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Research into how neurons represent the world is proceeding rapidly. Most 
of the pioneering studies of sensory and motors systems were based on sin- 
gle unit recordings. Although our current understanding of the response 
properties of neurons in the brain is largely based on this approach, there is 
likely to be additional information that can only be accessed by examining 
the firing patterns of large populations of neurons. New experimental tech- 
niques, such as simultaneous recordings of more than 100 neurons (Gray et 
al., 1995; Meister, 1996), provide a glimpse of large-scale population codes 
and distributed representations in different parts of the brain. The papers in 
this volume are a selection of those that have appeared in Neural Computation 
and represent a sample of diverse approaches to the problem of neuronal 
coding. This introduction gives some background for these papers as well 
as additional references for further reading. 

Neural Coding 

The study of neural coding is a central issue in the investigation of nervous 
system function. Before we can understand how neural circuits process in- 
formation, we must understand how they represent it. Information is con- 
veyed to and processed within the brain primarily in the form of action 
potentials. In the retina, for example, all of the information about the spa- 
tiotemporal pattern of photoreceptor activity is ultimately encoded in the 
action potential firing patterns of ganglion cells whose axons project though 
the optic nerve to the thalamus. How does the sequence of action poten- 
tials fired by a neuron, or a group of neurons, represent the information 
that is encoded and conveyed to other neurons? The papers collected here 
address this basic question from a variety of directions and with a range of 
viewpoints. 

Action potentials are typically all-or-none stereotyped waveforms, so all 
the information represented by a sequence of action potentials is encoded in 
their timing. The neural code is particularly complex because both the prop- 
erties of a stimulus (light, touch or sound intensity, for example), and the 
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way that the stimulus changes over time are encoded in the temporal pat- 
tern of neural spiking. Information about stimulus value and about changes 
in the stimulus are both represented in the time domain by the neural code. 
As a result, it is important to distinguish between the structure imposed on 
the code by the nature of the stimulus, and the structure that arises from the 
nature of the encoding process itself. 

The papers in this volume cover three broad issues in neural coding: neu- 
ronal response va.riability, the nature of the neural code, and the encoding 
of information by populations of neurons. A closely related issue is neural 
decoding, the process by which information encoded in a population of 
neurons is read out and deciphered. A final section on temporal sequences 
of spikes provides insights into how dynamical interactions in populations 
of neurons can be modeled. 

Neuronal Response Variability 

The responses of most neurons, even when the same stimulus is presented 
repeatedly, show a high degree of variability. Response variability has been 
characterized in a number of cortical areas (Werner and Mountcastle, 1965; 
Tomoko and Crapper, 1974; Schiller et al., 1976; Hegglund and Albus, 1978; 
Dean, 1981; Tolhurst et al., 1981 and 1983; Vogels et al., 1989; Snowden 
et al., 1992; Britten et al., 1993; O'Keefe et al., 1997, Gur et al., 1997). Sev- 
eral descriptive stochastic models of response variability have been devel- 
oped (see for example Gerstein and Mandelbrot, 1964; Stein, 1967; Teich, 
1989; and the review in Tuckwell, 1988). The simplest and most widely 
used model describes the generation of neuronal spike trains as a Poisson 
process. In a Poisson model each action potential is generated indepen- 
dently with a probability per unit time proportional to the firing rate of 
the neuron. The Poisson description provides a fairly good first approxi- 
mation of the statistics of many cortical spike trains evoked by unchanging 
stimuli. 

A recent study indicates that spike trains recorded from area MT in awake 
monkeys are more accurately described by a Poisson model than those 
from anaesthetized animals, which tend to show higher variability (O'Keefe, 
Bair, and Movshon, 1997). Two common features that are not described 
by a Poisson model are bursts of spikes (although the occurrences of the 
bursts can sometime be described by a Poisson model) and refractory effects 
following action potential firing (Bair, Koch, Newsome, and Britten, 1994). 
Refractory effects can be included with a relatively minor extension of the 
basic model, and, of course, more elaborate stochastic descriptions can be 
constructed as well (Berry and Meister, 1998). The Poisson firing rate can 
itself be a stochastic variable and may vary rapidly on a scale comparable 
to the typical interspike interval (Sejnowski, 1976; Buracas et al., 1998). 

