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Narrowband and Wideband Off-Grid
Direction-of-Arrival Estimation via Sparse
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Abstract—The sparse Bayesian learning based relevance vec-
tor machine (SBLRVM) algorithm is a promising algorithm to
estimate the directions-of-arrival (DOAs) of multiple narrowband
signals. The parameters involved in the DOA estimation model
are automatically estimated by the algorithm that makes it more
attractive than the deterministic sparsity based DOA estimation
algorithms in which fine-tuning of parameters is necessary. How-
ever, one limitation of the algorithm is that it assumes the DOAs of
the signals to be exactly aligned with the angular grids, which may
not be true in practice. In this paper, we first propose an off-grid
version of the narrowband SBLRVM algorithm. Next, we propose
an off-grid wideband SBLRVM algorithm. The algorithms assume
that the true scenario DOAs of the signals are not exactly aligned
with the angular grids and the parameters of the algorithms are
automatically estimated by the expectation maximization ap-
proach. In the wideband DOA estimation algorithm, we estimate
one spatial power spectrum by simultaneously exploiting sparsity
from all frequency bins. We demonstrate the application of the pro-
posed algorithms by analyzing data from the shallow water HF97
ocean acoustic experiment. The estimated DOAs of a narrowband
tonal from the experiment by using our proposed narrowband
DOA estimation algorithm are consistent with the nonadaptive
conventional beamformer. Processing a wideband chirp from the
experiment shows that estimating one spatial power spectrum by si-
multaneously exploiting sparsity from all frequency bins using the
proposed wideband DOA estimation algorithm is a more valuable
processor than an incoherent combination of the power spectra
from the individual frequency bins estimated using the proposed
narrowband DOA estimation algorithm. Moreover, since our pro-
posed algorithms are off-grid algorithms, an empirical analysis for
the choice of the discretization interval of the angular spread is not
required as opposed to the on-grid DOA estimation algorithms.
This results in a reduced computational complexity.

Index Terms—Basis mismatch, beamforming, compressed sens-
ing (CS), direction-of-arrival (DOA), expectation maximization
(EM), likelihood, multiple measurement vector (MMV), off-grid
model, sparse signal processing.
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I. INTRODUCTION AND MOTIVATION

IDENTIFYING the directions-of-arrival (DOAs) of multiple
signals using an array of sensors is one of the most fun-

damental problems in acoustic and geophysical sensing. The
most commonly used methods for identifying the DOAs of
multiple signals are the multiple signal classification (MUSIC)
method [1], the matrix pencil method [2], [3], the estimating sig-
nal parameters via rotational invariance technique method [4],
the minimum variance distortionless response (MVDR) method
[5], and the deterministic maximum likelihood and stochastic
maximum likelihood methods [6]. To reduce the computational
complexity of these methods, low complexity learning-by-
examples techniques based on artificial neural networks and
support vector machines have also been proposed in the litera-
ture [7], [8].

In contrast to the aforementioned classical methods, estimat-
ing the DOAs by formulating the problem as a sparse signal
recovery problem has received growing attention due to their
higher resolution, robustness to noise, and better performance
with a limited number of snapshots. Based on the theory of
compressed sensing (CS) [9]–[12] and assuming the sparsity
of signals in the spatial domain, sparse signal processing algo-
rithms can estimate the DOAs of signals even when there is
high spatial correlation between the signals or limited number
of snapshots are present [13].

Several sparse signal recovery algorithms have been proposed
in CS literature, which can be used to estimate the DOAs of
multiple signals by exploiting the spatial sparsity. Matching
pursuit methods [14]–[16] can be used to sequentially estimate
the DOAs of the signals. Basis pursuit methods [15]–[17] use
the �1-norm penalty to enforce sparsity in the spatial domain
of the signals and can be used to identify the DOAs of the sig-
nals. Iterative reweighted methods [15] use an �p -norm penalty
with p ≤ 1 for enforcing sparsity and they give sparser solu-
tion as compared to matching pursuit and basis pursuit meth-
ods. Bayesian methods [18], [19] based on the sparse Bayesian
learning principle [18] have even superior performance due to
their use of data adaptive priors and capability of automatic reg-
ularization parameter selection and can be used to resolve the
DOAs of multiple signals.

The above mentioned sparse signal recovery algorithms as-
sume that the true scenario DOAs are exactly aligned with
the angular grids. These algorithms discretize the continuous
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angular domain, and hence, the estimated DOAs are always one
of the discretized grids. However, in practice, the true DOAs
may not be exactly aligned with the angular grids. Hence these
algorithms suffer from grid bias. If the discretization of the an-
gular spread is too coarse, then large error may be present in the
estimated DOAs. This is known as basis mismatch [20], [21].
At the other extreme, if the discretization is too fine, then not
only will we have a high computational complexity, but also the
adjacent steering vectors will be heavily correlated and the spa-
tial spectral power will spread over the adjacent steering vectors
which also may result in grid-bias [22]. In practice, the grid
interval is empirically determined for the on-grid DOA estima-
tion methods, which significantly increases the computational
complexity.

The researchers in [23] have proposed a Bayesian algorithm
based on the sparse Bayesian learning principle [18] to estimate
the DOAs of multiple signals. The algorithm first estimates
the DOAs based on a predefined spatial discrete grid by using
the sparse Bayesian learning formulation to obtain coarse loca-
tion of signals. The algorithm then adopts a postprocessing step
where a refined one-dimensional searching procedure is done to
get a refined estimate of the DOAs one by one from the coarse
DOA estimates to reduce the grid-bias. Similar multiresolution-
based DOA refinement procedures have also been adopted by
other researchers [24], [25]. But a limitation of such approaches
is that the postprocessing procedure still increases the compu-
tational complexity (in terms of CPU time). Furthermore, the
accuracy of the DOA estimates is limited by the resolution of
the refining and the DOAs cannot be estimated to an arbitrary
precision.

