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We have known since Wheatstone (1838) that dis- 
parities between images presented to the two eyes in- 
duce a strong sensation of depth. More recent experi- 
ments with random-dot stereograms have shown that 
disparity is a sufficient cue for stereopsis (Julesz 1960, 
1971). Disparity-tuned neurons in visual cortex were 
first demonstrated in the cat (Barlow et al. 1967; Ni- 
kara et al. 1968; Pettigrew et al. 1968) and later in the 
macaque monkey (Hubel and Wiesel 1970; Poggio and 
Fischer 1977; Poggio and Poggio 1984). Similar dispari- 
ty mechanisms probably exist in the human visual 
cortex. 

We have developed a model for the representation of 
stereo disparity by using a population of neurons that is 
based on tuning curves similar in shape to those mea- 
sured physiologically (Lehky and Sejnowski 1990). The 
model predicts depth discrimination thresholds that 
agree with human psychophysical data only when the 
population size representing disparity in a small patch 
of visual field was in the range of about 20-200 units. 
This population model of disparity coding at a single 
spatial location was extended to include lateral interac- 
tions, as suggested by psychophysical data on stereo 
interpolation (Westheimer 1986a). 

Disparity is a measure of depth relative to the plane 
of fixation. Additional sources of information are 
needed to estimate the distance to the point of fixation, 
such as that provided by eye vergence, vertical dispari- 
ty, and accommodation. We have developed a simple 
model that combines disparity information in a distrib- 
uted representation and vergence information to com- 
pute the absolute depth of objects from the observer 
(Pouget and Sejnowski 1990). Although these are mod- 
els of binocular vision, a number of the ideas presented 
here generalize to the representations of other sensory 
cues. 

Representations of Disparity 

In a local representation, disparity is unambiguously 
represented by the activity of a single neuron. An 
example of this is shown in Figure l A ,  where the value 
of disparity is indicated by which neuron fires. To cover 
the entire range of disparities with high resolution, 
there must be a large number of such narrowly tuned, 
nonoverlapping units. This form of local representation 
is called interval encoding and has been used almost 
universally in models of stereopsis (Marr and Poggio 
1976; Mayhew and Frisby 1981). A second form of 

local representation is rate encoding (Fig. 1B). Here, a 
single unit codes all disparity values by its firing rate. 
As disparity increases, the firing rate of the unit in- 
creases monotonically. Examples of models that have 
used a rate-coded representation of depth are Julesz's 
dipole model (Julesz 1971) and the model of Marr and 
Poggio (1979). A third type of encoding, which we use 
here, is a distributed representation, or population 
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Figure 1. Three methods of encoding disparity and an exam- 
ple of discrimination in a population code. ( A )  Interval cod- 
ing: A separate unit is dedicated for each disparity. (B) Rate 
encoding: Disparity is encoded by the firing rate of a single 
neuron. (C) Population coding: Disparity is encoded in the 
pattern of activity in a population having broad, overlapping 
disparity tuning curves. ( D )  Population code based on two 
idealized disparity tuning curves out of a larger population. As 
stimulus disparity is changed (e.g., from d, to d,), the re- 
sponse of one unit goes up and other goes down, as indicated 
by the intersection of the dashed lines with the tuning curves. 
The changes in activities of all units in the population are 
combined to see if the total change is statistically significant 
relative to the noise in the units. If so, then the change in 
disparity is considered perceptually discriminable. 
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code, in which disparity is encoded by the pattern of 
activity within a population of neural units, each broad- 
ly tuned to disparity and extensively overlapped with 
each other (Fig. 1C). In a distributed representation, 
the activity of a single unit is ambiguous. 

