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1.34.1 Introduction

The anatomical discoveries in the nineteenth century

and the physiological studies in the twentieth cen-

tury showed that brains were networks of neurons

connected through synapses. This led to the theory

that learning could be the consequence of changes in

the strengths of the synapses.
The best-known theory of learning based on

synaptic plasticity is that proposed by Donald

Hebb, who postulated that connection strengths

between neurons are modified based on neural activ-

ities in the presynaptic and postsynaptic cells:

When an axon of cell A is near enough to excite cell

B and repeatedly or persistently takes part in firing

it, some growth process or metabolic change takes

place in one or both cells such that A’s efficiency, as

one of the cells firing B, is increased. (Hebb, 1949)

This postulate was experimentally confirmed in the
hippocampus with high-frequency stimulation of a

presynaptic neuron that caused long-term potentiation

(LTP) in the synapses connecting it to the postsynaptic

neuron (Bliss and Lomo, 1973). LTP takes place only if

the postsynaptic cell is also active and sufficiently

depolarized (Kelso et al., 1986). This is due to the

N-methyl-D-aspartate (NMDA) type of glutamate

receptor, which opens when glutamate is bound to

the receptor, and the postsynaptic cell is sufficiently

depolarized at the same time (See Chapters 1.33, 1.35).
Hebb’s postulate has served as the starting point for
studying the learning capabilities of artificial neural

networks (ANN) and for the theoretical analysis and

computational modeling of biological neural systems.

The architecture of an ANN determines its behavior

and learning capabilities. The architecture of a net-

work is defined by the connections among the artificial

neural units and the function that each unit performs

on its inputs (See Chapter 1.35). Two general classes

are feedforward and recurrent architecture.
The simplest feedforward network has one layer

of input units and one layer of output units (Figure 1,

left). All connections are unidirectional and project

from the input units to the output units. The percep-

tron is an example of a simple feedforward network

(Rosenblatt, 1958). It can learn to classify patterns

from examples. It turned out that the perceptron can

only classify patterns that are linearly separable – that

is, if the positive patterns can be separated from all

negative patterns by a plane in the space of input

patterns. More powerful multilayer feedforward net-

works can discriminate patterns that are not linearly

separable. In a multilayer feedforward network, the

‘hidden’ layers of units between the input and output

layers allow more flexibility in learning features.

Multilayer feedforward networks have also been

applied to solve some other difficult problems

(Rumelhart and McClelland, 1986).
In contrast to strictly feedforward network models,

recurrent networks also have feedback connections
667
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Figure 1 Network architectures. Left: Feedforward network. Right: Recurrent network. Open circles represent neuronal

units, and arrowhead lines represent synaptic connections.
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among units in the network (Figure 1, right). A simple
recurrent network can have a uniform architecture

such as all-to-all connectivity combined with sym-
metric weights between units, as in a Hopfield
network (Hopfield, 1982), or it can be a network
with specific connections designed to model a partic-
ular biological system.

Modeling learning processes in networks implies
that the strengths of connections and other parame-
ters are adjusted according to a learning rule (See

Chapter 1.33). Other parameters that may change
include the threshold of the unit, time constants,

and other dynamical variables. A learning rule is a
dynamical equation that governs changes in the pa-
rameters of the network. There are three main
categories of learning rules: unsupervised, super-
vised, and reinforcement. Unsupervised learning
rules are those that require no feedback from a teach-

ing signal. Supervised learning rules require a
teacher, who provides detailed information on the
desired values of the output units of the network,
and connections are adjusted based on discrepancies
between the actual output and the desired one.
Reinforcement learning is also error correcting but
involves a single scalar signal about the overall per-

formance of the network. Thus, reinforcement
learning requires less-detailed information than
supervised learning.

A learning algorithm specifies how and under
what conditions a learning rule or a combination of
learning rules should be applied to adjust the network
parameters. For a simple task, it is possible to invent
an algorithm that includes only one type of learning
rule, but for more complex problems, an algorithm
may involve a combination of several different learn-

ing rules.
In the following sections, we give an overview of

basic learning rules and examples of learning
algorithms used in neural network models, and
describe specific problems solved by neural networks
with adjustable parameters.
1.34.2 Hebbian Learning

Implementations of Hebb’s rule can take different
forms (Sejnowski and Tesauro, 1988). Simple asso-
ciative Hebbian learning is based on the coincidence
of activities in presynaptic and postsynaptic neurons.
The dynamics of Hebbian learning are governed by a
differential equation:

dwij

dt
¼ � ? vi ? uj

where wij is the weight of a connection from an input
unit j with activity uj to an output unit i with activity
vi , and � is a learning rate.

The Hebbian learning rule has been used to
model a wide variety of problems, including feature
selectivity and cortical map development.

Cortical neurons respond selectively to particular
feature stimuli, such as selectivity for ocular domi-
nance and orientation in the visual cortex. To
understand challenges of modeling the development
of feature selectivity, consider a network with many
input units and one output unit. We would like to
explore under what conditions the output unit will
respond well to few input units and less to the others.
If we apply a stimulus to the input units and allow the
connections to develop according to the Hebbian
learning rule, then all connections will grow and
eventually saturate, and no selectivity will emerge.
To develop selectivity, some dependencies among
weights are needed, so that changes at one connec-
tion will influence the others. There are many
different ways to introduce dependencies. One
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approach is to introduce weight normalization

(Miller and Mackay, 1994). A different approach,

based on competition among input patterns, called

the BCM (Bienenstock, Cooper, and Munro) rule

(Bienenstock et al., 1982), has been used to model

the development of orientation selectivity and ocular

dominance in neural networks.
Neuronal response selectivity varies across the

cortex in regular patterns called cortical maps.