In this paper, we first propose an off-grid version of the
narrowband sparse Bayesian learning based relevance vector
machine algorithm (SBLRVM) algorithm (ON-SBLRVM algo-
rithm). The SBLRVM algorithm is a promising algorithm to
estimate the DOAs of multiple narrowband signals [13] since
the parameters involved in the DOA estimation model are au-
tomatically estimated by the algorithm that makes it more at-
tractive than the deterministic sparsity based DOA estimation
algorithms. The novel algorithm directly incorporates an off-
grid model in the DOA estimation model and simultaneously
estimates the DOAs and the offsets in the DOAs during sparse
Bayesian learning [18] and, thus, avoids computationally expen-
sive empirical analyses or multiresolution postprocessing steps.
The offsets in the DOAs can be estimated to an arbitrary preci-
sion and only limited by the machine precision. In our proposed
algorithms, we directly incorporate the off-grid model from
[26] in the DOA estimation model that takes into account the
off-grid DOAs. All the hidden variables and parameters of the
model are estimated in the sparse Bayesian inference step itself
and, hence, no postprocessing steps are necessary. For efficient
inference, we use the expectation maximization (EM) approach
[27]. Next, we propose an off-grid wideband SBLRVM algo-
rithm (OW-SBLRVM algorithm), which will be applicable to
wideband signals.

We demonstrate the application of the proposed algorithms by
analyzing data from the shallow water HF97 ocean acoustic ex-
periment [13], [28], [29]. The estimated DOAs of a narrowband

tonal from the experiment by using our proposed narrowband
DOA estimation algorithm were consistent with the nonadap-
tive conventional beamformer (CBF). Processing a wideband
chirp from the experiment shows that estimating one spatial
power spectrum by simultaneously exploiting sparsity from all
frequency bins using the proposed wideband DOA estimation
algorithm is a more valuable processor than an incoherent com-
bination of the power spectra from the individual frequency bins
estimated using the proposed narrowband DOA estimation al-
gorithm. Moreover, since our proposed algorithms are off-grid
algorithms, an empirical analysis for the choice of the discretiza-
tion interval of the angular spread is not required as opposed to
the on-grid DOA estimation algorithms. This also results in a
reduced computational complexity.

The rest of this paper is organized as follows. In Section II,
we describe the narrowband off-grid DOA estimation model
and state the assumptions made on the statistics of signal and
noise. In Section III, we describe our proposed narrowband
off-grid sparse Bayesian learning algorithm based on the EM
approach. In Section IV, we straightforwardly extend our pro-
posed narrowband DOA estimation algorithm to the wideband
case. A simulation study is done in Section V to demonstrate
the advantage of an off-grid DOA estimation model. The ap-
plication of the proposed algorithms for estimating the DOAs
of narrowband and wideband multipath signals is also demon-
strated in Section VI by analyzing data from the shallow water
HF97 ocean acoustic experiment. Finally, we draw conclusions
in Section VII.

II. NARROWBAND OFF-GRID DOA ESTIMATION MODEL

A. DOA Estimation Model

We consider a uniform linear array (ULA) consisting of N
identical sensors and receiving K far-field plane wave signals
with arbitrary spatial correlation. We assume that we have pre-
processed the sensor array data by taking fast Fourier transforms
(FFTs) and, hence, the signals are narrowband. Let λ denote the
wavelength corresponding to the frequency of the signals. These
K signals arrive at the array from directions θ1 , θ2 , . . . , θK . Us-
ing complex signal representation, the measurement at the array
at the jth instant can be represented by [6]

y·j = A(θ)s·j + n·j (1)

where y·j � [y1j , y2j , . . . , yN j ]T is theN × 1 array output data
vector of Fourier coefficients obtained via the FFT and s·j =
[s1j , s2j , . . . , sK j ]T , n·j = [n1j , n2j , . . . , nN j ]T , and A(θ) =
[a(θ1),a(θ2), . . . ,a(θK )] (from now, the notation ·j will
be used to denote a column of a matrix and the notation i·
will be used to denote a row of a matrix). Here, a(θk ) represents
the direction vector associated with the kth signal and is given
by

a(θk ) =
1√
N

[
e−

√−1 N −1
2 ψk , e−

√−1 N −3
2 ψk , . . . , e

√−1 N −1
2 ψk

]T

(2)
where ψk = 2π(d/λ) cos θk . Here (·)T denotes the trans-
pose. Note that the direction vectors are l2 normalized, i.e.,
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aH (θk )a(θk ) = 1 for k = 1, 2, . . . ,K, where (·)H denotes the
complex conjugate transpose. TheN × 1 vector n·j is the addi-
tive noise at the array at the jth instant.

After preprocessing the sensor array data with FFTs, the sig-
nals are assumed to be zero-mean stationary complex Gaussian
random processes [30]. Furthermore, the signals and the addi-
tive noise are assumed to be independent of each other. Each
noise vector also is assumed to be a zero-mean stationary com-
plex Gaussian random process. Furthermore, it is assumed that
the noises are uncorrelated sensor-to-sensor and across mea-
surements with common variance σ2 .

Assuming sparsity in the spatial domain, i.e., a very few
number of signals are present, we formulate the problem of
DOA estimation as a problem of sparse signal recovery in an
overcomplete matrix. We discretize the angular spread [0◦, 180◦]
of the ULA to result in M steering vectors having the same
formulation as the direction vectors given in (2). We construct
the N ×M matrix A, which contains the M steering vectors
as its columns with N �M . Note that matrix A(θ) contains
the direction vectors of the signals, whereas matrix A contains
the steering vectors of the DOAs where a signal may or may
not be present. Assuming L snapshots, i.e., j = 1, 2, . . . , L in
(1), we construct theM × Lmatrix X where any particular row
contains the complex amplitudes of a signal corresponding to
the steering vector in A if a signal is present in that steering
direction or zero, otherwise. We also assume that a very few
number of signals are present, i.e., X is row sparse. We represent
the array output vectors y·j as the columns of a matrix Y and the
noise vectors n·j as the columns of a matrix E . Hence, the set
of equations in (1), where j = 1, 2, . . . , L, can be represented
equivalently as

Y = AX + E. (3)

We note that in (3), the objective is to recover the row sparse
matrix X given the observation matrix Y and the overcomplete
matrix A, giving rise to a noisy sparse signal recovery problem
with multiple snapshots or multiple measurement vectors. As
mentioned before, the true DOAs may not be exactly aligned
with the steering vectors, and hence, the on-grid DOA estima-
tion model in (3) may not be useful in practice. We next de-
scribe the off-grid DOA estimation model. This model is taken
from [26].

