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Despite extensive work on the behavioral and physiological cor-
relates of brain rhythms, it is still unresolved whether they have
any important function in the mammalian cerebral cortex. In
particular, there is no consensus on whether there are general
computational roles for network oscillations. Three main possi-
bilities will be discussed here. One possibility is that network
oscillations contribute to representation of information. A sec-
ond idea is that, rather than representing information as such,
oscillations and synchrony regulate the flow of information in
neural circuits. A third possibility is that oscillations assist in the
storage and retrieval of information in neural circuits. These
three possibilities are not mutually exclusive.

Representation of sensory information
Representation of information may be assisted by the tendency of
oscillations to synchronize action potentials in principal cells
(Singer and Gray, 1995). This potential function has been studied
in detail in the visual system, in which synchronization by gamma
oscillation has been suggested as a way to solve the “binding
problem,” i.e., how various sensory features can be bound into a
coherent cognitive percept (Gray and Singer, 1989; Singer and
Gray, 1995). Alternatively, or additionally, information could
also be represented by oscillation phase. Thus, network oscilla-
tions may provide a temporal reference structure, relative to
which spike times become meaningful.

A good example of phase encoding is “phase precession” in
hippocampal place cells (O’Keefe and Recce, 1993). When a ro-
dent traverses through a place field on a linear track, the place cell
fires progressively earlier relative to the theta oscillation (O’Keefe
and Recce, 1993). It has been suggested that, under these condi-
tions, the phase of firing carries more information about the
location of the animal than does the rate of firing (Tsodyks et al.,
1996; Jensen and Lisman, 2000). However, the phase precession
phenomenon is most prominent in linear environments and
might not necessarily be more informative than firing rate in two-
and three-dimensional space (Zhang et al., 1998). To what extent
firing rate and spike phase covary or are separable entities during
in vivo activity is currently debated (Harris et al., 2002; Mehta et
al., 2002; Huxter et al., 2003).

Spike-timing reliability
A prerequisite for synchronization and phase codes to work is
that the temporal precision of spike generation is sufficiently high
and that action potential timing is reliable. Early work suggested
that spike timing is highly variable from trial to trial (Rieke et al.,
1997; Shadlen and Newsome, 1998), and it was until recently
thought that the required precision is beyond the biophysical
capability of cortical neurons (Softky, 1995). However, when
more naturalistic fluctuating inputs are used, mammalian corti-
cal neurons in vitro support highly precise and reliable spike times
(Mainen and Sejnowski, 1995; Nowak et al., 1997). In vivo exper-
iments have shown that cortical responses can be more reliable
than previously thought (Buracas et al., 1998; Kara et al., 2000).

Reliability is greatest when the input driving frequency
matches the intrinsic frequency preference of neurons (Pike et al.,
2000; Fellous et al., 2001). Furthermore, downstream neurons
must be able to detect synchronous activity for the activity to
propagate in the network. Cortical neurons are good detectors of
correlated activity (Salinas and Sejnowski, 2000), and dendrites
have several interesting nonlinear properties that could exploit
spike-time arrival (Mel, 1999). Encoding by phase and synchro-
nization has highly attractive computational properties (Hop-
field, 1995; Bazhenov et al., 2001a,b; Brody and Hopfield, 2003).

If oscillations are essential for binding together perceptual
features, then it should be possible to disrupt perception by se-
lectively interfering with the oscillations. This is a difficult exper-
iment that may be possible using gene knock-out experiments in
mice or viral vectors to target specific neurons in monkey cortex.

Regulating the flow of information
However, oscillations could have processing roles separate from
the representation of information. Fast oscillations are enhanced
during states of heightened alertness and attention. Thus, they
may be involved in neuronal communication more than repre-
sentation as such, i.e., they may regulate the strength rather than
the content of neural signals (Salinas and Sejnowski, 2001). Sev-
eral properties of neuronal networks would suggest such a role.
First, network oscillations as seen in the EEG are state dependent
and regulated by the behavioral task. Second, the emergence of
oscillations depends on the neuromodulatory state of the net-
work. Neuromodulators that regulate attention, such as acetyl-
choline, can themselves induce network oscillations (Fisahn et
al., 1998). Third, the correlated activity of neurons increases the
gain of neuronal integration.