While stochastic models may describe neuronal response variability, they 
do not account for i t  in any mechanistic way. The basic spike generation pro- 
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cess in neurons appears to be precise and reliable (Mainen and Sejnowski, 
1995; Holt, Softky, Koch, and Douglas, 1996; Nowak et al., 1997; Tang et al., 
1997; de Ruyter van Steveninck et al., 1997), and thus it cannot account for 
the variability in the spike sequences evoked by repeated presentations of 
the same stimulus. Response variability must arise instead from fluctua- 
tions in the input that drives neuronal firing. Softky and Koch (1992) (see 
also Softky and Koch, 1994) point out that this view is difficult to reconcile 
with the fact that neurons integrate large numbers of synaptic inputs (on the 
order of 10,000 for a cortical pyramidal cell). By the central limit theorem, 
one would expect that the variability arising from summing such a large 
number of inputs would be much smaller than the variability for any single 
afferent. As Softky and Koch note, such a high degree of variability is in- 
consistent with the idea that neurons integrate large numbers of excitatory 
synaptic inputs over any reasonable length of time. 

Troyer and Miller (1997) and Bugmann et al. (1997) show how a highly 
variability response can be generated in a neuron model that integrates 
a large number of inputs. The basic idea is that the firing of the neuron 
must not be due to the average level of synaptic input, for this quantity 
obeys a central limit theorem and thus has greatly reduced fluctuations. 
Rather, we must imagine that the average level of excitation is subthreshold 
for action potential firing, and that spiking is the result of supratheshold 
fluctuations in the total synaptic drive. This idea has been implemented 
by balancing the excitatory and inhibitory inputs to the neuron (Amit and 
Tsodyks, 1992; Tsodyks and Sejnowski, 1995; Shadlen and Newsome, 1994, 
1998; van Vreeswijk and Sompolinsk$1996). The rational for balancing ex- 
citation with inhibition is that a neuron near threshold is'extremely sensitive 
to small fluctuations of the membrane potential, such as those be caused by 
correlated inputs (Sejnowski, 1976), and it can respond to these extremely 
rapidly (Tsodyks and Sejnowski, 1995; Troyer and Miller, 1997). 

The Nature of the Neural Code 

There is an intense debate within the neuroscience community concerning 
whether neurons employ rate or temporal codes. Adrian (1928) first noted 
the relationship between neuronal firing rate and stimulus intensity that 
forms the basis of rate coding. There is no doubt that firing rate is a ma- 
jor correlate of the stimulus attributes encoded by most neurons, and that 
large amount of stimulus-related information are carried by firing rates 
(figure 1A). Nevertheless, numerous studies have attempted to go beyond 
firing rate to probe other types of neural coding. 

As discussed in Bair and Koch (1996), the division between rate and 
temporal coding is based on the precision and reproducibility of spike tim- 
ing. Generally, a temporal code is one in which the precise timing of spikes 
carries significant amounts of information about a stimulus. Of course, this 
requires a definition of the term "precise," and here some complications can 
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Figure 1: Rate versus correlation coding. (A) Coding of the direction of motion 
of a visual image by the firing rate of a neuron in area MT (medial temporal) of 
a monkey. The histograms show the firing rate (measured by counting spikes 
in discrete time bins) for motion of an image in the directions indicated around 
the circle. The central plot summarizes the effect of movement direction angle 
on firing rate (plotted radially). (From Albright 1984). (B) Correlation coding 
of location by hippocampal place cells. The lower histogram shows that the 
location of a rat is encoded in the firing rate of this hippocampal place cell. 
The upper panel shows that more information about location is encoded in the 
phase of an action relative the theta rhythm, a 7-12 Hz oscillation in 
the overall activity of hippocampal neurons. Each dot in the upper panel shows 
the phase of the theta rhythm plotted against the position of the animal at the 
time when a spike was fired. The linear relation shows that the phase of action 
potential firing encodes information about position. (From O'Keefe and Recce 
1993.) 
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arise due to the dual nature that time plays in the neural code. A number 
of different issues are tangled up in the debate between rate and tempo- 
ral codes, and confusion has arisen because the terms may mean differ- 
ent things to different people. The complexity of this debate is well illus- 
trated by the fact that the data discussed in Bair and Koch (1996) within the 
context of a temporal code have been interpreted as representing rate coding 
by Shadlen and Newsome (1998). 