Neurophysiological Data 

Poggio et al. (1985,1988) have reported that neurons 
in monkey visual cortex are grouped into three classes 
on the basis of the their responses to disparity: (1) the 
"near" neurons, broadly tuned for crossed disparities, 
(2) the "far" neurons, broadly tuned for uncrossed 
disparities, and (3) the "tuned" neurons, narrowly 
tuned for disparities close to zero. The tuned neurons 
have an average bandwidth of 0.085", and their peaks 
are almost entirely restricted to the range + 0.1". Near 
neurons are excited by crossed disparities and inhibited 
by uncrossed disparities, whereas the opposite holds 
true for far neurons. In both cases, the response curves 
have their steepest slope near zero disparity, as they go 
from excitation to inhibition. The excitatory peaks for 
far and near neurons are on average at about + 0.2" 
(Poggio 1984). This tripartite division is an idealiza- 
tion, and many disparity-tuned neurons are often dif- 
ficult to fit neatly into any classification scheme. LeVay 
and Voigt (1988), in their study of disparity tuning in 
cat visual cortex, emphasize the large number of cells 
with intermediate properties. 

Psychophysical Data 

Humans can discriminate small differences of depth 
near the plane of fixation with an accuracy that is 
typically around 5 seconds. This is smaller by a factor of 
about 50 than the width of the narrowest cortical dis- 
parity tuning curves and is a factor of 6 smaller than the 
width of a photoreceptor. Stereoacuity falls off rapidly 
away from the plane of fixation. The disparity dis- 
crimination curve in Figure 2B plots the smallest dis- 
criminable change in disparity as a function of stimulus 
disparity. Disparity increment threshold curves have 
been measured using a variety of stimuli with similar 
results, including line patterns (Westheimer 1979), 
random-dot stereograms (Schumer and Julesz 1984), 
and difference of Gaussian stimuli (Badcock and Schor 
1985). 

Another aspect of depth perception is interpolation. 
In random-dot stereograms, the surface of the square 
floating in depth appears to be solid, even though the 
dots may be quite sparse and smooth surfaces are per- 
ceived even for complex shapes. This suggests that 
when a stereogram dot is matched, it influences the 
perceived depth of neighboring blank locations. Psy- 
chophysical experiments have been performed to mea- 
sure the interactions occurring between two nearby 
locations (Westheimer 1986a,b; Westheimer and Levy 
1987). As shown in Figure 4A, the disparities of two 
lateral lines (labeled a) were set to a series of values by 
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Figure 2. Comparison of a model disparity discrimination 
curve with a human psychophysical curve. (A) The smallest 
discriminable change in disparity is plotted as a function of a 
pedestal disparity for a model based on the tuning mechanisms 
shown in panel B and the psychophysical curve measured by 
Badcock and Schor (1985). (B) The smallest population (17 
units) judged sufficient to give an adequate representation of 
the data. Tuningcurve width increased with peak location, so 
that the steepest portions of the near and far curves all fall 
near zero disparity. Since discriminability depends on tuning 
curve slope, this organization produced highest discriminabili- 
ty at zero. This population gives a rough indication of the 
minimum size needed to encode disparity. 

the experimenter. The disparities of two nearby inner 
lines (labeled b) were kept at zero. The basic observa- 
tion was that the presence of depth at a warped the 
perceived depth at b to nonzero values. The amount of 
warping was quantified by having the subject adjust the 
disparity of the middle line to produce the same appar- 
ent depth as the lines at b. For small separations, 
moving the lines at a in depth dragged the perceived 
depth of b in the same direction. As the separation 
increased, this attractive interaction decreased and 
then reversed so that the two lines appeared to repel 
each other. This suggests that there are excitatory and 
inhibitory interactions between pools of neurons repre- 
senting depth at neighboring locations. In the following 
section, depth discrimination and depth interpolation 
are considered in a reference frame relative to fixation. 
Issues related to depth constancy and absolute depth 
estimation are discussed in a later section. 
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MODELING DEPTH DISCRIMINATION 

Our model does not attempt to describe how the 
disparity tuning observed in neurons is synthesized 
from monocular inputs. Nor do we model the matching 
process between images to the two eyes, or what as- 
pects of the images may act as tokens during matching. 
This is the correspondence problem, which we assume 
the circuitry in the brain has already solved, since 
neurons have been found that can correctly compute 
the disparity for lines and random-dot stereograms. We 
start with model neurons that have the same types of 
disparity tuning curves found in cortical neurons and 
ask whether they can account for the psychophysical 
performance of the visual system. 

