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Abstract— Parkinson’s disease (PD) is known to lead to
marked alterations in cortical-basal ganglia activity that may
be amenable to serve as a biomarker for PD diagnosis. Using
non-linear delay differential equations (DDE) for classification
of PD patients on and off dopaminergic therapy (PD-on, PD-
off, respectively) from healthy age-matched controls (CO),
we show that 1 second of quasi-resting state clean and raw
electroencephalogram (EEG) data can be used to classify
CO from PD-on/off based on the area under the receiver
operating characteristic curve (AROC). Raw EEG is shown
to classify more robustly (AROC=0.59-0.86) than clean EEG
data (AROC=0.57-0.72). Decomposition of the raw data into
stereotypical and non-stereotypical artifacts provides evidence
that increased classification of raw EEG time series originates
from muscle artifacts. Thus, non-linear feature extraction and
classification of raw EEG data in a low dimensional feature
space is a potential biomarker for Parkinson’s disease.

I. INTRODUCTION

Parkinson’s disease (PD) is the second most common
chronic neurodegenerative disorder of the central nervous
system affecting approximately 1% of the population over
60 years of age [1]. Since the initial description of PD, it
has been predominantly diagnosed and treated as a disease
of the motor system [2]. More recent work has shown that
PD is present pathologically throughout the nervous system
[3]. Indeed, clinically discernible motor symptoms may be a
late manifestation of PD [4]. As such, it is imperative that
we begin to look for biomarkers of PD to provide additional
tools to aid clinicians in early and correct diagnoses.

Non-linear time series analysis techniques have been ap-
plied to neurological diseases such as epilepsy [5] and PD
[6], [7]. Previously, our group has shown that non-linear
delay differential equations (DDEs) are able to classify the
difference between healthy control (CO), Parkinson-off (PD-
off) and Parkinson-on (PD-on) medication using clean clus-
tered EEG data [8], [9]. This classification strongly correlates
with an individual’s present state of pathology as measured
by clinical UPDRS measurements. The ability to distinguish
PD subjects from healthy control subjects based solely on
single electrode raw EEG data is a necessary step towards
clinical implementation as it is not tractable for a clinician to
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both acquire and process EEG data prior to implementing a
classification algorithm. In the following study we compare
DDE feature extraction and classification of clean and raw
EEG data in order to differentiate PD and healthy subjects.

II. METHODS

A. Non-linear classification

According to Cover’s theorem, time-series that are linearly
inseparable can be put through a non-linear transformation
kernel and projected into a non-linear space whereby the
the time series become linearly separable [10], [11]. If
the non-linear transformation is assumed to provide linear
separability, it is then possible to train a weight matrix W
using singular value decomposition (SVD) that maximally
separates the data such that classification is performed by
hyper-planing the feature space (Fig. 1). The linear separa-

Fig. 1. Diagram of Cover’s theorem. Two classes of data, red circles
and blue diamonds, are shown to be linearly inseparable prior to a non-
linear transformation (right). After the non-linear transformation (left) a
hyperplane (dashed line) can be applied that maximally separates the data
into two distinct classes.

tion prior to classification is ideal because it allows for the
use of SVD and avoids the complexity and computational
cost associated with non-linear separation algorithms, e.g.
support vector machines and probabilistic neural networks.

B. Delay Differential Equations

A delay differential equation (DDE) is a functional em-
bedding technique that transforms a time series into a multi-
dimensional geometrical object. The DDE should be con-
sidered a generic non-uniform embedding of a signal x(t)
that relates the derivative of a signal ẋ(t) to a function
of the signal itself and/or its delayed versions xτ where
xτ = x(t− τ). A general DDE takes the form

ẋ = f(x, xτ1 , xτ2 , . . . xτn) (1)

with l monomials, n delays, and order m non-linearity.
The DDE is generic because it is the combination of two
embedding techniques, the derivative and delay embedding.
The DDE is non-uniform because the delays are not required
to be multiples of each other. Even though DDE analysis is
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done in the time domain and not the spectral domain there are
relations between frequencies and time delays. Delays found
in linear DDE terms are related to specific frequencies found
within the signal and delays found in higher order terms,
xmτ , are associated with higher order couplings between
frequencies [12]. The monomial coefficients a1, a2, ..., an are
related to all of the frequencies in the signal. The error ρ is
the deviation of the model output f(xτi) from the signal
derivative ẋ. ρ is calculated with mean-squared error estima-
tion ρ =

√∑
(ẋ− f(xτi))2. ρ is minimized for each model-

delay combination through numerical optimization of the
coefficients using least squares SVD [13]. The coefficients
ai and ρ are considered non-linear features on which a linear
classification can be performed for two classes such that,

Ai ·Wi = Si =

{
0 i ∈ Class 1

1 i ∈ Class 2
(2)

where Ai is a DDE-feature matrix for subject i and W
is a weight matrix that maps the subjects features to a 1-
dimensional space either above or below a hyperplane [8].