B. Off-Grid Model

Let θ̃ = {θ̃1 , θ̃2 , . . . , θ̃M } be a uniform discretization of the
angular spread in [0◦, 180◦]. Assume that the true DOA set
is {θ1 , θ2 , . . . , θK }. Suppose θk /∈ {θ̃1 , θ̃2 , . . . , θ̃M } for some
k ∈ {1, 2, . . . ,K} and that θ̃mk

, mk ∈ {1, 2, . . . ,M}, is the
nearest grid point to θk . Using the Taylor series expansion,
we make a linear approximation of the direction vector a(θk ) as

a(θk ) ≈ a
(
θ̃mk

)
+ b

(
θ̃mk

)(
θk − θ̃mk

)
(4)

where b(θ̃mk
) = a

′
(θ̃mk

), i.e., b(θ̃mk
) is the derivative of

a(θ̃mk
) with respect to θ̃mk

given by

b
(̃
θmk

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−√−1N−1
2 2π d

λ
(− sin θ̃mk

)e−
√−1 N −1

2 ψ̃m k

−√−1N−3
2 2π d

λ
(− sin θ̃mk

)e−
√−1 N −3

2 ψ̃m k

...

√−1N−1
2 2π d

λ
(− sin θ̃mk

)e
√−1 N −1

2 ψ̃m k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where ψ̃mk
= 2π( d

λ
) cos θ̃mk

. We have A = [a(θ̃1),a(θ̃2), . . . ,
a(θ̃M )]. Let us denote the derivative matrix
as B = [b(θ̃1),b(θ̃2), . . . ,b(θ̃M )] and δ = [δ1 ,
δ2 , . . . , δM ]T with

δm =

{
θk − θ̃mk

, for m = mk

0, otherwise
(6)

where m = 1, 2, . . . ,M . Hence, the DOA estimation model in
(3) can be written as

Y = (A + BΔ)X + E (7)

where Δ = diag(δ). The model in (7) is the off-grid model
used in this paper.

In Section III, we describe the EM approach to the off-grid
DOA estimation problem.

III. NARROWBAND OFF-GRID BAYESIAN ALGORITHM USING

EXPECTATION MAXIMIZATION APPROACH

We first describe the hierarchical Bayesian modeling by as-
suming that all the observed and unknown variables are stochas-
tic and their joint prior probability distribution is specified. For
mathematical tractability, we also assume that this joint dis-
tribution can be factored into individual prior or conditional
distributions of the variables under consideration. We then esti-
mate all the parameters of the off-grid model by using the EM
approach.

A. Stochastic Model

Denoting Ã = A + BΔ, the off-grid model in (7) becomes

Y = ÃX + E. (8)

Since the additive noise E has complex white Gaussian distri-
bution with variance σ2 , p(Y|X;σ2) is also complex Gaussian.
Thus, for each y·j ,x·j pair, we have the likelihood of the array
output as

p(y·j |x·j ;σ2 , δ) = (πσ2)−N exp
(
− 1
σ2

∥∥∥y·j − Ãx·j
∥∥∥

2

2

)

(9)
and hence

p(Y|X;σ2 , δ) =
L∏
j=1

p(y·j |x·j ;σ2 , δ). (10)
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Following the sparse Bayesian learning principle [18], we assign
the following M -dimensional complex Gaussian prior for each
x·j as

p(x·j ;Γ) = CN (x·j |0,Γ) (11)

where Γ is the variance matrix given by Γ = diag(γ), where
γ = [γ1 , γ2 , . . . , γM ]T . Such a prior can exploit the spatial spar-
sity of the signal [18]. Hence, we arrive at the full weight prior
given by

p(X;Γ) =
L∏
j=1

p(x·j ;Γ). (12)

Combining the likelihood and prior distributions, we have the
joint distribution as

p(Y,X;σ2 , δ,Γ) = p(Y|X;σ2 , δ)p(X;Γ). (13)

We next use the EM approach to estimate the hidden variables
and parameters of the off-grid model.

B. Estimation of Hidden Variables and Parameters

The EM approach consists of iterative E-steps and M-steps.
The E-step requires the computation of the first and second
posterior moments of the hidden variable X and the M-step
estimates the parameters σ2 , δ, and Γ. This can be done as
follows.

1) Inference of X: From the posterior distribution p(X|Y;
σ2 , δ,Γ), it is straightforward to show that the covariance and
mean of this distribution can be given respectively by

Σ = Γ − ΓÃHΣ−1
y ÃΓ, 〈X〉 = ΓÃHΣ−1

y Y (14)

where Σy � σ2IN + ÃΓÃH .
2) Estimation of σ2 , δ, and Γ: In the EM approach,

we treat the weights X as hidden variables and maximize
EX |Y ;σ 2 ,δ,Γ

[
log p(Y|X;σ2 , δ)p(X;Γ)

]
. For Γ, ignoring the

terms in the logarithm independent thereof, we equivalently
maximize

EX |Y ;σ 2 ,δ,Γ [log p(X;Γ)] (15)

which through differentiation gives the estimates for γi as

γ̂i =
1
L
‖〈xi·〉‖2

2 + Σii ∀i = 1, . . . ,M. (16)

Following the corresponding procedure for the noise level σ2 ,
we equivalently maximize

EX |Y ;σ 2 ,δ,Γ
[
log p(Y|X;σ2 , δ)

]
(17)

which gives

σ̂2 =
1
NL

‖Y − Ã〈X〉‖2
F +

1
N

Tr
(
ÃH ÃΣ

)
. (18)

For the estimation of δ, we also equivalently maximize

EX |Y ;σ 2 ,δ,Γ
[
log p(Y|X;σ2 , δ)

]
(19)

which leads to

δ̂ = −P−1p (20)

where

P = Re

⎡
⎣BHB 

⎛
⎝

L∑
j=1

〈x·j 〉〈x·j 〉H + LΣ

⎞
⎠
⎤
⎦ (21)

and

p = Re

[
−diag

(
BH

L∑
j=1

(y·j − A〈x·j 〉) 〈x·j 〉H
)
.