Although some aspects of cortical map formation

during development are activity independent, neu-

ronal activity can modify the maps. Hebbian learning

rules have also been applied to model the effects of

cortical activity on map formations. For comprehen-

sive overviews of neural network models that

develop orientation selectivity maps and ocular dom-

inance columns, see Swindale (1996) and Ferster and

Miller (2000).
Models of cortical map formation can become

extremely complex when multiple features, such as

retinotopic location, ocular dominance, orientation

preference, and others, are considered simulta-

neously. To deal with such problems, a more

abstract class of models was developed by Kohonen

(1982). The Kohonen algorithm is usually applied to

two-layer networks with feedforward connections

from an input layer to an output layer. The input

layer is an N-dimensional vector layer. The output

layer is normally a one- or two-dimensional array.

There are no lateral connections in the output layer,

but the algorithm can accomplish what models with

lateral connections can achieve at less computational

cost. The algorithm does this by a weight updating

procedure that involves neighboring units. At every

step, it chooses a ‘winner’ among output units whose

weights are closest to the input pattern. Then

it updates the weights of the winner and the

nearby neighbors of the winner. The number of

neighbors that participate in weight updating is con-

trolled through a neighborhood function, which is

dynamically changed during learning to ensure con-

vergence. The neighborhood function starts out

long range and is reduced as learning proceeds.

This allows the network to organize a map rapidly

and then refine it more slowly with subsequent

learning.
Models based on the Kohonen algorithm perform

dimensionality reduction, which facilitates data

analysis, taking input vectors from a high-dimen-

sional feature space and projecting them onto a

low-dimensional representation.
1.34.3 Unsupervised Hebbian
Learning

If the goal of learning is to discover the statistical

structure in unlabeled input data, then the learning is

said to be unsupervised. A common method for unsu-

pervised learning is principal component analysis

(PCA). Suppose the data are a set of N-dimensional

input vectors. The task is to find an M < N dimen-

sional representation of N-dimensional input vectors

that contains as much information as possible of the

input data. This is an example of dimensionality

reduction, which can significantly simplify subse-

quent data analysis.
A simple network that can extract the first princi-

pal component (the one with the maximal variance)

is a network with N input units and one output unit.

At each time step an N-dimensional input vector is

applied to the input layer. If we allow the connec-

tions to be modified according to the Hebbian

learning rule, then in the case of zero mean value of

the input vector, the weights will form an N-dimen-

sional vector, along which the variance will be the

largest. This is the principal eigenvector or compo-

nent. A network with N input and M output units,

augmented with a generalized Hebbian learning rule,

can learn first M components. The projections of the

input data onto the components give us M-dimen-

sional representation of the N-dimensional input data.
PCA is appropriate when the data obey Gaussian

statistics, but images, audio recordings, and many

types of scientific data often do not have Gaussian

distributions. As an example of such a problem, con-

sider a room where a number of people are talking

simultaneously (cocktail party), and the task is to

focus on one of the speakers. The human brain can,

to some extent, solve this auditory source separation

problem by using knowledge of the speaker, but this

becomes a more difficult problem when the signals

are arbitrary. The goal of blind source separation

(BSS) is to recover source signals given only sensor

signals that are linear mixtures of the independent

source signals. Independent component analysis

(ICA) is a method that solves the BSS problem for

non-Gaussian signals. In contrast to correlation-

based algorithms such as PCA and factor analysis,

ICA finds a nonorthogonal linear coordinate system

such that the resulting signals are as statistically

independent from each other as possible.
One approach to BSS derives unsupervised learn-

ing rules based on information theory. The input is
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assumed to be N mixtures of N independent sources,
and the goal is to maximize the mutual information
between the inputs and the outputs of a two-layer
neural network. The resulting stochastic gradient
learning rules are highly effective in the blind separa-
tion and deconvolution of hundreds of non-Gaussian
sources (Bell and Sejnowski, 1995).

ICA is particularly effective at analyzing electro-
encephalograms (EEG) and functional magnetic
resonance imaging (fMRI) data ( Jung et al., 2001).
Consider, for example, electrical recordings of brain
activity at many different locations on the scalp.
These EEG potentials are generated by underlying
components of brain activity and various muscle and
eye movements. This is similar to the cocktail-party
problem: We would like to recover the original com-
ponents of the brain activity, but we can only observe
mixtures of the components. ICA can reveal interest-
ing information of the brain activity by giving access
to its independent components. ICA also gives useful
insights into task-related human brain activity from
fMRI recordings when the underlying temporal
structure of the sources is unknown.

Another application of ICA is feature extraction
(Lee, 1998). A fundamental problem in signal proces-
sing is to find suitable representations for images,
audio recordings, and other kinds of data. Standard
linear transformations used in image and auditory
processing, such the Fourier transforms and cosine
transforms, may not be optimal, and but it would be
useful to find the most efficient linear transformation,
based on the statistics of the data, to optimally com-
press the data.
1.34.4 Supervised Learning

Consider the problem of learning to retrieve an out-
put pattern given an input pattern. To remember the
patterns, the Hebbian rule can be applied to adjust
weights between input and output units. As men-
tioned earlier, however, the associative Hebbian
learning rule will lead to saturation with multiple
repetitions, which reduces the capacity of the net-
work. To resolve this problem, one can augment the
Hebbian rule with a weight normalization algorithm
as in the case of unsupervised learning algorithms.