Threshold for Discrimination 

Figure I D  shows a subset of two idealized disparity 
tuning curves from a much larger population. For dis- 
parity d,, each unit responds at  a given level. When the 
disparity changes to  d,, the response of one unit in- 
creases and the response of the other unit decreases. A 
discriminable change in disparity has occurred if the net 
change in response summed over all units in the popu- 
lation is significant relative to the noise in the units. 
Signal detection theory can be used to determine the 
probability that this change was not produced by 
chance (Green and Swets 1966). The threshold for 
discriminability is defined as the value of disparity dif- 
ference that produces a probability of 0.75 correct dis- 
crimination. We applied this method to the idealized 
tuning curves shown in Figure 2C. 

We first attempted, unsuccessfully, to reproduce the 
human discrimination threshold curve in Figure 2B 
using just three tuning curves, one from each class. The 
resulting discrimination curve calculated from signal 
detection theory had prominent spikes because there 
was insufficient overlap between mechanisms. More 
importantly, the best discrimination threshold obtain- 
able with three mechanisms and using the noise ob- 
served in neurons was 70 seconds, well below the hy- 
peracuity range. This suggests that there must be more 
than three units engaged in encoding disparity at  a 
particular location in the visual field. 

The next step was to  add additional tuning curves to  
the population. The following rule was found to yield 
good results: Make the bandwidth of each tuning curve 
proportional to  the disparity of the tuning curve peak. 
This always placed the steepest portion of the near and 
far tuning curves near zero disparity, producing fine 
discrimination at the point of fixation. Thorpe and 
Pouget (1989) reached a similar conclusion about the 
importance of the slope of the tuning curve for identify- 
ing orientation. The  smoothness of the discrimination 
curve improved as more tuning curves were added; 
satisfactory results were achieved with a minimum of 17 
mechanisms, as shown in Figure 2. It is interesting to 
note that the fine stereoacuity at  zero disparity is pro- 
duced not by the narrow tuned mechanisms, but by the 

near and far mechanisms, all of which have their steep 
portions at zero. Although tuned mechanisms also had 
steep slopes, they were not concentrated at any one 
disparity value. 

No special significance should be placed on the exact 
number of mechanisms we used; 17 was just a rough 
estimate of the minimum size of the population encod- 
ing disparity. In addition, n o  claim is made that the 
tuning curves presented here are unique. However, 
more tuning curves can be used. The curve generated 
by 200 units retained the same shape as that produced 
by 17 units, but it was shifted down to about 1.0 sec- 
onds because of the increased probability summation in 
the larger population (Lehky and Sejnowski 1990). 
Any larger population would push stereoacuity to  un- 
realistically low levels. These bounds refer only to  the 
final output that can be assayed by perceptual reports; 
in particular, this estimate does not include additional 
binocular units that might be needed for solving the 
correspondence problem. 

Predictions of Interval and Rate Codes 

Can models based on interval encoding (Fig. 1A) or  
rate encoding (Fig. 1B) also account for these data? 
When some approximation is made to the narrow dis- 
parity tuning curves used by Marr and Poggio (1976), 
as well as many other investigators, the resulting dis- 
parity discrimination curve does not resemble the data. 
The problems are (1) insufficient overlap between 
mechanisms, leading to a "spiky" appearance of the 
curve at the fine level, and (2) uniform widths in their 
tuning, leading to the essential flatness of the curve at  a 
gross level. These are problems independent of the 
exact shape of the tuning curves. The only way to 
overcome both of these difficulties is to broaden the 
tuning curves to overlap more, in effect turning the 
interval code into a population code. Rate encoding, on 
the other hand, could account for the psychophysical 
data very well. The disparity response curve in Figure 
1B has a steep slope near zero disparity, leading to fine 
discriminability, and flattens out for larger disparity 
values (both positive and negative), where dis- 
criminability is poor. With the appropriate flattening 
function, a V-shaped discrimination curve can be gener- 
ated. Rate encoding offers the most parsimonious ac- 
counting for the psychophysical disparity discrimina- 
tion data considered in isolation. Unfortunately, there 
is no evidence for neurons having such monotonic dis- 
parity responses, so this form of encoding must be 
rejected. 