+Ldiag
(
BHAΣ

)
]

(22)

where  in (21) denotes the Hadamard (elementwise) product
and diag(·) in (22) denotes the column vector containing the
diagonal of the matrix under brackets. Hence we have,

Δ̂ = diag
(
δ̂
)
. (23)

If P is not invertible, then we can update δ elementwise as done
in [26]. Equations (14), (16), (18), and (20) are the iterative
update equations for the proposed off-grid Bayesian algorithm
using the EM approach. To estimate the DOAs of the signals
in the off-grid model, we first select the K largest peaks in
the power spectrum of 〈X〉. We denote the grid indices of these
peaks as m̂k where k = 1, 2, . . . ,K. The estimates of the DOAs
of the K signals will be θ̂k = θ̃m̂ k

+ δ̂m̂ k
for k = 1, 2, . . . ,K.

Note that since δm ∈ [−r/2, r/2] form = 1, 2, . . . ,K where
r denotes the grid interval, if the estimate δ̂m of δm falls outside
this interval, then we set δ̂m to be the corresponding upper limit
of the interval.

The proposed off-grid Bayesian algorithm is summarized in
Table I. We note that we have directly incorporated the off-grid
model during sparse Bayesian learning as evident from (20).
Hence any kind of postprocessing is unnecessary, thus reducing
the computational complexity. We also note that since we can
estimate the offset in the DOAs due to grid-bias in (20), we
can adopt a coarse discretization of the angular domain thus
reducing the computational complexity even further and at the
same time achieving high accuracy in the DOA estimates of the
signals.

Our proposed off-grid Bayesian algorithm is locally conver-
gent due to the properties of the EM algorithm [27] and global
convergence is not guaranteed. But, one of the major advan-
tages of the ON-SBLRVM algorithm is that it is fairly robust to
different initialization conditions since it is based on the sparse
Bayesian learning principle [13], [18]. In [23], the researchers
adopt the least squares initialization procedure, which we also
follow for our simulations (see Section V) and experimental
data analysis (see Section VI).

In Section IV, we extend the narrowband version of the pro-
posed algorithm to the wideband case straightforwardly.

IV. EXTENSION TO THE WIDEBAND CASE

Here, we extend the proposed narrowband off-grid Bayesian
learning algorithm to the wideband case. For this, we assume
that all the K incident signals are in the same spectral band
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TABLE I
SUMMARY OF THE PROPOSED NARROWBAND OFF-GRID BAYESIAN ALGORITHM (ON-SBLRVM ALGORITHM)

Given the observation data Y , the overcomplete matrix A containing the steering vectors, and the matrix B containing the derivatives of the steering vectors, the proposed
narrowband off-grid Bayesian algorithm can be summarized as follows.
(i) Initialize Γ , σ 2 , and δ.
(ii) Compute the posterior moments Σ and 〈X〉 using (14).
(iii) Update Γ using (16), update σ 2 using (18), and update δ using (20).
(iv) Iterate (ii) and (iii) until convergence. Declare the algorithm to be converged when the change in X is less than some predefined threshold.
(v) After convergence, the value of 〈X〉 is the estimate of the desired weight matrix X . The algorithm forces the entries in the rows of X to be zero in which a signal component is not

present. We then select the K largest peaks in the power spectrum of 〈X〉. We denote the grid indices of these peaks as m̂ k where k = 1, 2, . . . , K . The estimates of the DOAs
of the K signals will be θ̂k = θ̃m̂ k

+ δ̂m̂ k
for k = 1, 2, . . . , K .

(for a solution of the wideband DOA estimation problem of
signals in different spectral bands, see [31]). Also assume that
the array output has been decomposed into J frequency bins
f1 , . . . , fJ within the band to obtain narrowband measurements
Yf1 , . . . ,YfJ . Hence, the wideband off-grid DOA estimation
model in the sparse domain becomes

Yf = (Af + BfΔ)Xf + Ef (24)

where f ∈ {f1 , . . . , fJ }. In (24), Yf is the measurement at fre-
quency f , Af is the matrix containing the frequency-dependent
steering vectors corresponding to the frequency f , Bf is the
matrix containing the derivatives of the frequency-dependent
steering vectors, Xf is the row sparse matrix containing the
complex amplitudes of the signals, and Ef is the noise matrix
where the noises are assumed to be uncorrelated temporally,
spectrally, and sensor-to-sensor with common variance σ2 and
independent of the signals as before. It is also assumed that
the signals received in the frequency bins f1 , . . . , fJ share the
same DOAs and, hence, will have the same offset due to the
grid-bias in the frequency bins f1 , . . . , fJ . Thus, the offset Δ
in the DOAs is kept the same for all frequency bins f1 , . . . , fJ .

To realize a joint sparse signal recovery problem, we assume
that Xf1 , . . . ,XfJ have complex Gaussian distribution with the
same variance matrix Γ as follows:

p(Xf ;Γ) =
L∏
j=1

p(x·jf ;Γ), f ∈ {f1 , . . . , fJ } (25)

where x·jf is the jth column of Xf and

p(x·jf ;Γ) = CN (x·jf |0,Γ). (26)

Hence, the joint probability distribution can be written as

p(Yf1 , . . . ,YfJ ,Xf1 , . . . ,XfJ ;σ2 , δ,Γ)

= p(Yf1 |Xf1 ;σ
2 , δ) · · · p(YfJ |XfJ ;σ2 , δ)

× p(Xf1 ;Γ) · · · p(XfJ ;Γ). (27)

The hidden variables and parameters in this wideband
model can be estimated by using the EM approach. Since
the joint distribution for all frequency bins in (27) de-
composes as the products of the likelihoods and priors for
individual frequency bins, the joint posterior distribution
p(Xf1 , . . . ,XfJ |Yf1 , . . . ,YfJ ;σ2 , δ,Γ) decomposes as the
products of the posterior distributions for individual frequency
bins. The covariance and mean of the posterior distributions at

different frequency bins can be given by

Σf = Γ − ΓÃH
f Σ−1

yf
ÃfΓ, f ∈ {f1 , . . . , fJ }

〈Xf 〉 = ΓÃH
f Σ−1

yf
Yf , f ∈ {f1 , . . . , fJ } (28)

where Σyf � σ2IN + ÃfΓÃH
f and Ãf = Af + BfΔ.