Another disadvantage of using the associative
Hebbian learning rule is that weight adjustments
do not depend on the actual performance of the
network. An effective way to adjust weights would
be by using information of the actual performance of
the network. Supervised learning can do this.
Supervised learning requires a teacher, who pro-
vides detailed information of the desired outputs of
the network and adjusts the connections based on
discrepancies between the actual outputs and the
desired ones.

The perceptron uses a supervised learning rule to
learn to classify input patterns (Rosenblatt, 1958).
The perceptron is a two-layer network with one
output unit that can classify input patterns into two
categories. The Hebbian learning rule can be used to
solve the task, but the perceptron with the Hebbian
learning rule works well only if the number of input
patterns is significantly less than the number of input
units. An error-correcting supervised learning algo-
rithm for weight adjustments is more effective for a
large number of input patterns:

dwij

dt
_ uj ? Ri – við Þ

where wij is a weight of a connection from the input
unit j with activity uj to an output unit i with activity
vi , Ri is a target value of the output unit, and

vi ¼
X

j

wij ? uj

The perceptron learning rule uses the perfor-
mance of the network to decide how much
adjustment is needed and in which direction the
weights should be changed to decrease the discrep-
ancy between the actual network outputs and the
desired ones. If input patterns are linearly separable,
then the perceptron learning rule guarantees to find a
set of weights that allow pattern classification.

A simple unsupervised Hebbian learning rule
adjusts synaptic weights based on correlations between
presynaptic and postsynaptic neurons. However, this
approach is inefficient when the goal of the network is
to perform a specific function, rather than simply
represent data. To perform a specific task, the network
should receive some information about the task.

An example of how Hebbian plasticity can be
incorporated into a supervised learning framework
is a two-layer network that was trained to perform a
function approximation task (Swinehart and Abbott,
2005). The feedforward connections from input units
to output units were modified according to an unsu-
pervised Hebbian rule, and a supervised learning
mechanism was used to adjust connections from a
supervisor to the network. The supervisor is a net-
work that assesses the performance of the training
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Figure 2 Schematic diagram of the major songbird brain

nuclei involved in song control (See also Chapter 1.17). The

thinner arrows show the direct motor pathway, and the
thicker arrows show the anterior forebrain pathway.

Abbreviations: Uva, nucleus uvaeformis of the thalamus;

NIf, nucleus interface of neostriatum; L, field L (primary

auditory area of the forebrain); HVc, higher vocal center; RA,
robust nucleus of the archistriatum; DM, dorsomedial part

of the nucleus intercollicularis; nXIIts, tracheosyringeal part

of the hypoglossal nucleus; AVT, ventral area of Tsai of the

midbrain; X, area X of lobus parolfactorius; DLM, medial part
of the dorsolateral nucleus of the thalamus; LMAN, lateral

magnocellular nucleus of the anterior neostriatum. From

Doya K and Sejnowski TJ (2000) A computational model of
avian song learning. In: Gazzaninga MS (ed.) The New

Cognitive Neurosciences, 2nd edn., p. 469. Cambridge, MA:

MIT Press; used with permission.
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network and, based on that information, modifies the
gains of the input units using an error-correcting
learning rule. The purpose of the supervised modu-
lation was to enhance connections between the input
and the output units to facilitate the synaptic plastic-
ity needed to learn the task. Thus, Hebbian plasticity
did not have direct access to the supervision, and the
supervised modulations did not produce any perma-
nent changes. Nonetheless, this network could learn
to approximate different functions. In the initial
phase the improvement in the network performance
was mostly due to the gain modulation, and the
synaptic adjustments were minimal. But later, the
synaptic adjustments and the gain modulation were
equally involved in shaping the performance. Once
the network learned the task with the supervisor,
it was possible to turn off the supervision, relying
only on further Hebbian plasticity to refine the
approximation.

The role of the supervisor in the model was to
compute an error by comparing the actual and
the desired output of the network and to use this
error to direct the modification of network parame-
ters such that the network performance improves.
Conventionally, the major targets of this process
were the synaptic weights. The novel feature of this
supervised learning scheme was that supervision took
place at the level of neuronal responsiveness rather
than synaptic plasticity.

A simple two-layer perceptron cannot solve
higher-order problems, but adding additional layers
to the feedforward network provides more representa-
tional power. Then new learning algorithms are
needed to train multilayer networks. The simple
error-correcting learning rule was effective for train-
ing two-layer networks. With the rule, the connections
from the input layer to the output one are adjusted
based on discrepancies between the desired output
and the actual output produced by the network. In a
multilayer network, however, there are intermediate
‘hidden’ layers that also need to be trained. The back-
propagation learning algorithm was developed to train
multilayer networks (Rumelhart and McClelland,
1986). The learning rule relies on passing an error
from the output layer back to the input layer.
Multilayer networks trained with the back-propaga-
tion learning rule have been effective in solving many
difficult problems.