MODELING DEPTH INTERPOLATION 

In  this section, the discrimination model is extended 
to include interactions between nearby patches of 
the visual field, which requires the units to influence 
each other through a network. The opponent spatial 
organization of depth attraction and repulsion in 
Westheimer's psychophysical data (Westheimer 1986a; 
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see introduction) immediately suggests an old idea in 
neuroscience: short-range excitation and long-range in- 
hibition between neurons (Ratliff 1965). Assume that 
the entire population of 17 disparity-tuned units used 
previously (Fig. 2C) is replicated at each spatial loca- 
tion. A unit at one location interacts with units at 
neighboring locations to form a network. Assume fur- 
ther that a unit interacts only with other units (at 
different locations) tuned to the same disparity. If units 
tuned to the same disparity are spatially close, there is 
mutual excitation; however, if they are farther apart, 
there is inhibition. 

Each encoding population represents disparity for 
some patch of visual field. For present purposes, the 
size of these patches may be considered the area sub- 
served by a single cortical column, but this is an empiri- 
cal question, and in any case, the spatial scale does not 
affect the formal structure of the model. Similarly, the 
scale of the lateral interactions is also an empirical 
question. With these lateral interactions included, the 
model neurons will adjust their activity levels through a 
relaxation process. In this manner, the lateral spatial 

Disp = 0 min 
No m t e r a c t i o n  I 

interactions transform an initial pattern of activity at 
each position into a new pattern. The responses of a 
neural population can be shown in an "activity dia- 
gram," such as those in Figure 3, which shows the 
response of each unit by the height of a line relative to 
spontaneous activity. The line is at a position along the 
horizontal axis corresponding to the peak of the tuning 
curve for that unit. 

Interpretation of the Population Code 

What disparities do the new patterns of activity rep- 
resent? One possibility is to assign an interpretation 
based on some weighted average within the population 
(Georgopoulos et al. 1986). However, this method 
assigns a unique depth to each point and would run into 
trouble with transparent surfaces. Another approach, 
which we adopt, is to consider the pattern of activity in 
a population as forming a "representational spectrum" 
irreducible to anything simpler. An interpretation of 
the pattern is defined by template matching: First, for 
every possible disparity, a canonical activity pattern is 

Disp = 0 min 
Excl ta tory  
in t e rac t ion  

Disp = 3 min 
Excltatory 
in t e rac t ion  I 

Disparity (min) Disparity (min) 
Figure 3. Activity diagrams, showing the patterns of activity when the population of 17 units (Fig. 2C) was presented with 
different disparities. The height of each line indicates a unit's response. The position of a line along the disparity axis indicates the 
value of the tuning curve peak for that unit. Each disparity produced a unique pattern of activity, which can be thought of as a 
representational spectrum. The two left-hand panels show activity patterns when there were no lateral interactions, such as when a 
single disparity stimulus is presented in isolation. (Top left) Response to a disparity of 0.00 min. (Bottom left) Response to a 
disparity of 3.00 min. The two right-hand panels show new activity patterns arising when two disparity stimuli were presented 
simultaneously at nearby positions, with excitatory interactions between positions. (Top right) New pattern in response to 0.00 
min, which should be compared to the top left panel. (Bottom right) New pattern in response to 3.00 min, which should be 
compared to bottom left panel. 
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Disparity= al- a2 = 0 

Tz3- Disparity= al- a2 < 0 

X : Fixation Point 
0 : Object 

Figure 5. Schematic drawing of the interaction between dis- 
parity and vergence angle. The disparity (a,-a,) of an object 
depends on the eye vergence a,. A neuron that is tuned to the 
depth of an object (0) should respond to (1) far disparities, 
(2) disparities around zero, and (3) near disparities, depend- 
ing on the point of fixation of the eyes ( X ). 

fixates in front of an object, it has a negative disparity, 
whereas the disparity of the same object is positive 
when the subject fixates behind it. Although the posi- 
tion of an object along the depth axis is not explicitly 
represented on the retina, depth can nevertheless be 
recovered from a variety of other cues, such as eye 
vergence (Foley and Held 1972; Foley and Richards 
1972; Gogel 1961, 1962; von Hofsten 1977), accommo- 
dation (Ittelson and Ames 1950), and vertical disparity 
(Bishop 1989). None of these cues alone can account 
for depth constancy, which suggests that they normally 
work in combination, together with monocular cues for 
depth. However, there are circumstances when each of 
these cues individually is used to estimate depth, but 
the extent to which each cue is used under normal 
circumstances is still debated. 