Applying the EM approach, we treat the weights Xf1 , . . . ,
XfJ as hidden variables and maximizeEXf 1 ,...,Xf J

|Yf 1 ,...,Yf J
;

σ 2 ,δ,Γ [log p(Yf1 |Xf1 ;σ
2 , δ) · · · p (YfJ |XfJ ;σ2 , δ) p (Xf1 ;

Γ) · · · p(XfJ ;Γ)]. For Γ, ignoring the terms in the logarithm
independent thereof, we equivalently maximize

EXf 1 ,...,Xf J
|Yf 1 ,...,Yf J

;σ 2 ,δ,Γ [log p(Xf1 ;Γ) · · · p(XfJ ;Γ)]
(29)

which through differentiation gives the estimate for γi as

γ̂i =
1
JL

∑
f∈{f1 ,...,fJ }

‖〈xif ·〉‖2
2 +

1
J

∑
f∈{f1 ,...,fJ }

(Σf )ii . (30)

Following the corresponding procedure for the noise level σ2 ,
we equivalently maximize

EXf 1 ,...,Xf J
|Yf 1 ,...,Yf J

;σ 2 ,δ,Γ
[
log p(Yf1 |Xf1 ;σ

2 , δ) · · · p(YfJ |XfJ ;σ2 , δ)
]

(31)

which gives

σ̂2 =
1
J

⎡
⎣ ∑
f∈{f1 ,...,fJ }

{
1
NL

‖Yf − Ãf 〈Xf 〉‖2
F

+
1
N

Tr
(
ÃH
f ÃfΣf

)}
⎤
⎦ . (32)

For the estimation of δ, we also equivalently maximize

EXf 1 ,...,Xf J
|Yf 1 ,...,Yf J

;σ 2 ,δ,Γ
[
log p(Yf1 |Xf1 ;σ

2 , δ) · · · p(YfJ |XfJ ;σ2 , δ)
]

(33)

which leads to

δ̂ = −P−1p (34)
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TABLE II
SUMMARY OF THE PROPOSED WIDEBAND OFF-GRID BAYESIAN ALGORITHM (OW-SBLRVM ALGORITHM)

Given the measurements Yf 1 , . . . ,Yf J
, the overcomplete matrices Af 1 , . . . ,Af J

containing the frequency dependent steering vectors, and the matrices Bf 1 , . . . ,Bf J
containing the derivatives of the frequency dependent steering vectors, the proposed wideband off-grid Bayesian algorithm can be summarized as follows.
(i) Initialize Γ , σ 2 , and δ.
(ii) Compute the posterior moments Σf , f ∈ {f1 , . . . , fJ } and 〈Xf 〉, f ∈ {f1 , . . . , fJ } using (28).
(iii) Update Γ using (30), update σ 2 using (32), and update δ using (34).
(iv) Iterate (ii) and (iii) until convergence. Declare the algorithm to be converged when the change in Γ is less than some predefined threshold.
(v) After convergence, the values of 〈Xf 1 〉, . . . , 〈Xf J

〉 are the estimates of the desired weight matrices Xf 1 , . . . ,Xf J
. The algorithm forces the entries in the rows of

Xf 1 , . . . ,Xf J
to be zero in which a signal component is not present. We then select the K largest values in the diagonal of estimated Γ which contains the power levels of the

signals. We denote the corresponding grid indices of these signals as m̂ k where k = 1, 2, . . . , K . The estimates of the DOAs of the K signals will be θ̂k = θ̃m̂ k
+ δ̂m̂ k

for
k = 1, 2, . . . , K .

where

P = Re

[ ∑
f∈{f1 ,...,fJ }

{
BH
f Bf


(

L∑
j=1

〈x·jf 〉〈x·jf 〉H+LΣf

)}]
(35)

and

p = Re

[ ∑
f∈{f1 ,...,fJ }

{
−diag

(
BH
f

L∑
j=1

(
y·jf −Af 〈x·jf 〉

)

× 〈x·jf 〉H
)

+ Ldiag

(
BH
f AfΣf

)}]
.

(36)

Hence we have,

Δ̂ = diag
(
δ̂
)
. (37)

Equations (28), (30), (32), and (34) are the iterative update equa-
tions for the proposed off-grid Bayesian algorithm for wideband
signals. To estimate the DOAs of the signals, we first select the
K largest values in the diagonal of estimated Γ, which contains
the power levels of the signals. We denote the corresponding grid
indices of these signals as m̂k , where k = 1, 2, . . . ,K. The es-
timates of the DOAs of the K signals will be θ̂k = θ̃m̂ k

+ δ̂m̂ k

for k = 1, 2, . . . ,K. The algorithm for the wideband case is
summarized in Table II.

Here, we clarify that even though the priors on the param-
eters in the ON-SBLRVM and OW-SBLRVM algorithms are
assumed to be complex Gaussian, the algorithms are robust to
the distribution of parameters since they are based on the sparse
Bayesian learning principle [32]. This makes the proposed al-
gorithms to be useful in practice in which the true distributions
of the signals might be unknown.

V. SIMULATIONS AND DISCUSSION

We now carry out a simulation study and demonstrate the
improvement in performance of our proposed ON-SBLRVM
DOA estimation algorithm in comparison to the state-of-the-art
algorithms. The significant advantage of an off-grid model in
the proposed algorithms is that we can retain the DOA estima-
tion accuracy even if the discretization of the angular spread is
coarse. Thus, an empirical determination of the discretization

interval is not necessary in contrast to on-grid DOA estimation
algorithms. First, we assume that the true DOAs of the signals
are exactly aligned with the steering vectors and study the root-
mean-squared-error (RMSE) in the DOA estimates in terms of
input signal-to-noise ratio (SNR) and number of snapshots. We
compare the performance of the ON-SBLRVM algorithm with
the state-of-the-art off-grid sparse Bayesian Inference (OGSBI)
algorithm [26] and the on-grid complex SBLRVM algorithm
[13] [note that the OGSBI algorithm in [26] uses a Gamma
hyperprior to exploit the spatial sparsity of the signals, but our
proposed algorithm does not use such a hyperprior, rather the
sparsity is imposed via the sparse Bayesian learning principle
[18] (for theoretical results, see [18])]. Next, we assume that the
true DOAs of the signals are not exactly aligned with the steer-
ing vectors and analyze the RMSE in DOA estimates in terms
of the grid interval and demonstrate the superior performance of
the ON-SBLRVM algorithm. Similar advantages apply for the
OW-SBLRVM algorithm.