An example of a multilayer network that was
trained using a back-propagation algorithm is a
model of song learning in songbirds (Fiete et al.,
2004). Juvenile male songbirds learn their songs
from adult male tutors of the same species. Birdsong

is a learned complex motor behavior driven by

a discrete set of premotor brain nuclei with well-

studied anatomy (See Chapter 1.17). Syringeal and

respiratory motor neurons responsible for song pro-

duction are driven by precisely executed sequences

of neural activity in the premotor nucleus robustus

archistriatalis (RA) of songbirds (Figure 2). Activity

in RA is driven by excitatory feedforward inputs

from the forebrain nucleus high vocal center

(HVC), whose RA-projecting neural population dis-

plays temporally sparse, precise, and stereotyped

sequential activity. Individual RA-projecting HVC

neurons burst just once in an entire song motif and

fire almost no spikes elsewhere in the motif. The

temporal sparseness of HVC activity implies that

these HVC–RA synapses are used in a special way

during song; that is, each synapse is used only once

during the motif. The goal of the work was to study

the effect of HVC sparseness on the learning speed of

the network. They studied multilayer feedforward

network with an HVC layer that provides input to a
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‘hidden’ RA layer and RA projecting to an output
layer of motor units. Song learning is thought to
involve plasticity of synapses from HVC to RA
because these synapses display extensive synaptic
growth and redistribution during the critical period.
So in the model, the weights from HVC layer to RA
layer were modified. Because there is no evidence of
plasticity in the synapses from RA to motor neurons,
those connections in the model were kept fixed. For
learning, the connections from HVC to RA were
adjusted to minimize discrepancy between the
desired outputs and the actual outputs produced by
the network. They used the back-propagation gradi-
ent descent rule and varied the number of bursts in
HVC neurons per motif. The network learned the
motif for any number of bursts in HVC neurons, but
the learning time for two bursts per motif nearly
doubled compared to the one burst case and
increased rapidly with the number of bursts. Based
on these simulations, they concluded that the
observed sparse coding in HVC minimized interfer-
ence and the time needed for learning. It is important
to note here that the back-propagation learning algo-
rithm was not used to model the biological learning
process itself, but rather to determine if the network
architecture can solve the problem and what con-
straints the representation may have on the speed of
learning.
1.34.5 Reinforcement Learning

Learning about stimuli or actions based solely on
rewards and punishments is called reinforcement
learning. Reinforcement learning is minimally super-
vised because animals are not told explicitly what
actions to take in a particular situation. The rein-
forcement learning paradigm has attracted
considerable interest because of the notion that the
learner is able to learn from its own experience at
attempting to perform a task without the aid of an
intelligent ‘teacher.’ In contrast, in the more com-
monly employed paradigm of supervised learning, a
detailed ‘teacher signal’ is required that explicitly
tells the learner what the correct output pattern is
for every input pattern.

A computational model of birdsong learning based
on reinforcement learning has been proposed (Doya
and Sejnowski, 2000). A young male songbird learns
to sing by imitating the song of a tutor, which is
usually the father or other adult males in the colony.
If a young bird does not hear a tutor song during a
critical period, it will sing short, poorly structured
songs. If a bird is deafened during the period when it
practices vocalization, it develops highly abnormal
songs. Thus, there are two phases in song learning –
the sensory learning phase, when a young bird mem-
orizes song templates, and the sensorimotor learning
phase, in which the bird establishes the motor pro-
grams using auditory feedback. These two phases can
be separated by several months in some species,
implying that birds have remarkable capability for
memorizing complex temporal sequences. Once a
song is crystallized, its pattern is very stable. Even
deafening the bird has little immediate effect.

The anterior forebrain pathway, which is not
involved in song production, is necessary for song
learning. In the previously discussed model (Fiete
et al., 2004), it was assumed that HVC is a locus of
pattern memorization during the first phase of learn-
ing, song acquisition, and RA is a motor command
area (See Chapter 1.17). Therefore, the patterns stored
in HVC serve as inputs to RA to produce motor
commands. It was also assumed that evaluation of
the similarity of the produced song to the memorized
tutor song takes place in area X in the anterior fore-
brain. This assumption is supported by a finding that
area X receives dopaminergic input. Depending on
how closely the produced song is to the tutor’s song,
the connections from HVC to RA are modulated via
the lateral magnocellular nucleus (LMAN).

The learning algorithm consisted of making small
random changes in the HVC to RA synapses and
keeping the new weights only if overall performance
was improved. The network learned artificial song
motifs and was even able to replicate realistic bird-
songs within the number of trials that birds take to
learn their songs.

Reinforcement learning has thus far had few prac-
tical successes in solving large-scale complex real-
world problems. In the case of reinforcement learning
with delay, the temporal credit assignment aspect of
the problem has made learning very slow. However, a
method called temporal difference (TD) learning has
overcome some of these limitations (Sutton and
Barto, 1998). The basic idea of TD learning is to
compute the difference between temporally succes-
sive predictions. In other words, the goal of learning
is to make the learner’s current prediction for the
current input pattern more closely match the predic-
tion at the next time step. One of the most effective of
these TD methods is an algorithm called TD(�), in
which there is an exponentially decaying feedback of
the error in time, so that previous estimates for
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previous states are also corrected. The time scale
of the exponential decay is governed by the �
parameter.

Perhaps the most successful application of TD(�)
is TD-Gammon, which was designed for networks
to learn to play backgammon (Tesauro, 1995).
Backgammon is an ancient two-player game that is
played on an effectively one-dimensional track. The
players take turns rolling dice and moving their
checkers in opposite directions along the track as
allowed by the dice roll. The first player to move
all his checkers all the way forward and off his end of
the board is the winner.

At the heart of TD-Gammon is a neural network
with a standard multilayer architecture. Its output is
computed by a feedforward flow of activation from
the input nodes, representing the game position, to
the output node, which evaluates the strength of the
position. Each of the connections in the network is
parameterized by a real valued weight. Each of the
nodes in the network outputs a real number equal to
a weighted linear sum of inputs feeding into it, fol-
lowed by a nonlinear sigmoid operation. At each time
step, the TD(�) algorithm is applied to the output,
which is then back-propagated to change the net-
work’s weights.