A neural network model for space constancy in the 
plane of fixation has been proposed by Zipser and 
Andersen (1988). Physiological data suggest that area 
7a in the parietal cortex of the monkey is involved in 
this transformation (Andersen and Mountcastle 1983). 

The goal of our model is to understand the mechanism 
of space constancy for depth based on the interaction 
between disparity and vergence cues. Such interactions 
can be studied by recording from neurons in alert mon- 
keys and determining the disparity tuning curves of 
neurons for different vergences. In all previous studies, 
the vergence angle was kept constant. If a neuron were 
coding depth rather than disparity per se, one should 
expect a modulation of its disparity tuning with ver- 
gence. We make specific predictions for what should be 
observed. 

Network Architecture 

A three-layer, feedforward network, completely in- 
terconnected between layers (Fig. 6), was trained with 
the backpropagation algorithm (Rumelhart et al. 1986) 
to recover absolute depth on the output layer from 
combinations of 5 eye positions and 21 disparity values. 
Vergence values were chosen so that the fixation point 
varied between 20 cm and 50 cm from the subject. 
Disparity values were limited to the interval -40" to 
$4". One input unit coded eye vergence with its activity 
level directly proportional to the vergence angle. This 
unit was similar to the vergence neurons reported in the 
parietal cortex (Sakata et al. 1980; Joseph and Giroud 
1986) and in the oculomotor nuclei (Mays 1984). The 
remaining 19 input units encoded disparity with the 
same representation used in the above model of depth 
discrimination. There were 25 hidden units in the net- 
works reported here, each of which received inputs 
from all the input units and projected to all the output 
units. The 40 output units were trained to compute 
absolute depth according to a Gaussian curve centered 
on a position specific to each unit (Fig. 6). Peaks were 
spread along the whole range of depth tested. Other 
output representations that were studied gave similar 
results. 

Depth estimation is more accurate at short range. 
This was taken into account by varying the tuning curve 
bandwidth with the position of the peak, so that units 
coding for short distances were more finely tuned than 
those coding long distances (Fig. 6). We also made the 
tuning curve bandwidth vary with eye position because 
stereoacuity is highest near the point of fixation 
(Westheimer 1979). Thus, an output unit with a peak at 
50 cm was trained to produce a narrower Gaussian 
curve when the fixation point was at 50 cm than when it 
was elsewhere. This second type of modulation of the 
output units was effective only for output units in a 
narrow range around the point of fixation. Although 
the bandwidths of the output units varied with position 
and point of fixation, their centers were always fixed. 

Properties of the Hidden Units 

We studied the hidden units of a mature network that 
was trained to perform accurately the transformation 
from relative to absolute depth. The disparity tuning 
curves were very similar to those of neurons observed 
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Figure 6 .  Network architecture for estimating depth from disparity and vergence. The input layer has one unit linearly coding eye 
vergence (bottom right) and a set of units coding disparity using a distributed representation (bottom left). The transformation 
between the input and the output is mediated by a set of hidden units. The output layer is trained to encode distance in a 
distributed manner (top). After training, the tuning curves for each output unit was a gaussian function of depth centered on a 
value specific to each unit (only every other depth tuning curve is shown here). The bandwidth of the curves increased with depth, 
except around the fixation point where the curves were narrower. These two types of bandwidth modulation produced depth 
estimates with relative accuracy similar to that found in humans. 