For simulation, for each individual signal at each sensor, the
input SNR is defined to be

SNR = 10 log10

(
σ2
s

σ2

)
(38)

where σ2 is the variance of the ith sensor noise sequence defined
as σ2 � E[|nij |2 ]. The power of the kth signal is defined as
σ2
s � E[|xkj |2 ].

A. Analysis of RMSE in the DOA Estimate

Here, we analyze the RMSE in the DOA estimate of OGSBI,
ON-SBLRVM, and SBLRVM algorithms in terms of SNR. We
consider a 12 element ULA with a half-wavelength spacing
between the array elements. A 1◦ discretization on the angular
spread andL = 50 snapshots are also assumed. We consider two
coherent multipath signals (i.e., the correlation coefficient is one
between the two signals) of equal power levels impinging on the
ULA from DOAs 60◦ and 68◦ so that the true DOAs are aligned
with the steering vectors. Since the algorithms are based on CS
theory, the performance does not change significantly by varying
the correlation coefficient. For each input SNR, we consider a
total of 100 trials and calculate the RMSE for the signal at 60◦

for all methods. The result is shown in Fig. 1. We note that the
performances of all three algorithms are comparable to each
other.
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Fig. 1. Comparison of RMSE between OGSBI, ON-SBLRVM, and SBLRVM
algorithms in terms of input SNR. Multipath arrivals of equal power levels at
angles of θ1 = 60◦ and θ2 = 68◦ and L = 50 snapshots are considered.

Fig. 2. Comparison of RMSE between OGSBI, ON-SBLRVM, and SBLRVM
algorithms in terms of number of snapshots. Multipath arrivals of equal power
levels at angles of θ1 = 60◦ and θ2 = 75◦ and SNR = 5 dB are considered.

B. Analysis in Terms of Number of Snapshots

Here, we analyze the RMSE in the DOA estimate of OGSBI,
ON-SBLRVM, and SBLRVM algorithms in terms of number of
snapshots. We consider a 12 element ULA with half-wavelength
spacing between the array elements. A 1◦ discretization on the
angular spread also is assumed. We consider two coherent mul-
tipath signals of equal power levels impinging on the ULA from
DOAs 60◦ and 75◦ so that the true DOAs of the multipath sig-
nals are aligned with the steering vectors. The value of SNR
is fixed at 5 dB. For each input SNR, we consider a total of
100 trials and calculate the RMSE for the signal at 60◦ for all
the algorithms. The result is shown in Fig. 2. We note that the
RMSE in the DOA estimate decreases as more snapshots are
available for all the methods demonstrating that more snapshots
improve the performance. Also note that the performances of
the algorithms are comparable to each other.

C. Advantage of the Off-Grid Bayesian Algorithm

Here we analyze the effect of grid interval on the RMSE in
DOA estimates of OGSBI, ON-SBLRVM, and SBLRVM algo-
rithms. We consider a 12 element ULA with a half-wavelength
spacing between the array elements. The grid interval values
are chosen to be 0.5◦, 1◦, 2◦, 3◦, and 4◦. We consider a total
100 trials. For each trial, we also consider two coherent signals

Fig. 3. Comparison of RMSE between OGSBI, ON-SBLRVM, and SBLRVM
algorithms in terms of grid interval. SNR of 10 dB and L = 50 snapshots are
considered.

of equal power levels whose DOAs are uniformly generated
in the intervals [57.5◦, 62.5◦] and [82.5◦, 87.5◦], respectively,
and calculate the RMSE in the DOA estimate of the first sig-
nal. The value of SNR is fixed at 10 dB and L = 50 snap-
shots are assumed. The analysis results are shown in Fig. 3. We
note that even though the grid interval increases significantly,
the RMSE in the DOA estimates of ON-SBLRVM and OGSBI
algorithms does not increase much in contrast to the SBLRVM
algorithm. Furthermore, the performances of the ON-SBLRVM
and OGSBI algorithms are comparable to each other. Hence, we
can adopt a relatively coarser sampling grid that will reduce the
computational complexity and overcome the problems of finer
sampling grid as mentioned before and at the same time retain
the DOA estimation accuracy. In the on-grid DOA estimation
methods such as SBLRVM, the discretization of the angular
spread is determined empirically which significantly increases
the computationally complexity. But in off-grid methods such
as the ON-SBLRVM and OGSBI algorithms, we can adopt a
fine enough discretization that will ensure high resolution with-
out any empirical analysis since the offsets in the DOAs will be
automatically estimated in such methods.

We next demonstrate the application of the proposed algo-
rithms for estimating the DOAs of narrowband and wideband
coherent multipath signals by analyzing data from the shallow
water HF97 ocean acoustic experiment [13], [28], [29].

VI. HF97 OCEAN ACOUSTIC EXPERIMENT

The HF97 experiment [28], [29] was carried out in shal-
low water off the coast of Point Loma, CA, USA, in Oc-
tober 1997. This experimental data have also been used in
our previous work [13] where we demonstrated the resolution
of the DOAs of coherent multipath signals of a narrowband
tonal by using the on-grid complex SBLRVM algorithm. An
overview of this experiment showing the source and receiver ar-
ray (R/P FLIP) positions is shown in Fig. 4. The water depth was
approximately 100 m and the source and the receiver were fixed
to the bottom. The receiver consisted of a 64-element verti-
cal linear array (VLA) and was deployed approximately 6 km
away from the source. The interelement spacing of the VLA
was d = 0.1875 m and the hydrophone elements of the VLA
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Fig. 4. Experiment overview showing the source mooring and receiving array
locations in the HF97 experiment.

were sampled at fs = 48 kHz. The source transmitted several
waveforms. Of interests here were a sinusoidal transmission at
3.1 kHz and a broadband chirp of central frequency 2.5 kHz
and bandwidth 1 kHz. For the sinusoidal and broadband chirp
transmissions, we note that there is no spatial aliasing since at
these frequencies the interelement spacing is less than 0.5λ.