Neurons are particularly sensitive to input correlation when
the excitatory and inhibitory inputs are balanced, as seen during
oscillatory states (Salinas and Sejnowski, 2000). Thus, the output

Received Sept. 3, 2005; revised Dec. 2, 2005; accepted Dec. 17, 2005.
This work was supported by the Howard Hughes Medical Institute (T.J.S.), the Wellcome Trust (O.P.), and the

Biotechnology and Biological Sciences Research Council, United Kingdom (O.P.).
Correspondence should be addressed to Dr. Terrence J. Sejnowski, Computational Neurobiology Laboratory,

Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla,
CA 92037. E-mail: terry@salk.edu.

DOI:10.1523/JNEUROSCI.3737-05d.2006
Copyright © 2006 Society for Neuroscience 0270-6474/06/261673-04$15.00/0

The Journal of Neuroscience, February 8, 2006 • 26(6):1673–1676 • 1673



of the neuron will be determined not only
by the firing rates of its inputs but also by
their correlations (Salinas and Sejnowski,
2001). The regulation of interaction
strength with target neurons by coherence
has been reported in corticospinal projec-
tions (Schoffelen et al., 2005). Thus, the
oscillatory activity might serve as a dy-
namic nonlinear filter capable of selecting
the salient and significant inputs to the
network.

Perhaps the strongest evidence that os-
cillations and synchrony in the gamma
band are involved in attention arises from
experiments on awake, behaving mon-
keys, in which the visual input is kept fixed
but the covert attention of the monkey is
shifted to different parts of the visual
scene. Increases were observed in the co-
herence between the spikes of single neu-
rons in the visual cortex and local field po-
tentials in the gamma band (Fries et al.,
2001). Interestingly, this increase in co-
herence occurs in the upper layers of the
cortex but not in the lower layers (Buffalo
et al., 2004) (Fig. 1). Additional support for the attention hypoth-
esis comes from recordings from monkeys trained to perform
visual search tasks in which the monkey is cued with a color or
shape and asked to find a target with the cued feature amid a large
number of distracters (Bichot et al., 2005). When a stimulus with
a cued feature appears in the receptive field of a neuron that
responds preferentially to that feature, the coherence increases
between its spikes and local field potential in the gamma band.

This link between attention and spike-field coherence raises a
number of interesting questions. How does the top-down input
regulate the coherence of neurons in a cortical column? How is
the rapidity of the shifts in coherence achieved? Experimental
studies on rodent cortex implicate inhibitory interneuron net-
works as sources of the oscillations and potential targets of top-
down inputs. In particular, excitatory input can rapidly synchro-
nize a subset of the inhibitory neurons that are in competition
with other inhibitory networks (Tiesinga and Sejnowski, 2004).
Interestingly, a moderate level of background activity is needed to
achieve both rapid onsets and offsets. Furthermore, this model
can explain why in some experiments there is a shift in sensitivity
of the firing rate versus current relationship rather than a gain of
the response, depending on whether or not the response function
saturates at high currents (Tiesinga et al., 2004, 2005).

An increase in the local coherence in a population of neurons
can boost their firing rates as well as the downstream neurons,
giving them a competitive advantage (Reynolds and Chelazzi,
2004), as shown in Figure 2. This suggests a “small-world” net-
work architecture (Watts and Strogatz, 1998) in which a few
highly active local-circuit interneurons generate local oscillatory
synchrony relative to which the more sparsely firing projecting
cells communicate information.

Spike timing and oscillations in learning and memory
A mechanism that regulates spike timing would have some inter-
esting implications for learning and memory. Correlations in
input activity can induce synaptic plasticity (Bliss and Lomo,
1973; McNaughton and Douglas, 1978; Golding et al., 2002); if
the salient inputs were correlated, they would automatically in-

crease the likelihood that this information would be stored in
memory. Thus, a simple biophysical mechanism could explain
why attention enhances learning, without any need to postulate
neuromodulator effects on the plasticity process per se.

There is increasing evidence that information is stored in the
brain by changes in synaptic weights governed by plasticity rules
similar to those originally formulated by Donald Hebb (Hebb,
1949; Sejnowski, 1977; Sejnowski, 1999). Recently, it was discov-
ered that the sign of synaptic plasticity depends on the milli-
second precision spike order of presynaptic and postsynaptic
neurons (Markram et al., 1997). Such rules have been termed
spike-timing-dependent plasticity (STDP) (Song et al., 2000). By
naturally organizing the presynaptic and postsynaptic spike
times, network oscillations are conducive to STDP (Paulsen and
Sejnowski, 2000) and could implement predictive sequence
learning in recurrent networks (Montague and Sejnowski, 1994;
Rao and Sejnowski, 2003).