The analysis in this paper was limited to two delays and
monomials up to cubic nonlinearities,

ẋ = f(xτ1 , xτ2) =
= a1 xτ1 + a2 xτ2 + a3 x

2
τ1 + a4 xτ1 xτ2 + a5 x

2
τ2+

a6 x
3
τ1 + a7 x

2
τ1 xτ2 + a8 xτ1 x

2
τ2 + a9 x

3
τ2 .

(3)
The time delay τn in each term of the DDE ranged from
1-50 time-steps δt where 1δt = 1

fs
and fs = 512 Hz is the

sampling rate. The models ranged from 1 to 3 monomial
terms, thus 69 models were included in the analysis. Model-
delay pairs were used to generate a feature space for all trials
resulting in an error coefficient feature set for each trial.

C. Training and Validation

Training and testing of model-delay pairs and associated
weight matrices is performed by splitting the data into a
training set, 2/3 of data, and a validation set 1/3 of data.
The training data is then randomly subsampled into train,
2/3 of subjects, and test sets, 1/3 of subjects (Fig. 2). The

Fig. 2. Training and validation of a weight matrix W trained on non-linear
DDE features from all trials for subjects in the binary classifier. The weight
matrix is trained with repeated random subsampling and then validated on
the validation data set.

random subsampling of the training data into training and
testing sets is repeated 84 times for each of the model-
delay combinations and best performing weight matrix W
is generated by averaging across all 84 W s for each model-
delay pair. The W is then applied to the validation set and

the area under the receiver operating characteristic (AROC)
defines how well the classifier performed. This process is
repeated for each electrode for each binary classifier. Prior
to training and testing, the number of trials across all three
classes was equalized to avoid biasing the classifiers. For
additional explanation of this procedure see [8], [14].

III. MATERIALS AND METHODS

A. Hardware

Electroencephalographic (EEG) data were collected using
a 70-channel active electrode EEG system (Biosemi Inc.
ActiveTwo, Amsterdam, Netherlands) consisting of a cap
plus four EOG electrodes, temporal to both eyes and above
and below the right eye, two EMG electrodes on the trapezius
and right and left sternocleidomastoids, and two reference
electrodes on the left and right mastoids. Data were recorded
with a 512 Hz sampling rate, and referenced to the averaged
mastoid electrodes. Head position relative to the EEG sensors
was determined with an electromagnetic motion tracking
system (Polhemus, FASTRAK, Colchester, VT, USA).

B. Participants

Nine PD patients on and off dopaminergic therapy (6
females, mean ± SD age: 62.8 ± 8.5 years) and ten age-
matched healthy older adults participated in this study (4
females, mean ± SD age: 66.1 ± 9.3 years). No participant
had any neurological or psychiatric disease in addition to
PD for the the PD participants. All participants were right-
hand dominant with normal or corrected to normal vision. All
participants signed the informed consent document approved
by the human subjects Institutional Review Board of the
University of California, San Diego.

C. Protocol

Participants reached for and grasped a virtual rectangular
object (3.5 x 8.5 x 6 cm) with haptic feedback provided
to the thumb and index finger by two 3-degree of freedom
haptic robotic devices (Phantom Premium 1.0, Geomagic,
Wilmington, MA, USA) at the sound of a tone, as described
previously [15]. Overall, a maximum of 360 (10 blocks of
36 trials) trials were performed by each participant, with
rest provided between blocks to limit fatigue. In this study,
we considered EEG data from one second before the tone
stimulus to the tone stimulus.

D. Data Processing and Analysis

In this study, we analyzed both raw and clean back-
projected EEG data. To get clean data, raw EEG data
were first imported into EEGLAB using MATLAB (The
MathWorks, Natick, MA, USA) for processing [16]. Data
were then high-pass filtered at 1 Hz to remove drift and low-
pass filtered at 55 Hz to remove line noise. EEG artifacts as-
sociated with eye and other muscle movement were removed
using independent component analysis (ICA) [17]. Based on
the topography, spectra, and trial-to-trial characteristics of
ICA components, non-artifactual components were selected
and used to generate clean back-projected EEG data while
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Fig. 3. A) Classification performance, based on the area under the ROC curve (AROC), of the three classifiers (Control vs. PD off [blue], Control vs. PD
on [green], and PD off vs. on [red]) on clean EEG data presented as max-min normalized topographical representations on the right and density plots for
the distance from the hyperplane for each classifier is shown on the left, and characteristic model and delay distribution in a 100 model-delay combinations
with the best classification performance below. B) Similar classification performance, model and delay distributions in raw EEG data.

the remaining components were used to generate artifactual
IC back-projected EEG data. Further breakdown of the
artifactual IC group was performed by manually separating
ICs into stereotypical muscle, electrode, eye, and unsure
artifact classes based on topography, spectra, and trial-to-
trial characteristics.