The start time of our data from the HF97 experiment is Julian
Day 301 2210 UTC. For the sinusoidal transmission, we first
extract the 3.1 kHz tonal by using nonwindowed nonoverlapping
FFTs of length 212 = 4096. For the tonal, we process a total of
400 snapshots from the start time, divide the 400 snapshots into
two blocks of 200 snapshots each, and resolve the DOAs of
the signals for each of the blocks of 200 snapshots using the
ON-SBLRVM algorithm. We use all 64 sensor elements of the
VLA for processing. For the algorithm, a 0.2◦ discretization
on the angular spread is also assumed. Such a discretization
was taken to resolve the DOAs of very closely spaced signals.
For the broadband chirp transmission, we only consider the
frequency range 2.5–3 kHz. We extract a total of 167 frequency
bins by using nonwindowed nonoverlapping FFTs of length
214 = 16 384. We process a total of 100 snapshots from the start
time for each frequency bin. By combining all the frequency
bins, we estimate the DOAs of the signals by the OW-SBLRVM
algorithm.

Ray tracing results are shown in [28] using a CTD cast taken
2 h after the data discussed here. These results suggest that a
number of arrivals are expected approximately ±10◦ of broad-
side (broadside corresponds to 90◦ in our case). Similar ray
tracing results are shown in [29] including the observed arrival
angle versus travel time structure of the channel impulse re-
sponse at the same time the data discussed here were recorded.

These also show a number of multipath arrivals approximately
±10◦ of broadside. Thus, the DOA estimates of the multipath
signals shown here are consistent with the propagation physics
and modeling. We also calculated the eigenvalue spectrum for
each block of the 200 snapshots for the 3.1 kHz tonal and for
the 100 snapshots in each frequency bin in the frequency range
2.5–3 kHz for the broadband chirp. All the eigenvalue spectra
clearly showed only one dominant eigenvalue (at least 15 dB
higher than the others) implying that the multipath signals are
coherent. In such a scenario, the proposed algorithms in this
paper are very attractive since they are based on CS theory and
are not affected by the coherence between signals in contrast
to conventional DOA estimation methods such as MVDR and
MUSIC [6].

We first analyze the results for the 3.1 kHz tonal. Fig. 5 shows
the result for the ON-SBLRVM algorithm. For the algorithm,
we first estimated the spatial power spectrum and rejected all
the peaks in the power spectrum whose power levels were more
than 15 dB below the highest peak and then reestimated the
power levels of the remaining peaks by using least squares to
obtain more accurate estimates of the power levels. The least
squares reestimation of the power levels was necessary since
sparse signal recovery methods underestimate the true power
levels of the signals [15], [33]–[35]. The total number of these
remaining peaks was selected as the total number of signals.
The choice of the value 15 dB was arbitrary.

There were no ground truth DOAs for this experiment. Hence
we have included the estimated spatial power spectrum of the
nonadaptive CBF in all the results. The CBF spatial power spec-
trum P̂CBF is defined as [6]

P̂CBF = aH (θ)R̂a(θ) (39)

where θ denotes an arbitrary arrival angle and R̂ is the estimated
output array covariance matrix. The nonadaptive CBF provides
a reasonable (though not high resolution) representation of the
acoustic field observed by the array and hence was used as an
indication of the ground truth.

From Fig. 5, we note that the estimated DOAs for the pro-
posed method are consistent with the nonadaptive CBF. Our
algorithm estimated a multipath at approximately 92.0103◦ (re-
sult rounded up to four decimal places) in Fig. 5(a), which
is indicated by a slightly broadened spectrum by CBF. Fur-
thermore, our proposed algorithm estimated two DOAs at ap-
proximately 85.1031◦ and 86.8945◦ in Fig. 5(b). These two
multipath signals were not resolved by CBF due to low resolu-
tion, but CBF gave an unusually broadened spectrum indicating
the presence of more than one multipath signals. The rest of
the DOAs estimated by our algorithm and the nonadaptive CBF
were consistent with each other. This shows that our algorithm
can estimate the DOAs of the multipath signals with higher res-
olution. The OGSBI algorithm also produced similar results,
and hence, the results are not shown.

We next analyze the result for the broadband chirp. We only
consider the 2.5–3-kHz bandwidth (see Fig. 6) for the chirp
to demonstrate the application of the OW-SBLRVM algorithm.
The DOAs for the 2–2.5-kHz bandwidth can be estimated in
a similar manner. For the OW-SBLRVM algorithm, we first
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Fig. 5. DOA estimation of narrowband coherent multipath signals using the proposed narrowband DOA estimation algorithm for the 3.1 kHz frequency in the
HF97 experiment. Panels (a) and (b) correspond to the first and second blocks of 200 snapshots (∼17 s each), respectively. Dotted line denotes the CBF spectrum
and solid line denotes the proposed algorithm spectrum.

estimated Γ and rejected all the peaks in the power spectrum of
Γ whose power levels were more than 20 dB below the highest
peak. The DOAs corresponding to the remaining peaks were se-
lected as the DOAs of the signals. To calculate the spatial power
spectrum of our OW-SBLRVM algorithm, we reestimated the
power levels in each frequency bin by using least squares by only
considering the estimated DOAs and then took an average of the
power levels across all frequency bins. We compared the wide-
band spatial power spectrum of our OW-SBLRVM algorithm
with CBF results from two frequency bins (2625 and 2725 Hz)
and the incoherent average of the power spectra of CBF from
all frequency bins. The frequency bins 2625 and 2725 Hz were
arbitrarily chosen. These results are shown in Fig. 6(a)–(c) re-
spectively. From Fig. 6(c), we note that the estimated DOAs in
our OW-SBLRVM method are consistent with the incoherently
averaged CBF spectrum. We also observe that whenever CBF
is not able to resolve the DOAs due to low resolution, our pro-
posed OW-SBLRVM method is able to resolve them with higher
resolution.