Spike timing reflects the nature of the neural encoding process, but it is 
also affected by the temporal properties of the stimulus. It is not clear that a 
code should be identified as temporal merely because the stimulus contains 
precisely timed rapid onsets that evoke spikes reliability at specific times. 
Theunissen and Miller (1995) have proposed that a code should only be 
called temporal if information is carried by details of spike timing on a scale 
shorter than the fastest time scale characterizing variations of the stimulus. 
7 hey thus suggest that the stimulus should be used to set the scale for what 
is meant be the term "precise timing." However, this definition is far from 
universally accepted. 

Rate codes are as amorphously defined as temporal codes. On any single 
trial, the firing rate of a neuron can only be measured by examining the 
firing pattern of the neuron over some finite interval of time. The duration 
of the spike integration interval used to define the rate plays a significant 
role in any analysis of rate coding. A reasonable choice for the interval used 
to define the firing rate is the longest duration over which the stimulus can 
be approximated as taking a constant value. Thus, the rate of change of 
the stimulus determines the integration time used to define the firing rate. 
Some neurons only fire about one spike during such an interval and, as a re- 
sult, they may appear ill-suited to encode and convey information through 
their firing rates (Rieke et al., 1997). However, the situation changes if a 
large number of neurons respond in this manner, because the information 
can then be encoded and conveyed as a population firing rate. Although 
individual neurons may fire only about one spike per integration time, 
the population of neurons can collectively fire many spikes over the same 
period. 

Information theory provides a powerful tool for analyzing the nature and 
quality of a neural code (Gabbiani and Koch, 1996, and see Rieke et al., 1997 
for a general discussion). A number of researchers have stressed the need to 
consider realistic or "na'tural" stimuli when considering the character and 
efficiency of a neural code (Barlow, 1961; Laughlin 1981; Field, 1987 and 
1994; Atick, 1992; Rieke et al., 1997). Ruderman and Bialek (1992) show an 
interesting effect of including knowledge of the statistics of stimuli in the 
analysis of neural coding accuracy. Information theoretic or other measures 
of coding efficiency allow us to construct optimal encoding strategies and 
to test whether neurons use or approximate such strategies. The response 
characteristics of neurons in a number of different systems appear consistent 
with optimal codingstrategies (Laughlin 1981; Atick, 1992; Rieke et al., 1997) 
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and efficient neural codes are discussed in Levy and Baxter (1996) (see also 
Barlow et al., 1989; Baddeley et al., 1997). 

While much of the debate surrounding the nature of the neural code has 
focused on rate versus temporal coding, there are other important issues to 
consider. A major question concerns the information carried by correlations 
between different action potentials fired by the same neuron, or by different 
neurons. The simplest assumption is that a negligible amount of information 
is carried by such~correlations, and thus neurons code information into 
spikes independently of each other. This is called an "independent-spike 
code," and such coding is assumed in the majority of analyses of neural 
coding. It is important to realize that assuming independent spikes does 
not imply that the presence or absence of other spikes is irrelevant to the 
neural code. The assumption is that the presence of a second spike (either 
from the same or from a different neuron) does not dramatically alter the 
significance of the first spike with respect to the stimulus. 

A code in which one spike can alter the meaning of another is called 
a "correlation code" to indicate that correlations between different spikes 
carry information. These spikes may be fired by one neuron or by different 
neurons. The difference between independent-spike and correlation codes 
can be illustrated by considering the representation of numbers by the digits 
0 through 9. Our normal notation is a correlation code. In the number 12, 
the meaning of the digit 1 is completely altered by the presence of the 2; 
it signifies a 10 not a 1. If this was an "independent digit code," 12 would 
signify the number three. There are some, but not many, examples of correla- 
tion coding in neuroscience. Traub, Whittington, and Jeffreys (1997) discuss 
mechanisms that would allow neurons to encode information in the phase 
of their firing relative to an underlying collective rhythm (see also Hopfield, 
1996; Sejnowski, 1996). Coding of information about spatial location in the 
hippocampus of the rat by such a mechanism has been observed by OfKeefe 
and Recce (1993, see figure 1B). There is also evidence that coincident spikes 
in retinal ganglion cells (Meister, 1996; Berry, Warland, and Meister, 1997) 
and the lateral geniculate nucleus (Dan, Atick, and Reid, 1996) can carry 
information beyond that conveyed independently by each neuron. 

