map of this surface 
[ 17]; when these patterns are generated by a moving loud- 
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speaker in front of a stereo microphone, the same process 
generates receptive fields tuned to intensity differences be- 
tween both microphones and a topographic map of space 

based on these acoustic signals [22], and when the affer- 
ent patterns encode suitably chosen text fragments, the 
process generates semantic maps [21], in which 'receptive 
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Fig. 2. Cortical maps  generated by process (1)-(2) for various kinds of 
sensory input, a: formation of a somatotopic map. Localized 'tactile' 
stimuli were presented at random to a hand-shaped sensory surface with 
randomly scattered receptors (left). The process eventually generates a 
topographic map (center), much like the topographic map of the hand 
region in the somatosensory cortex in primates [ 12]. When the stimulus 
distribution is altered, for example, by removing the middle finger, the 
map adapts (right): the representations of body parts which are stimu- 
lated more often expand at the expense of representations of body parts 

.which are stimulated less. b: formation of a topographic map using sig- 
nals v~, v z from.stereo microphones as input. A moving loudspeaker 
generates the acoustic signals at positions x.y within an auditorium (left). 
Eventually a topographic map is generated (right): spatial locations of 
acoustic receptive fields are indicated by line intersections. Receptive 
fields which belong to neighboring units in the neural structure are con- 
nected by lines, c: semantic maps. Simple sentences (noun-verb-adverb)  
were generated from the words shown in the map, and all sentences 
which were grammatically and semantically correct were randomly con- 
catenated to generate a piece of text. Words were then encoded as 
random, high-dimensional vectors of unit length and presented - together 
with their predecessors and successors - as sensory input. The final map 
of words shows that process (1)-(2) generates a hierarchical pattern: 
Words are grouped by their grammatical categories as well as by their 
meaning as much as it was implicit in the average context (predecessor, 
successor) in which a word was presented. 
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a) b) 

e) 
J 

d) 

Fig. 3. Orientation and ocular dominance maps found in the upper layers of  macaque striate cortex in comparison with the corresponding patterns 
generated by process (1)-(2) for dOR and doD above threshold, a: spatial pattern of orientation preference. The data were recorded optically [3] from 
area 17 of an adult macaque and show a region 3.1 mm × 4.3 mm in size, located close to the border to area 18 and close to midline. Hue values code 
for orientation preferences, where the interval of 180 ° for orientation preferences is represented by the colors of  the color circle. Complementary col- 
ors denote orthogonal orientation preferences. Arrows indicate singularities (2), linear zones (1), saddle points (3) and fractures (4). b: spatial pattern 
of ocular dominance. The pattern was recorded optically from the same cortical region as shown in (a). Bright and dark areas denote preferences for 
the ipsi- and the contralateral eye, respectively, c: orientation preference map generated by process (1)-(2) for the parameters given in the text. Ar- 
rows indicate singularities (1), linear zones (2), saddle points (4) and fractures (3). d: ocular dominance map generated by process (1)-(2) for the pa- 
rameters given in the text. c and d show an enlarged section of the complete pattern, 90 × 120 elements in size. 
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fields' for words develop, which are then spatially grouped 

according to grammatical and semantical categories. Fig. 2 
shows a few results from numerical simulations: one and 
the same simple self-organizing process is able to gener- 
ate a large variety of patterns depending on the afferent 
signals it acts on. 

3. Comparison with experiments: formation of orientation 
and ocular dominance columns 

In this section we will study the case of five properties 
characterizing the response properties of neurons in pri- 
mary visual cortex: position of a receptive field in retino- 
topic space, orientation preference and and orientation 
tuning strength and ocular dominance. 

Receptive field properties at each cortical location ~ are 
described by a five-dimensional vector k ; ,  whose compo- 

nents denote the position (x ;,y;) of the receptive field in 
retinotopic space, orientation preference ® ;  and tuning 
strength q; in their cartesian coordinates (q; cos 2 ®7, q; 
sin 2 ®; )  [25], and ocular dominance z;. Afferent signals 
are described by a similar five-dimensional vector ~ cho- 

sen at random and with equal probability from a manifold 
given by: x,y~ [0, 512], q_<20, z~ [ -15, 15]. Numerical 

simulations of process (1)-(2) were carried out on a CM5 
parallel computer using a neural structure of 512 × 512 
units and periodic boundary conditions. Eqn. 1 was solved 
using stochastic approximation, i.e., the change of the fea- 
ture vectors was calculated using: 

~ ; ( t +  1)= ~ ; ( t ) + e h ( ? , ~ ( 9 ) ) ( ~ ; ( t +  1 ) -  v/,(t)), ~:<1. 
(3) 

Parameters were: e = 0.05, 9.107 iterations, retinotopic ini- 
tial conditions, h(~,~) was a Gaussian function with half- 
width a h = 5. 