Our proposed algorithm shows the presence of two signals at
approximately 93.7010◦ and 95.5100◦ which can also be seen
in the incoherently averaged CBF spectrum in Fig. 6(c), but
these two signals are not resolved by the CBF spectra from the
individually considered frequency bins in Fig. 6(a) and (b). Our
proposed OW-SBLRVM algorithm also shows the presence of
two signals at approximately 88.7013◦ and 90.5005◦. These two
signals are clearly resolved in the CBF spectrum in the frequency
bin in Fig. 6(b), but are not resolved by the CBF spectrum in the
frequency bin in Fig. 6(a) and the incoherently averaged CBF
spectrum in Fig. 6(c). Our algorithm indicates the presence of
two signals at approximately 84.1215◦ and 85.2941◦, which are
resolved by the incoherently average CBF spectrum in Fig. 6(c).
The CBF spectrum in Fig. 6(a) also indicates the presence of
these two signals by an unusually broadened spectrum. But the
CBF spectrum for the individual frequency bin in Fig. 6(b) is
not able to resolve these two signals due to low resolution. Fur-
thermore, we observe that our algorithm estimates the DOAs at
approximately 79.2021◦ and 81.8001◦, which are clearly esti-
mated by the CBF spectrum in Fig. 6(b), but CBF is not able to
resolve these two multipath signals in Fig. 6(a) and (c). We also
note that the DOAs estimated by CBF and our algorithm are not
exactly the same since our algorithm estimates the DOAs in a
coherent manner, i.e., it estimates the DOAs by combining all
the frequency bins which helps improve the resolution. Similar

results were obtained for other frequency bins. It is not possible
to exactly quantify the results in the experiment since there was
no ground truth available.

To demonstrate the advantage of the OW-SBLRVM algo-
rithm, which estimates the DOAs by coherently combining all
frequency bins, over an incoherently averaged spectrum from
all frequency bins by the ON-SBLRVM algorithm in the paper,
we did the following. We first estimated the power spectrum for
each frequency bin by using the proposed narrowband off-grid
DOA estimation method in this paper. We then took an average
of the power spectra from all 167 frequency bins. We rejected
all the peaks in this average power spectrum whose power levels
were more than 20 dB below the highest peak. The DOAs corre-
sponding to the remaining peaks were selected as the DOAs of
the signals. The estimated DOAs are shown in dotted black lines
in Fig. 7. Comparing Figs. 6 and 7, we note that the incoherently
averaged power spectrum by using the narrowband DOA esti-
mation method in this paper for the individual frequency bins
is not sparse and produces a large number of spurious DOAs
(25 DOAs in total as opposed to 13 DOAs in the wideband DOA
estimation algorithm). Since the DOAs of the multipath signals
from different frequency bins are not exactly aligned with each
other, simply taking an incoherent average of the power spectra
from all frequency bins produces significantly larger number of
spurious DOAs than the number of multipath signals indicated
by the CBF spectrum. We also reestimated the power levels in
each frequency bin using least squares by only considering the
estimated DOAs and then took an average of the power levels
across all frequency bins. But this did not give any useful es-
timate of the power levels, i.e., the power level estimates were
significantly different from that estimated by the incoherently
averaged CBF spectrum. This is due to the presence of the large
number of spurious DOAs (note that this phenomenon can be
easily demonstrated via simulation). Hence the power level in-
formation is not shown in Fig. 7. This shows that a coherent
combination of all frequency bins by simultaneously exploiting
sparsity is a more valuable processor for DOA estimation of
wideband signals.

Since for both the narrowband and wideband cases, the signals
were coherent, high-resolution DOA estimators such as MVDR
and MUSIC spatial processors cannot be used [13]. Though spa-
tial smoothing techniques produce improved results, they reduce
the array aperture essentially reducing the effective resolution
[13]. We have applied both MVDR and MUSIC (with spatial
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Fig. 6. Comparing the CBF spectra (denoted in blue) from two frequency bins
[(a) 2625 Hz and (b) 2725 Hz] and the incoherent average of the CBF spectra
from all frequency bins (c) with the estimated spectrum [denoted in dotted black
in (a), (b), and (c)] by the proposed wideband DOA estimation algorithm.

Fig. 7. Estimated DOAs (denoted by dotted black lines) by the incoherently
averaged power spectrum using the narrowband DOA estimation method in our
paper for the individual frequency bins. Also plotted (in blue) is the incoherently
averaged CBF power spectrum.

smoothing) for our narrowband and wideband DOA estimation
problem in the HF97 experiment, but the resolution was even
poorer than the CBF spatial processor.

Conventional wideband DOA estimation algorithms such as
CSSM [36] and WAVES [37] are also available in array process-
ing literature. To design a fully coherent processor by exploiting
the properties of a chirp, methods such as [38]–[41] can also be
used. However, these demonstrations are reserved for future
research and are not objectives of this paper.

VII. CONCLUSION

We proposed a novel algorithm for the off-grid DOAs esti-
mation problem using the sparse Bayesian learning principle
and the EM approach. We derived algorithms for both narrow-
band and wideband cases. Since the algorithms directly model
the DOA offsets, an empirical determination of the grid inter-
val is not necessary in contrast to the on-grid DOA estimation
algorithms, hence reducing the computational complexity. We
also demonstrated the application of the proposed algorithms
for estimating the DOAs of narrowband and wideband coher-
ent multipath signals by analyzing data from the shallow water
HF97 ocean acoustic experiment. For the narrowband case, the
experimental results from our algorithm were consistent with
the nonadaptive CBF spatial processor and also showed higher
resolution. For the wideband case, our algorithm showed higher
resolution than the incoherently averaged CBF spectrum from
all frequency bins. This shows that for wideband signals, simul-
taneously exploiting the sparsity from all frequency bins is a
promising method for DOA estimation in contrast to an incoher-
ently averaged power spectrum from all frequency bins using a
narrowband sparse DOA estimation method for each frequency
bin. Furthermore, since our algorithms are off-grid algorithms,
we can adopt a coarse sampling grid, when required, which will
relatively reduce the computational complexity and at the same
time retain high accuracy in the DOA estimates.
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