IV. RESULTS

Overall, for distinguishing PD patients off medication
(PD-off) from healthy controls (CO), classification perfor-
mance (AROC) on individual 1-s samples of clean EEG
data ranged from 0.67 to 0.75 across individual electrodes
using the top model-delay combination (Fig. 3 A). Clas-
sification performance for distinguishing PD patients on
medication (PD-on) from controls ranged from 0.65 to 0.73
and for distinguishing PD patients on and off medication
performance ranged from 0.57 to 0.72. Surprisingly, using
raw, unprocessed, EEG data resulted in modest classification
performance improvements in CO versus PD-off (AROC =
0.71− 0.85), CO versus PD-on (AROC = 0.74− 0.86) and
PD-off versus PD-on (AROC = 0.59 − 0.74). To evaluate
the effect of electrode location and classifier on classification
we used an analysis of variance on the AROC of the top
100 model-delay pairs while controlling for the model-delay
pair. A strong electrode location, classifier, and electrode by
classifier interaction effect was observed for both raw and
clean EEG data (p < .00001), using R version 3.0.1[18].

For both clean and raw EEG data, similar DDE models
were most frequently selected across all three classifiers
with higher order quadratic and cubic terms most commonly
chosen. However, time delays were sensitive to both classifier

and type of data, with smaller time delays (≈ 10δt vs.
≈ 20δt) most often selected for raw data.

In order to better understand how improved classification
performance was achieved on the raw EEG data, we ex-
amined the changes in dynamics observed in back-projected
muscle ICs, eye ICs, electrode ICs, and other unclassified
ICs. Classification was initially performed on all artifactual
ICs, e.g. combination of muscle, eye, electrode and unsure
ICs, yielding a strong performance (AROC = 0.76 − .92)
when comparing CO to PD-off and PD-on. The performance
was significantly worse when classifying PD-off against PD-
on (AROC = .64− .77) (Fig. 4). Further IC decomposition

Fig. 4. Classification performance across the backprojection of all artifac-
tual, muscle, eye, electrode, and unsure ICs with the strongest classification
performance seen in the back projected muscle ICs.

was performed by separating the artifactual ICs into the
aforementioned classes. The muscle IC class displayed the
best classification with similar classification for both CO
versus PD-off (AROC = .79 − .92) and CO versus PD-
on (AROC = .76 − .90) and followed a similar spatial
pattern to the classification of the backprojection of all



artifactual ICs. Importantly, the ranking of performance, e.g.
CO versus PD-off AROC is about equal to CO versus PD-on
AROC and both classifiers perform significantly better than
the PD-off versus PD-on classifier, is very similar to both
raw data and the back projected artifactual ICs. Performance
for the remaining IC classes was also quite good, however
the spatial distribution of performance across electrodes was
quite different from the artifactual ICs and the raw data
classification. Additionally, the ranking of the classifiers for
each of the artifact types differed dramatically for each of
the remaining artifactual IC classes. The spatial classification
of the back projected artifactual ICs was found to correlate
most strongly with the classification of the back-projected
muscle ICs for CO versus PD-off (R = .46, p < .001), CO
versus PD-on (R = .55, p < .00001) and PD-off versus PD-
on (R = .25, p < .05). No correlations between the raw
data classification and the back projected IC groups reached
significance.

V. DISCUSSION AND CONCLUSION

In the present study, we have shown the classification of
CO and PD-on/off subjects using non-linear DDE features
obtained from single electrode, 1 second quasi-resting state
clean and raw EEG data. Raw EEG data was considerably
better at classifying the difference between PD-on/off and
control than clean EEG data. In comparison to clean EEG
data, the raw EEG classification is much more spatially
coarse, with improved classification at the edges of the
EEG cap, indicating that the improved classification is likely
dependent upon artifacts. Indeed, further analysis provided
evidence that muscle artifacts were a large contributor to the
improved classification based on artifactual IC classification,
classifier ranking and spatial correlations. Importantly, mus-
cle artifacts would be expected to be a significant contributor
to the performance of the three classifiers (AROC = 0.67−
0.92) because PD patients often experience rigidity and
dopaminergic therapy is thought to partially alleviate these
symptoms.

While it would be ideal to identify true differences in
cortical processing between PD-on/off and controls that
scaled with pathology, the improved classification on raw
EEG data, predominantly independent of electrode placement
(Fig. 3 B) is much easier to utilize in a clinical or physical
therapy setting. Indeed, raw EEG data by its definition
does not require any artifact rejection, filtering, or manually
performed ICA cleaning. Such a system is immensely useful
to a non-technical operator because it acts as a black box that
a user would need to know very little about. Furthermore,
the finding that the classification between all three groups
based on raw EEG data could be performed with a single
DDE model (ẋ = xτ1 + xτ2 + x2τ1 ) and set of delay
pairs e.g. 10δt and 20δt (Fig. 3 B), indicates that the non-
linear DDE classification scheme is identifying stereotyped
differences that hold at the class level, e.g. healthy control
or Parkinsonian.

This study was performed on a limited set of Parkinsonian
and healthy control subjects during the quasi-resting state of

a movement task. In order to understand how the algorithm
would scale to resting data in the general population, a
much larger sample size would need to be tested on true
resting state data. However, the present analysis provides an
initial proof of concept for a raw EEG data classification
tool that is able to discriminate between healthy control and
Parkinsonian patients both on and off medication.
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