During training, the neural network selects moves
for both sides. At each time step during the course of
a game, the neural network scores every possible
legal move. The move that is then selected is the
move with maximum expected outcome for the side
making the move. In other words, the neural network
learns by playing against itself. At the start of self-
play, the network’s weights are random, and hence its
initial strategy is random. But after a few hundred
thousand games, TD-Gammon played significantly
better than any previous backgammon program,
equivalent to an advanced level of play. In particular,
it is not dependent on a human teacher, which would
limit the level of play it can achieve (Tesauro
and Sejnowski, 1989). After one million games,
TD-Gammon was playing at a championship level.

One of the essential features of reinforcement
learning is a trade-off between exploration and
exploitation. The learning system should exploit a
successful strategy to reach the goal of the task it
learns, but it should also explore other strategies to
find out if there is a better one. In models, exploration
has been implemented by stochasticity. The source of
such stochasticity in the brain remains unclear. A
model implementing this trade-off between explora-
tion and exploitation has been proposed (Seung,
2003). The model is based on the probabilistic nature
of synaptic release by a presynaptic terminal when an
action potential arrives at the terminal. The model
combines this local synaptic release-failure event and
a global reward signal received outside based on the
output of the model. The main assumption is that
synapses are hedonistic: they increase their probabil-
ities of release or failure depending on which action
immediately preceded reward. This concept of the
hedonistic synapse is potentially relevant to any
brain area in which a global reinforcement signal is
received (Klopf, 1982).

This version of reinforcement learning was used
to address the matching law phenomenon (Seung,
2003). When animals are presented with repeated
choices between competing alternatives, they distrib-
ute their choices so that returns from two alternatives
are approximately the same. A return is the total
reward obtained from an alternative divided by the
number of times it was chosen. Before trials, the
alternatives are baited with unequal probabilities.
The network had to learn a probabilistic strategy in
which one alternative is favored over the other one.
The network started from equal choices for both
alternatives, but over time, it learned a preference
that satisfied the matching law.

In the present model, stochastic vesicle release
was assumed to be a source of stochasticity in the
brain. However, there might be many other possible
sources of noise, such as fluctuations in quantal size,
irregular action potential firing, and on a slower time
scale, the stochastic creation and destruction of
synapses. Thus, identifying specific sources of ran-
domness is essential for connecting mathematical
models and neurobiology.
1.34.6 Spike-Timing Dependent
Plasticity

The traditional coincidence version of the Hebbian
learning rule implies simply that the correlation of
activities of presynaptic and postsynaptic neurons
drives learning. This approach has been implemented
in many types of neural network models using average
firing rate or average membrane potentials of neurons
(See Chapter 1.35). Although Hebb’s formulation impli-
citly recognized the idea of causality and relative spike
timing (Hebb, 1949; Sejnowski, 1999), this was not
appreciated by a generation of modelers because
rate coding was generally accepted as the primary
form of information processing, and high-frequency
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stimulation protocols were used to induce plasticity at
synapses. More recently, the relative timing of spikes
has been shown to be critical for the direction and
magnitude of synaptic plasticity in the cortex as well
as the hippocampus (Markram et al., 1997; Bi and Poo,
1998). Potentiation of a synapse takes place if the
presynaptic spike precedes the postsynaptic spike,
and depression occurs when presynaptic spike follows
the postsynaptic spike. This spike-timing dependent
plasticity (STDP) is an asymmetric function of relative
spike times in the presynaptic and postsynaptic neu-
rons. The time window for the plasticity can be as short
as 10 ms and as long as 100 ms, depending on the
synapse.

A natural application for STDP is temporal
sequence learning (See Chapters 1.34, 1.35). If neu-
rons are activated in a sequential manner then, due to
the asymmetry of the learning rule, synapses from
previously activated neurons to following active neu-
rons will be strengthened. For example, such a spike-
timing dependent learning algorithm has been used
to train a network to link sequential hippocampal
place cells while a rat navigates a maze (Blum and
Abbott, 1996). The goal was to predict the direction
of a future motion on the basis of a previous experi-
ence. Asymmetric synaptic weights develop in the
model because of the temporal asymmetry of LTP
induction and because place fields are activated
sequentially during locomotion. This learning algo-
rithm closely resembles the STDP learning rule. The
only essential difference is time scale, which in the
model was 200 ms, longer than the STDP windows
found in cortical or hippocampal neurons.

This model of a navigational map was based on
three observations. First, NMDA-dependent LTP in
hippocampal slices occurs only if presynaptic activity
precedes postsynaptic activity by less than approxi-
mately 200 ms. Presynaptic activity following
postsynaptic firing produces either no LTP or long-
term depression (LTD). Second, place cells are
broadly tuned and make synaptic connections with
each other both within the CA3 region and between
CA3 and CA1. Third, a spatial location can be deter-
mined by appropriately averaging the activity of an
ensemble of hippocampal place cells. These three
observations imply that when an animal travels
through its environment, causing different sets of
place cells to fire, information about both temporal
and spatial aspects of its motion will be reflected in
changes of the strengths of synapses between place
cells. Because this LTP affects a subsequent place cell
firing, it can shift the spatial location coded by the
place cell activity. These shifts suggest that an animal
could navigate by heading from its present location
toward the position coded by the place cell activity.
To illustrate both how a spatial map arises and how it
can be used to guide movement, these ideas were
applied to navigation in the Morris maze. The net-
work was trained using this spike-timing dependent
learning algorithm to form a direction map, which
improved with training.