If information is stored during oscillations via an STDP rule,
how is this information most efficiently retrieved? A theoretical

Figure 1. Attentional modulation of spike-field coherence in visual cortex. A monkey fixates the spot in the top right corner of
the visual field and is cued (green spotlight) to attend to one of the two stimuli, one of which is in the receptive field of a neuron in
cortical visual area V4 (red outline). The panels on the right show the degree of coherence (color coded) between the spike times
of the neuron and the local field potential in the beta (13–30 Hz) and gamma (30 – 80 Hz) bands, aligned to the time of the color
change of the stimulus in the receptive field. In the top panels, the color change is in the target stimulus (where attention is
directed), and the monkey releases the bar for a reward. The motor response occurs �320 ms after the color change. There is no
motor response in the bottom panels because the color change is in the distracter stimulus: the monkey must continue to hold the
bar until the target stimulus changes color. The gratings come on the screen up to 5 s before the color change happens. There is very
little coherence in these bands in the prestimulus period. Modified from Buffalo et al. (2004).

Figure 2. Gain is regulated by synchrony. A Hodgkin-Huxley model cortical neuron (red)
receives tuned excitatory input I from neurons (green) in an earlier stage of processing and 40 Hz
oscillatory inhibitory inputs from local interneurons (blue). The timing of the inhibitory input
spikes, �inh , is jittered by 4 –10 ms. The firing rate versus input current plots are shown in the
right panel for different values of the jitter. As the jitter is decreased from 10 to 4 ms, the gain of
the responses to the excitatory inputs are increased by factor of 10. The amount of jitter can be
regulated by top-down excitatory inputs or by neuromodulation. Modified from Tiesinga et al.
(2004).
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argument has been made recently based on Bayesian inference,
that information stored as changes of synaptic weights in a recur-
rent network via an STDP rule would be optimally retrieved via
specific spike-timing-based interactions between neurons
(Lengyel et al., 2005). The phase response curves of hippocampal
pyramidal neurons were indeed found to be matched to the form
of hippocampal STDP and thus to be ideally suited for memory
retrieval: they can show both advancement and delay of spike
times by a preceding excitatory synaptic input (Lengyel et al.,
2005). Whether the brain uses such mechanisms to store and
retrieve information remains to be experimentally tested.

Finally, let us consider how sensory information is routed to
the correct motor outputs after an instruction to press a button
when a target dims. There must be an internal system in the brain
that controls attention, expectation, and memory that can be
flexibly and rapidly reconfigured. In addition to the relatively
fixed network of connections, the brain needs a fast way to reor-
ganize the communications channels that link different cortical
areas. The evidence summarized here suggests that the oscilla-
tions observed in the EEG and local field potentials are a reflec-
tion of this communications system and that spike timing is used
to regulate the flow and storage of information in cortical cir-
cuits. If this is the case, then EEG recordings may provide insights
into how the reconfiguration is accomplished.

In addition to the evidence for the involvement of gamma-
band oscillations in the local control of attention and memory,
which was the focus of this mini-symposium, oscillations in the
theta band as reviewed by Kahana (2006) may reflect an even
larger-scale system of communications and control that becomes
engaged during more complex exploratory behaviors and cogni-
tive tasks. New techniques for analyzing single-trial event-related
potentials and functional magnetic resonance signals may help us
to eavesdrop on the communications system of the brain (Jung et
al., 2001; Laughlin and Sejnowski, 2003; McKeown et al., 2003).

Synthesis
Network oscillations are a prominent feature of neuronal activity
throughout the animal kingdom. In the primate brain, there is
growing evidence that oscillations are linked to behavior and
cognitive tasks. Because action potential generation is energeti-
cally expensive, this mechanism may have evolved to minimize
energy expenditure during computation and communication
(Laughlin and Sejnowski, 2003), which might also explain why it
is evolutionarily conserved from mollusks to the human brain
(Gelperin, 2006; Kahana, 2006).
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