Fig. 3 shows a comparison between an orientation and 
ocular dominance column systems generated by process 
(1)-(2) and experimental data recorded optically from the 
superficial layers of macaque striate cortex. From visual 
comparison in becomes apparent that at least all of the 
prominent elements of organization are present [1,2,15]. 
The orientation maps exhibit singularities and fractures, as 
well as linear zones and saddle points. 

Singularities are pointlike discontinuities in the map 
around which orientation preference change by + 180 ° 
around a closed path. They are presumably part of the 

Fig. 4. Contour plots for the orientation maps  shown in Fig. 4 in overlay with the borders of  the ocular dominance bands.  Iso-orientation lines are 
shown in gray. The borders of  the ocular dominance bands are marked black, a: orientation and ocular dominance in macaque striate cortex. 
Iso-orientation contours indicate intervals of 11.25 °. b: orientation and ocular dominance generated by process (1)-(2). Iso-orientation contours in- 
dicate intervals of 18 °. Arrows indicate singularities (1), linear zones (2), saddle points (3) and fractures (4). 
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macaque's texture and color processing system. Linear 
zones are areas up to 1 mm in size, within which paral- 
lel iso-orientation bands exist. They are presumably part 
of a contour detection system. Saddle points are patches 
of similar orientation preference where orientation prefer- 
ences change clockwise along one axis for movements in 
either direction from the middle and counterclockwise 
along the orthogonal axis, while fractures are line-like fea- 
tures across which orientation preferences change rapidly. 
The functional role of the latter features is not known. 

The ocular dominance maps show the typical pattern of 
locally parallel bands which sometimes branch and termi- 
nate. A more careful analysis reveals that the patterns are 
characterized by global disorder as well as by a typical 
spatial frequency and that, consequently, power spectra of 
the orientation map show a pronounced peak [15,16]. 
Interestingly, there is no dependence of orientation pref- 
erence on the spatial layout across cortex, an artefact 
which has plaqued models of development [11,13,27] 
using linear interaction functions [6]. 

Fig. 4 shows a contour plot of the pattern of orientation 
preference in overlay with the borders of ocular domi- 
nance bands. The predicted patterns are characterized by 
correlations between the orientation preference and ocu- 
lar dominance maps which are similar to the correlations 
observed in the experimental data: singularities have a 
tendency to align with the centers of ocular dominance 
bands and in the linear zones, where parallel iso- 
orientation bands exist, these bands intersect ocular domi- 
nance bands at approximately right angles [15,16]. 

Let us study the stationary patterns as a function of the 
ensemble of afferent patterns more formally. The ensemble 
of afferent pat terns--each of which is characterized by 
five parameters--forms a cloud of points in a five- 
dimensional space. Let mj denote its second order mo- 
ment along axis j. For reason of simplicity let us also 
assume that the principal axes of this cloud are colinear 

with the coordinate axes, and that m L = m 2 and m 3 = m 4. 
The ratios doR = mJml and doD= ms/m ~ are then order 
parameters of the process [ 16] (Fig. 5): If both of them are 
smaller than a certain threshold the process generates a 
topographic map but no orientation and ocular dominance 

columns. If doR (doD), however, is above threshold orien- 
tation columns (ocular dominance columns) form and the 
topographic map is distorted locally. 

dop 

dthres OP 

OP OP 
no OD OD 

no OP no OP 
no OD OD 

dthres OD 

- doo 

Fig. 5. The four parameter regimes of the process (1)-(2). d °? and d °D 
both have to be above threshold for stable orientation (OP) and ocular 
dominance (OD) columns to form. 

cooperation. This process acts on an ensemble of afferent 
patterns and produces a spatial map of neural response 
properties based on the nature of these signals. For ex- 
ample, the map of features in the macaque's area V2 will 
be organized quite differently from that in V1 because 
there are different afferent patterns which drive map for- 

mation. Process (1)-(2) can also account-at  least 
qualitatively-for some phenomena in cortical plasticity as 
have been investigated in the deprivation experiment para- 
digm [ 17,19,23 ]. The model's universality, simplicity and 
predictive power provide evidence for the hypothesis that 
there exist only a few simple mechanisms which account 
for a variety of phenomena encountered in brain develop- 
ment and function. 
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