Timing is important in auditory processing, and a
number of perceptual tasks, such as sound localization,
explicitly use temporal information. Sound localiza-
tion is important to the survival of many species, in
particular to those that hunt in the dark. Interaural
time differences (ITD) are often used as a spatial cue.
However, the question of how temporal information
from both ears can be transmitted to a site of compar-
ison, where neurons are tuned to ITDs, and how those
ITD-tuned neurons can be organized in a map
remains unclear. A network model based on STDP
can successfully account for a fine precision of barn
owl sound localization (Kempter et al., 2001). The
model converts ITDs into a place code by combining
axonal delay lines from both ears and STDP in
synapses with distributed delays. The neurons are
organized as a single-layer network for each frequency
and receive inputs from both ears through axonal
arbors. The axons have different time delays. After
training, each neuron adjusts its connections to axons
with the appropriate time delays in agreement with
the neuron’s spatial position. In this way, a map with
neurons tuned to particular ITDs can be formed.

There is an interesting connection between STDP
and TD learning at the computational level (Rao and
Sejnowski, 2003). If, consistent with TD learning,
synaptic weights between Hodgkin–Huxley type
spiking neurons are updated based on the difference
in the postsynaptic voltage at time t þ �t and at
time t, where t is the time when the presynaptic
neuron fired a spike, and �t is a fixed time interval,
then the learning rule resembles the conventional
STDP learning rule. Networks with this spike-
dependent TD learning rule are able to learn and
predict temporal sequences, as demonstrated by the
development of direction selectivity in a recurrent
cortical network. The network consisted of a single
chain of recurrently connected excitatory neurons.
Each neuron initially received symmetric excitatory
and inhibitory inputs of the same magnitude. For
training, the neurons in the network were exposed
to 100 trials of retinotopic sensory inputs consisting of
moving pulses of excitation in the rightward direction.
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The effect of learning on the network was in devel-
oping a profound asymmetry in the pattern of
excitatory connections from preceding and successor
neurons. The synaptic conductances of excitatory
connections from the left side were strengthened,
whereas the ones from the right side were weakened.
Because neurons on the left side fired (on average)
a few milliseconds before a considered neuron,
whereas neurons on the right side fired (on average)
a few milliseconds after, as a result, the synaptic
strengths of connections from the left side were
increased, whereas the synaptic strengths for connec-
tions from the right side were decreased. As expected
from the learned pattern of connections, the neuron
responded vigorously to rightward motion but not to
leftward motion.

To investigate the question of how selectivity for
different directions of motion may emerge simulta-
neously, they also simulated a network comprising
two parallel chains of neurons, with mutual inhibition
between corresponding pairs of neurons along the
two chains. As in the previous simulation, a given
excitatory neuron received both excitation and inhi-
bition from its predecessors and successors. To break
the symmetry between the two chains, they provided
a slight bias in the recurrent excitatory connections,
so that neurons in one chain fired slightly earlier than
neurons in the other chain for a given motion direc-
tion. To evaluate the consequences of spike-based
TD learning in the two-chain network, the model
neurons were exposed alternately to leftward- and
rightward-moving stimuli for a total of 100 trials. As
in the previous simulation, the excitatory and inhib-
itory connections to a neuron in one chain showed
asymmetry after training, with stronger excitatory
connections from the left neurons and stronger
inhibitory connections from the right neurons. A
corresponding neuron in the other chain exhibited
the opposite pattern, and as expected from the
learned patterns of connectivity, neurons in one
chain were selective to rightward motion, and neu-
rons in the other chain were selective to the leftward
motion. This explanation was consistent with the
development of directionally selective neurons in
the visual cortex of kittens.
1.34.7 Plasticity of Intrinsic
Excitability

Several lines of evidence argue for the presence of
activity-dependent modification of intrinsic neuronal
excitability during development and learning
(Daoudal and Debanne, 2003; See Chapter 4.40). In
the dentate gyrus of the hippocampus, for example,
in addition to homosynaptic LTP of excitatory
synaptic transmission, the probability of discharge
of the postsynaptic neurons to a fixed excitatory
synaptic input is enhanced by high-frequency stim-
ulation (HFS, 100 Hz) of the afferent fibers (Bliss
et al., 1973). This second component has been called
excitatory postsynaptic potential (EPSP)-to-spike
potentiation (E-S potentiation) (Frick et al., 2004).
Synaptic plasticity (LTP) and nonsynaptic E-S
potentiation are complementary. As in LTP, E-S
potentiation requires the activation of NMDA recep-
tor (NMDAR) for its induction. These two forms of
plasticity may share common induction pathways. In
a recent study of deep cerebellar nuclei neurons,
tetanization of inputs to these neurons produces a
rapid and long-lasting increase in intrinsic excitabil-
ity that depends on NMDAR activation (Aizenman
and Linden, 2000). These studies suggest that plas-
ticity of intrinsic excitability may be important in
developmental plasticity and information storage.

Another form of plasticity in intrinsic excitability
has been demonstrated in spontaneously firing vestib-
ular nucleus neurons, which may be responsible for
learning of the vestibuloocular reflex. Purkinje cells,
which are inhibitory, contact a subset of the neuron in
the vestibular nucleus, which receive direct vestibular
input and project to the oculomotor nuclei. Brief
periods of synaptic inhibition or membrane hyperpo-
larization produced a dramatic increase in both
spontaneous firing rate and responses to intracellularly
injected current (Gittis and du Lac, 2006). A similar
change occurred after silencing the vestibular nerve.
Neurons in the vestibular system fire at remarkably
high rates in the intact animal, with resting rates on the
order of 50–100 spikes/s and responses to head move-
ments ranging up to 300 spikes/s. Loss of peripheral
vestibular function silences the vestibular nerve,
resulting in a significant loss of spontaneous firing in
the neurons of the vestibular nucleus, which then
returns to control values within about a week, even
in the absence of vestibular nerve recovery. This plas-
ticity of intrinsic excitability could potentially
contribute either to adaptive changes in vestibular
function during recovery from peripheral damage or
to oculomotor learning in intact animals.