A neural coding strategy, especially one that involves precise temporal or 
coincidence discriminations, is useless unless other neurons can decipher 
and respond to elements of the code. Thus, the study of the biophysics 
of neuronal spike integration is an important aspect of research on neural 
coding, as illustrated in Murthy et al. (1994), Rapp, Yarom, and Segev (1992), 
and Me1 (1992). These authors discuss the role of synchrony, the effect of 
background activity, and local computations performed in dendritic trees 
by voltage-dependent membrane conductances. 

Cortical neurons must respond in some useful way to action potentials 
received across thousands of synapses at rates ranging from a zero to sev- 
eral hundred Hz. If these afferent spike sequences are uncorrelated and the 
neuron simply averages its synaptic inputs, it is difficult to see how a neu- 
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ron could differentiate one set of afferent spike trains from another. One 
solution to this dilemma is that the neuron performs local computations 
involving smaller numbers of synaptic inputs on parts of its dendritic tree 
(Mel, 1992). Another is that correlations between sets of afferent spike trains 
play an important role in generating responses. For example, sets of afferents 
with highly synchronized action potentials might be particularly effective 
at generating a postsynaptic response (Murthy and Fetz, 1994). Short-term 
synaptic depression can make a poskynaptic neuron more sensitive to cor- 
related inputs by reducing the impact of the average firing rates (Markram 
and Tsodyks, 1996; Abbott et al., 1997). It is rather sobering that, at present, 
we have no clear consensus on what aspects of the collective presynaptic 
activity actually make a cortical neuron fire. 

Population Coding 

In most nervous systems, information about a stimulus is encoded in the 
activity of a large number of responding neurons. Population coding is re- 
viewed in Konishi (1991) (see also Knudsen et al., 1987; Churchland and 
Sejnowski, 1992; Abbott, 1994). There has been considerable discussion of 
the theoretical issues involved in interpreting out the information encoded 
by the activities of a large neuronal population, including Sanger (1994); 
Snippe (1996); Pouget et al. (1998); Buonomano and Mauk (1994); and oth- 
ers (Baldi and Heiligenberg, 1988; Paradiso, 1988; Altes, 1989; Lehky and 
Sejnowski, 1990; Vogels, 1990; Zhang and Miller, 1991; Snippe and Koen- 
derink, 1992; Zohary, 1992; Seung and Sompolinsky, 1993; FoldiAk, 1993; 
Salinas and Abbott, 1994; Sanger, 1996; Abbott and Dayan, 1998; Zhang et 
al., 1998; Oram et al., 1998). Much of this work has focused on how the 
information encoded in the activity of a population of neurons can be read- 
out or decoded. Decoding is an effective way of determining the accuracy, 
efficiency, and information carrying capacity of a neural code (Rieke et al., 
1997). 

Two systems, the superior colliculus, involved in the coding of saccadic 
eye movements (Van Gisbergen et al., 1987; Lee et al., 1988), and neurons in 
the primary motor cortex of the monkey encoding the direction of reaching 
movements of the arm (Humphrey et al., 1970; Georgopoulos et al., 1982, 
1986,1988; Kalaska et al., 1989; Caminiti et al., 1991; Scott and Kalaska, 1995; 
Sanger, 1994; Lin, Si, and Schwartz, 1997; Snippe, 1996) have played an im- 
portant role in our understanding of population coding. Individual neurons 
in a population responding to a stimulus or active during a particular motor 
task are selective to particular attributes of the stimulus or task. For exam- 
ple, as discussed in Sanger (1994), certain neurons in the motor cortex of the 
monkey fire at rates that are correlated with the direction of the movement 
of the monkey's arm (Schwartz et al., 1988). The average firing rate of a 
given neuron is maximal when the arm movement is in a particular direc- 
tion known as the preferred direction for that neuron. The vector decoding 
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scheme reconstructs the direction of arm movement from a set of neuronal 
firing rates by summing the preferred direction vectors weighted by the 
firing rate of each neuron. If enough neurons are included in the sum, this 
decoding method produces results in fairly good agreement with the actual 
arm movement directions (Georgopoulos et al., 1982,1986, and 1988). Vec- 
tor decoding hqs been applied successfully to a number of other systems 
(Gilbert and Wiesel, 1990; Steinmetz et al., 1987; Van Gisbergen et al., 1987; 
Lee et al., 1988; Young and Yamane, 1992; Salinas and Abbott, 1994; Lewis 
and Kristan, 1998; Abbott, 1998) and it is used in several papers in this vol- 
ume that consider temporal sequences and discrimination (Lukashin and 
Georgopoulos, 1994; Blum and Abbott, 1996; Buonomano and Mauk, 1994). 
The accuracy and efficiency of vector and related "center of mass" decoding 
schemes is analyzed in Snippe (1996). 