in visual cortex. As shown in Figure 7, they could be 
roughly classified into three prototypical groups, near, 
far, and tuned (excitatory and inhibitory), with many 
intermediate examples (Ferster 1981; LeVay and Voigt 
1988; Poggio et  al. 1988). Vergence modulated the 
disparity tuning curves of the hidden units in various 
ways that fell between two general classes: In the first 
class, the disparity tuning of the unit remained similar 
for the five eye positions, but the amplitude of the 
response was modulated. Figure 7, A and D, shows two 

examples of this class, which we call disparity gain- 
control neurons. These are analogous to translational 
gain-control neurons in area 7a, whose response is 
modulated by eye position but not the position of the 
receptive field (Andersen and Mountcastle 1983). In 
the second extreme class, the disparity tuning of the 
unit changed significantly with eye position, even 
though the shape of the curve remained the same, as 
illustrated in Figure 7C. For certain eye positions, the 
tuning curves of these units were completely displaced 
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Figure 7. Con~parisons between typical dis- 
parity tuning curves for real neurons and for 
hidden units. (A) Excitatory tuned units; (B)  
near units; (C) far units; (D)  inhibitory 
tuned units; (E) intermediate units with mul- 
tiple peaks. (Row I )  Disparity tuning curves 
for five typical neurons based on recordings 
from primary visual cortex (B and C: Ferster 
1981 [cat]; A and E: LeVay and Voigt 1988 
[cat]; D :  Poggio et al. 1988 [monkey]). (Row 
2)  Disparity tuning curves for five equivalent 
hidden units. Five tuning curves correspond- 
ing to the five different eye positions are 
shown for each unit by dashed and dotted 
lines. (A-2, 0 - 2 )  Typical disparity gain con- 
trol units; (C-2) example of a unit tuned 
to depth; (8-2, E-2) intermediate type of 
modulation. Such intermediate units are not 
perfectly tuned to depth, but the general 
envelopes of their depth tuning curves do 
provide useful information for depth estima- 
tion. Compare these tuning curves to those 
of corresponding real neurons in Row I.  
(Row 3) Depth tuning curves for the corre- 
sponding hidden units. These tuning curves 
are predictions for what might be found in 
visual cortex when vergence and disparity 
tuning are measured in single neurons. 
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from zero disparity. This has been observed in the cat 
(see Fig. 7B,C) (Ferster 1981; LeVay and Voigt 1988) 
and in the monkey (Poggio et al. 1988). Tuned units 
tend to be in the first class, whereas near and far units 
tend to belong to the second class. Units exhibiting an 
intermediate type of modulation are shown in Figure 7, 
B and E. This second class of hidden units is not 
unexpected when one considers that the output units 
completely change their disparity selectivity with eye 
position (Fig. 5). The surprising result is that so few 
hidden units change their disparity selectivity with eye 
position. 

The depth tuning curves of the hidden units are 
shown in Figure 7. The units in the class showing gain 
control (Fig. 7A) changed their depth sensitivity with 
vergence, which is an indirect measure of depth. For 
the units whose disparity selectivity changed complete- 
ly with vergence (Fig. 7C), the depth tuning is almost 
perfect. This type of unit is therefore functionally very 
close to the output units. However, there are usually 
only 4 or 5 of these hidden units out of 25 hidden units 
in a single network, and the overall performance of the 
network does not depend critically on them. 

Effect of Higher Depth Acuity around the 
Fixation Point 

The bandwidth of an output unit was designed to 
vary with the position of the tuning curve relative to the 

observer and with its position relative to the fixation 
point. This mimics the decreasing absolute accuracy of 
stereopsis with increasing distance and also makes the 
network more accurate around the fixation point. 
When a network was not forced to be more accurate 
around the fixation point, the weights from the sharply 
tuned unit in the input layer to the hidden units were 
smaller (Fig. 8). When networks were trained without 
any modulation of the bandwidth of the output units, 
the weights were similar to those in networks with 
bandwidth modulation, but learning was much more 
difficult and the final error value was higher. 