A similar phenomenon has been demonstrated in
cultured neocortical pyramidal neurons (Desai et al.,
1999). Prolonged activity blockade lowers the thresh-
old for spike generation, and neurons fire at a higher
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frequency for any given level of current injection.
These changes occurred through selective modifica-
tions in the magnitude of voltage-dependent currents:
sodium currents increase and persistent potassium cur-
rents decrease, whereas calcium currents and transient
potassium currents are unaltered. Increase of neuronal
excitability in response to reduced activity may con-
tribute to the activity-dependent stabilization of firing
rates. The stability in neuronal firing rates is main-
tained through many mechanisms, and regulation of
neuronal excitability may be one of them.

Information about the outside world is transformed
into spike trains in the nervous system. How do the
neurons learn to represent the information, and do
they change their behavior based on changing external
stimuli? In the discussion of unsupervised learning and
the ICA algorithm, it was shown that information
theoretical approaches can be effective in solving
real-world problems. A similar information theoretical
approach can be implemented to search for an optimal
representation. A Hodgkin–Huxley type model of a
neuron that can adjust its membrane conductances to
maximize information transfer has been proposed
(Stemmler and Koch, 1999). The slope of the neuronal
gain function should line up with the peak of the input
to maximize information transfer. The learning rules
they implemented in the model performed this
matchup by adjusting the membrane conductances.
The conductance modulations did not require calcu-
lation of mutual information but were based solely on
local characteristics of the neuron. They showed that
for different input distributions the model could suc-
cessfully line up the gain function and the input
distributions leading to maximization of information
transfer. Thus, the ability of activity-dependent selec-
tive modification of the gain functions based on the
active balance of inward and outward ion channels
could serve a number of important functions, includ-
ing fine-tuning of the output properties of neurons to
match the properties of their inputs.

Plasticity of intrinsic excitability can also participate
in regulating the conventional synaptic plasticity. For
details, see the previously discussed model, which com-
bines Hebbian and supervised learning (Swinehart and
Abbott, 2005), in the section titled ‘Supervised learning.’
1.34.8 Homeostatic Plasticity

Correlation-based Hebbian plasticity is thought to be
crucial for information storage because it produces
associative changes in the strength of individual
synaptic connections. However, correlation-based
learning in neural networks can be unstable.
According to the Hebb rule, if a presynaptic neuron
participates in firing of a postsynaptic neuron, it leads
to strengthening the synapses between the neurons.
This makes it more likely that next time the presynap-
tic neuron fires, it will cause firing in the postsynaptic
neuron, which leads to further strengthening of the
synapse. Simple associative Hebbian algorithm causes
instability in the network by increasing the total activ-
ity of the network and losing selectivity among
synapses. To keep the network stable and maintain
the selectivity of the network, an additional mechanism
must stabilize the properties of neuronal networks.

Homeostatic plasticity is a mechanism by which the
neurons regulate the network’s activity (Turrigiano
and Nelson, 2000). There are many different ways
neural activities could be regulated to keep them
within a functional dynamical range. One mechanism
that could maintain relatively constant activity levels is
to increase the strength of all excitatory connections
into a neuron in response to a prolonged drop in firing
rates, and vice versa. This form of homeostatic plastic-
ity is called synaptic scaling.

Regulating synaptic strength is not the only mech-
anism by which homeostatic activity can be
maintained. Previously discussed plasticity of intrinsic
excitability also contributes to the homeostatic regula-
tion by controlling the firing rates of the neurons.

All theoretical models implementing associative
Hebbian learning rule have to deal with the instability
problem. For example, the BCM learning rule deals
with unconstrained growth of synaptic weights by
dynamically adjusting the threshold between poten-
tiation and depression (Bienenstock et al., 1982). This
algorithm is biologically plausible and reflects experi-
mental findings indicating that calcium level is crucial
for the direction of plasticity. The dynamical thresh-
old modulation implemented in the BCM rule not
only prevents the synapses from unconstrained
growth but also maintains the activity level of the
units at the appropriate value (See Chapters 1.33, 1.35).

In the next section we present some other exam-
ples of learning algorithms involving homeostatic
plasticity as a critical element of learning.
1.34.9 Complexity of Learning

The learning paradigms discussed earlier were based
on a single mechanism for plasticity (e.g., STDP
versus homeostatic and synaptic versus intrinsic
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neuronal). However, many difficult tasks cannot be
solved using a single learning rule, but require com-
binations of several learning rules working together.
Another essential element of modeling learning pro-
cesses is the time scale of learning. There are
multiple time scales for plasticity, from milliseconds
to years, and depending on the demands of the task,
different mechanisms for plasticity with different
time scales may be involved.

Long-term memory is vulnerable to degradation
from passive decay of the memory trace and ongoing
formation of new memories. Memory based on
synapses with two states shows exponential decay,
but experimental data shows that forgetting (memory
degradation) follows a power law. A cascade model
was developed to address this problem (Fusi et al.,
2005). In the model, synapses had two states, weak
and strong, but in addition to transition between
these two states, there were metaplastic transitions
within each state. Based on the stage of metaplastic-
ity, the synapses showed the range of behavior from
being highly plastic to being resistant to any plastic-
ity at all. The metaplastic transitions effectively
introduced multiple time scales into the model.