Many researchers have studied the problem of reconstructing a motor 
response or a stimulus attribute from the activities of a number of neu- 
rons using more efficient methods than the simple vector decoding scheme 
(Snippe, 1996; Paradiso, 1988; Snippe and Koenderink, 1992; Seung and 
Sompolinsky, 1993; FijldiAk, 1993; Salinas and Abbott, 1994; Sanger, 1996; 
Abbott and Dayan, 1998; Zhang et al., 1998; Oram et al., 1998). Lin, Si, and 
Schwartz (1997) use a self-organizing feature map for this purpose. Other 
approaches use Bayesian or maximum likelihood arguments to reconstruct 
the stimulus from the neural response in a way that is optimal according to 
some predefined criterion. These methods are particularly useful for estab- 
lishing limits on the accuracy of a neural code. The Fisher information, which 
is the variance of the maximum likelihood estimate of a stimulus, plays an 
especially important role because it sets a limit for any unbiased estimator 
of a stimulus based on the neural responses it evokes (Paradiso, 1988; Seung 
and Sompolinsky, 1993; Abbott and Dayan, 1998; Zhang et al., 1998). 

Establishing a theoretical limit on the accuracy of a neural code is interest- 
ing, but it may be irrelevant if there are no biophysically reasonable schemes 
for implementing an optimal, or near optimal, decoding method using real 
neural circuitry. Pouget et al. (1998) show how maximum likelihood de- 
coding, which achieves the maximum possible accuracy for any unbiased 
estimator, can be performed using the highly recurrent architecture of corti- 
cal circuits, and thus establishes that the theoretical limit corresponding to 
the Fisher information is achievable. The posterior probability distribution 
given by a Bayesian analysis can be used for efficient probabilistic recon- 
struction. Zhang et al. (1998) show how a feedforward network with one 
layer of weights could in principle read out a Bayesian code. These results 
show that optimal decoding is within the capability of the network mecha- 
nisms known to exist in the cortex. However, the explicit readout of a pop- 
ulation code may not be needed until a motor response is generated, since 
projections between cortical areas may simply perform transformations be- 
tween different population codes (Salinas and Abbott, 1995; Snippe, 1996; 
Lehky and Sejnowski, 1999). 
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What are the advantages of encoding information across large neuronal 
populations? The average response tuning curves in such coding arrays 
can provide a set of basis functions for approximating other functions of 
stimulus parameters (Girosi and Poggio, 1990; Poggio and Girosi, 1990; 
Pouget and Sejnowski, 1995). This feature can be used to do some interest- 
ing and highly relevant computations; for example, coordinate transforma- 
tion needed to convert information about an object's location expressed in a 
retinal coordinate system to body-centered coordinates for visually guided 
reaching tasks (Zipser and Andersen, 1988; Salinas and Abbott, 1995; Pouget 
and Sejnowski, 1997). Population codes can simultaneously represent infor- 
mation about several different stimulus attributes, and it may have broader 
interpretations as well (Hinton, 1992; Anderson, 1994; Andersonand Van Es- 
sen, 1994). Anderson (1994) interpreted population codes as providing an 
estimate of an entire probability distribution, and Zemel, Dayan, and Pouget 
(1998) explore this idea in an alternative formulation. 

Temporal Sequences 

Much of the work on neural coding by populations of neurons, both the- 
oretical and experimental, has focused on static behavior. One of the great 
challenges we face in understanding neural information processing is ex- 
tending our ability to measure, describe and model network behavior into 
the dynamic and temporal domains. Several papers in this volume provide 
examples. Lukashin and Georgopoulos (1994) and Blum and Abbott (1996) 
discuss how temporal sequences can be learned and recalled by a neural 
network (see also Minai and Levy, 1993; Montague and Sejnowski, 1994; 
Abbott and Blum, 1996; Gerstner and Abbott, 1997). Griniasty and Tsodyks 
and Amit (1993) show how temporal sequences that occur during learning 
are reflected in correlations among the attractors of a neural network (see 
also Amit et al., 1994). Buonomano and Mauk (1994) consider the ability of 
a neural circuit to store and recall information about time intervals between 
events. 
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