DISCUSSION 

The central premise of our modeling was that dispari- 
ty is encoded by a population of units having broad, 
overlapping tuning curves. In such a distributed repre- 
sentation, the activity of a single unit gives only a 
coarse indication of the stimulus parameter. This does 
not mean that precise information is lost, but only that 
the information is dispersed over a pattern of activity in 
the population. The concept of distributed representa- 
tions arose in nineteenth century psychophysics with 
the idea that color is encoded by the relative activities 
in a population of three overlapping color channels. In 
our model, the parameter is "disparity" rather than 
"color," and more mechanisms were required to ex- 
plain the data, but the idea is the same. In a similar 

Figure 8. Hinton diagram comparing the weights from the input units' to the hidden units for two different training sets. ( A )  
Bandwidth of the output units varied only with the position of the center. The weights from the tuned units are small, indicating 
that these units have little influence on the hidden units. (B) Double modulation of the bandwidth of the output units with the 
position of the center and the position of the fixation point. Tuned input units have more influence on the hidden units as revealed 
by the higher values of their weights. Each row represents weights from all the input units projecting to a single hidden unit. Each 
column represents all the weights from a single input unit to al1,hidden units. The first five columns are from near units (N), the 
central nine weights are from tuned unit (T),  the next five weights are from the far units (F), and the last column corresponds to 
the vergence unit (V). White weights have positive values and black weights have negative values. The area of the square is 
directly proportional to the value of the weight. 
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manner, it is possible to apply the concept to many 
other parameters. Some consequences of population 
coding were analyzed by Hinton et al. (1986) in the 
context of model neurons with only two levels of firing, 
fully on or fully off. We have extended Hinton's analy- 
sis to the case when units have continuous values and 
noise is the limiting factor rather than width of the 
tuning curve. We conclude that the population size 
encoding disparity for a small patch of visual field may 
be as small as a few tens of units or as large as a few 
hundred. 

Interpreting Population Codes 

There are several approaches to the problem of de- 
ciding what parameter value a pattern of activity in a 
population represents. One approach is what we call 
the "spectrum" method, used in this model of disparity 
and also in color vision. When assigning a color to the 
pattern of activity within this small population, the 
vector of three activities is not reduced to a single 
number. There is nothing simpler than the pattern 
itself, which forms a characteristic representational 
spectrum for each wavelength. In the same manner, 
our model represents disparity (another one-dimen- 
sional parameter) in a high (possibly several hundred)- 
dimensional space. A second approach is what we call 
the "averaging" method, used in the population code 
models of Gelb and Wilson (1983) and Georgopoulos 
et al. (1986), in which the dimensionality of a repre- 
sentation is reduced during the interpretation process. 
For example, Georgopoulos et al. (1986) used the av- 
eraging method for representing the three-dimensional 
direction of arm movement. The pattern of activity in a 
large population was interpreted by collapsing the high- 
dimensional representational space down to three di- 
mensions by calculating a weighted sum of tuning curve 
peaks. Their interpretation of population activity is 
based entirely on this sum and not on any particular 
spectrum of activity within that population. 

Consequences of Using a Population Code 
for Disparity 

In the Marr and Poggio model (1976), which was 
based on an interval code, false matches were elimi- 
nated by using inhibition to shut off all units tuned to 
the wrong disparities at a given location, a form of 
winner-take-all circuit. In contrast, the goal in a distrib- 
uted code is to alter the relative firing rates to produce a 
new pattern of activity and not to shut off all neurons in 
a population except one, for a single broadly tuned unit 
provides little information. The choice of representa- 
tion also affects the process of interpolation. Grimson 
(1982) and Terzopoulos (1988) used spline functions to 
fit through the blank regions between the surface to- 
kens used in the stereomatching process based on an 
interval code. This procedure also interpolated through 
real depth discontinuities, shrouding sharp breaks. 
These models deal with the problem by adding separate 

mechanisms that recognize discontinuities and at- 
tenuate the interpolation process accordingly (Koch et 
al. 1986). In our model, interpolation falls out au- 
tomatically without any shift in parameters or any addi- 
tional mechanisms. 

The discrimination model was concerned in part with 
the representation of transparent stimuli. It is possible 
that analogous models can be constructed for other 
transparency phenomena besides those arising from 
depth. A specific example involves motion. Adelson 
and Movshon (1982) have studied the percept of two 
superimposed gratings drifting in different directions 
and found conditions under which they "cohered" to 
form a single drifting plaid or alternatively appeared as 
two transparent surfaces sliding over each other, de- 
pending on how similar the two gratings were in various 
respects (speed, spatial frequency, contrast, etc.). This 
might also be understood in terms of a distributed 
representation for motion formally analogous to the 
one used for disparity here. 