The cascade model outperformed alternative
models and exhibited a power law for the decay of
memory as a function of time. The dependence of
memory lifetime on the number of synapses in the
model is also a power law function. Memory lifetimes
diminish when the balance between excitation and
inhibition is disturbed, but the effect is much less
severe in the cascade model than in noncascade
models.

The function of homeostatic plasticity is to main-
tain the activity of the cortex at a functional level. But
are there any other computational or functional
advantages of such plasticity? One study has shown
that a combination of Hebbian and homeostatic plas-
ticity can lead to temporal sharpening in response to
multiple applications of transient sensory stimuli
(Moldakarimov et al., 2006). The model included
two types of homeostatic mechanisms, fast and slow.
Relatively fast plasticity was responsible for main-
taining the average activity of the units. To maintain
activity in the excitatory neurons at a target homeo-
static level, they implemented a learning rule,
according to which inhibitory connections have
been adjusted. The slow plasticity was used to
determine the value of the target average activities.
Thus, the model had three time scales for synaptic
adjustments: Hebbian, fast homeostatic, and slow
homeostatic mechanisms. Repeated presentations of
a transient signal taught the network to respond to
the signal with a high amplitude and short duration,
in agreement with experimental findings. This shar-
pening enhances the processing of transients and may
also be relevant for speech perception.

A standard approach in models of self-organized
map (SOM) formation is the application of Hebbian
plasticity augmented with a mechanism of weight
normalization. A conventional way to normalize
weights is based on a sum of weights coming into
each neuron: The soma collects information on every
weight, sums them, and then decides on the amount
of normalization. An alternative approach to weight
normalization has been proposed (Sullivan and de Sa,
2006). The normalization algorithm did not need
information from every synapse but rather was
based on the average activities of the units and
homeostatic plasticity. When Hebbian and homeo-
static mechanisms were combined, the average
activities of the units were better maintained com-
pared to the standard Hebbian models.

Dimensionality reduction facilitates the classifica-
tion, the visualization, and the storage of high-
dimensional data. A simple and widely used method
is PCA, which finds the directions of greatest
variance in the data set and represents each data
point by its coordinates along each of these direc-
tions. A new deep network model has been proposed
to transform the high-dimensional data into a low-
dimensional code (Hinton and Salakhutdinov, 2006).
The adaptive multilayer network consisted of two
subnetworks, an encoder and decoder. The encoder
transformed high-dimensional data into a low-
dimensional code. The code layer was then used as
the input layer to the decoder network to reconstruct
the original input pattern.

The two networks were trained together to mini-
mize the discrepancy between the original data and
its reconstruction. The required gradients were
obtained using the chain rule to back-propagate
error derivatives, first through the decoder network
and then through the encoder network. In general, it
is difficult to optimize the weights in a multilayer
network with many hidden layers. Large initial
weights typically lead to poor local minima; with
small initial weights, the gradients in the early layers
are tiny, making it impossible to train. But if the
initial weights are close to a good solution, gradient
descent back-propagation works well. A good initial
network was obtained with unsupervised learning
based on Restricted Boltzmann Machine (RBM)
learning algorithm. First, the input layer of the
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multilayer network was used as a visible layer of
RBM, and the next layer served as a feature layer.
After learning one layer of feature detectors, the
weights were fixed and used for learning a second
layer of feature detectors. This layer-by-layer learn-
ing was repeated many times. After pretraining
multiple layers of feature detectors, the model was
unfolded to produce the encoder and decoder net-
works that initially used the same weights. The
global fine-tuning stage used back-propagation
through the whole network to adjust the weights for
optimal reconstruction.

They applied the algorithm to multiple tasks
including handwritten digits visualization, grayscale
images, and documents generalization. In all these
tasks, the new algorithm outperformed different
approaches based on PCA and other supervised
algorithms.
1.34.10 Conclusions

We have discussed learning rules and learning algo-
rithms designed for neural network models and
described some problems that can be solved by neural
networks with modifiable connections. Neural com-
putation is a broad field that continues to grow; only a
few selected studies have been used to illustrate gen-
eral principles.

Although early modeling efforts focused mainly
on traditional synaptic plasticity, such as LTP and
LTD, relatively new homeostatic plasticity mecha-
nisms are also being explored. Although synaptic
plasticity was once presumed to be the primary
neural mechanism of learning, recent models have
incorporated changes of intrinsic properties of the
neurons as well.

Most experimental studies of learning have
studied the mechanisms of synaptic plasticity in
reduced preparations. Recently the focus has shifted
to relating the changes in the synapses with behav-
ioral learning. For example, inhibitory avoidance
learning in rats produced the same changes in hippo-
campal glutamate receptors as induction of LTP with
HFS (Whitlock et al., 2006). Because the learning-
induced synaptic potentiation occluded HFS-induced
LTP, they concluded that inhibitory avoidance train-
ing induced LTP in hippocampus.

Theoretical approaches can integrate local mech-
anisms with whole system behavior. Even after
locating particular sites where changes occur, it is
still not clear to what degree those changes are
directly related to the learning. Building a computa-

tional model that integrates learning mechanisms

allows one to evaluate the importance of different

sites of plasticity. The observed plasticity for some

sites may be secondary, or compensatory to the pri-

mary sites of learning (Lisberger and Sejnowski,

1992).
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