Predictions for Depth Tuning 

We have trained a neural network to recover egocen- 
tric depth from disparity and vergence information and 
then determined the response properties of the hidden 
units to disparity and depth. Similar neural network 
models have been used to explain the response prop- 
erties of known neurons in cerebral cortex (Lehky and 
Sejnowski 1988; Zipser and Andersen 1988). However, 
this is the first time that such models have been used to 
make predictions before the physiological results were 
available. These predictions will soon be tested in ex- 
periments by S.J. Thorpe et al. and J. Gnadt (pers. 
comm.) on alert monkeys. One of the uncertainties of 
the depth model was the choice of output representa- 
tion. Fortunately, this choice only affected the relative 
number of mechanisms of each class found in the hid- 
den layer and not their qualitative properties. We var- 
ied the sensitivity of the network to absolute depth and 
point of fixation by modulating the bandwidths of the 
output units. The flexibility of this type of distributed 
coding may be one of the reasons why it is widely used 
in the cerebral cortex to represent sensory and motor 
variables. 

One point on which our model of stereoacuity and 
the model of depth estimation differed was the role of 
the narrowly tuned units. For depth discrimination, the 
broadly tuned units were primarily responsible for the 
highest acuity near the plane of fixation. However, in 
the absolute depth network, the sharply tuned units 
were important when the output units were modulated 
to produce fine discrimination around the fixation 
point. This indicates that different tasks may use differ- 
ent complements from the diverse population of dis- 
parity-selective neurons that have been observed in 
cerebral cortex. There is no reason to assume that the 
same neurons used to represent relative depth are iden- 
tical with the neurons used to estimate absolute depth, 
which is known to be much less accurate. It may be 
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possible to test these predictions by selectively interfer- 
ing with these tuned disparity neurons in monkeys 
during the performance of psychophysical tasks. 

Psychophysical Consequences 

In our network model of depth estimation, we made 
the assumption that vergence information is accessible 
to the neural system that judges the depth of objects. 
One possible consequence of this assumption is that in 
the absence of other confounding cues, the apparent 
depth of an object should change as the vergence angle 
is varied by a prism, even though the actual depth of 
the object is fixed. Alternatively, the apparent size of 
an object could change. As the eyes are converged, the 
object should appear to shrink, since it subtends the 
same area of the retina, whereas evidence from ver- 
gence indicates that it is closer to the observer. Con- 
versely, diverging the eyes should lead to an apparent 
increase in the size of an object. Ogle (1962) has re- 
ported observations that are consistent with these coun- 
terintuitive predictions. However, Ogle explained his 
results differently, and further experiments are needed 
to choose between various explanations. The vergence 
effect should also hold for depth seen in random-dot 
stereograms, since the same argument used for angular 
size should also hold for disparity. Thus, the apparent 
height of a single raised dot in a random-dot stereo- 
gram should appear to shrink as the eyes are verged 
and should appear to grow as the eyes are diverged. 
Experiments using random-dot stereograms of extend- 
ed objects must control for other depth cues, such as 
vertical disparities. 

In conclusion, we have studied several possible mod- 
els of binocular organization in the primate visual sys- 
tem. Some models fit only part of the data, such as rate 
encoding of disparity, which can parsimoniously ac- 
count for the psychophysical stereoacuity data but is 
inconsistent with the neurophysiology. Conversely, the 
psychophysics also constrains interpretation of the 
neurophysiology. We have further shown that the dis- 
tributed representation of disparity can both smoothly 
interpolate between sparse data and incorporate dis- 
continuities and transparency depending on the dispari- 
ty gradient. Finally, a distributed representation of 
relative depth can be combined with other cues, such as 
vergence, to predict the absolute depth of an object. 
This interaction and mutual constraint between physio- 
logical and behavioral data provide a particularly rich 
environment for the development of neural models. 
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