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Tanaka H, Sejnowski TJ. Motor adaptation and generalization of
reaching movements using motor primitives based on spatial coordi-
nates. J Neurophysiol 113: 1217–1233, 2015. First published Novem-
ber 26, 2014; doi:10.1152/jn.00002.2014.—The brain processes sen-
sory and motor information in a wide range of coordinate systems,
ranging from retinal coordinates in vision to body-centered coordi-
nates in areas that control musculature. Here we focus on the coor-
dinate system used in the motor cortex to guide actions and examine
physiological and psychophysical evidence for an allocentric refer-
ence frame based on spatial coordinates. When the equations of
motion governing reaching dynamics are expressed as spatial vectors,
each term is a vector cross product between a limb-segment position
and a velocity or acceleration. We extend this computational frame-
work to motor adaptation, in which the cross-product terms form
adaptive bases for canceling imposed perturbations. Coefficients of
the velocity- and acceleration-dependent cross products are assumed
to undergo plastic changes to compensate the force-field or visuomo-
tor perturbations. Consistent with experimental findings, each of the
cross products had a distinct reference frame, which predicted how an
acquired remapping generalized to untrained location in the work-
space. In response to force field or visual rotation, mainly the coef-
ficients of the velocity- or acceleration-dependent cross products
adapted, leading to transfer in an intrinsic or extrinsic reference frame,
respectively. The model further predicted that remapping of visuomo-
tor rotation should under- or overgeneralize in a distal or proximal
workspace. The cross-product bases can explain the distinct patterns
of generalization in visuomotor and force-field adaptation in a unified
way, showing that kinematic and dynamic motor adaptation need not
arise through separate neural substrates.

motor control; motor cortex; computational model; generalization;
force-field adaptation; visuomotor rotation; reference frames; propri-
oception

THE ACTIVITIES OF NEURONS in the primary motor cortex reflect a
broad mixture of movement-related variables, but how the
desired movement is converted by M1 neurons into joint
torques from these activities is not clear. Two broad class of
theories have emerged to explain the data: one based on
intrinsic joint coordinates, such as joint angles and torques
(Evarts 1968; Fetz and Cheney 1980), and another based on
extrinsic coordinates, such as limb positions and velocities in
space (Georgopoulos et al. 1982, 1986). Another approach to
resolving this issue is to look for computational constraints that
would distinguish between the two classes of reference frames.
This is the approach taken here, in which we examine the
complexity of computing the kinematic elements of a reaching

movement and the dynamic torques needed to achieve the
movement. The predictions of this computational approach are
compared with existing psychophysical data on kinematic and
dynamic adaptation of reaching movements.

The equations of motion (EOMs) governing reaching dy-
namics simplify when expressed in spatial vectors rather than
joint angles (Tanaka and Sejnowski 2013). Each term in the
EOMs is a vector cross product between a spatial position and
time derivatives (velocity and acceleration). These cross prod-
ucts have properties similar to those of neurons in the motor
cortex and are consistent with a wide range of experimental
findings: directional cosine tuning (Georgopoulos et al. 1982),
a nonuniform distribution of preferred directions (Scott et al.
2001), workspace dependence of preferred directions (Caminiti
et al. 1990), coexisting multiple reference frames, spatiotem-
poral properties of population vector (Georgopoulos 1988;
Scott et al. 2001). The cross products of vectors in a spatial
reference frame can be computed by a conventional feedfor-
ward neural network and could form an intermediate represen-
tation in the primary motor cortex between visual trajectory
planning and motor outputs. By keeping all of the sensory and
motor information in spatial coordinates, the muscle tensions
for reaching can be approximated by a linear combination of
these cross products. Computing the reaching dynamics with
these spatial vectors is much simpler than using joint angles,
which requires computationally expensive solutions to inverse
kinematics and inverse dynamics problems.

The ways in which a learned remapping generalizes provide
insights into the representations of motor control and motor
adaptation in humans (Shadmehr 2004). For example, the
remapping acquired within a fixed workspace for one move-
ment direction can be examined for other movement directions
starting from a same posture (Donchin et al. 2003; Imamizu et
al. 1995; Mattar and Ostry 2007; Tanaka et al. 2009; Thor-
oughman and Shadmehr 2000; Wu and Smith 2013). Another
example is intermanual transfer, in which a remapping learned
with one arm is examined for the other arm (Criscimagna-
Hemminger et al. 2003; Imamizu and Shimojo 1995; Sainburg
and Wang 2002; Taylor et al. 2011; Wang and Sainburg 2003,
2004). Workspace generalization can also be assessed by
testing a remapping in a new posture (Baraduc and Wolpert
2002; Ghilardi et al. 1995; Malfait et al. 2002, 2005; Wang and
Sainburg 2005). More generally, tests for context-dependent
generalization include unimanual/bimanual use (Nozaki et al.
2006), task variation (Braun et al. 2009), movement speed
differences (Kitazawa et al. 1997), comparison across limb
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parts (Krakauer et al. 2006), and target arrangements (Taylor
and Ivry 2013).

Our previous work suggested that the cross products repre-
sent intermediate dynamic variables in converting a trajectory
in workspace coordinates into dynamic variables such as joint
torques and muscle tensions (Tanaka and Sejnowski 2013).
Within this model, an imposed perturbation such as an external
force field or rotated visual feedback can be compensated by
adjusting the relevant coefficients of cross products in a feed-
forward network, so the acquired remapping as a result of
motor adaptation is stored in relatively few coefficients. This
computational hypothesis makes an explicit prediction: motor
adaptation and its generalization should have the geometric
properties implicit in these cross-product terms.

Experimental paradigms developed in motor adaptation can
be dynamic or kinematic, and modeling studies have hitherto
treated them separately (Krakauer et al. 1999). In dynamic
adaptation, an external force field is imposed onto hand or limb
segments, or dynamic parameters such as mass or inertial
moments are modified. In kinematic adaptation, the perceived
kinematics of the hand is perturbed by, for example, an optical
prism or computer-generated transformations. These two types
of adaptation have been thought to derive from different neural
mechanisms because they generalize to different reference
frames and, consequently, they have been modeled with dif-
ferent computational frameworks. Here we will present an
alternative to the hypothesis that dynamic and kinematic ad-
aptation occur through independent mechanisms and consider
viscous force-field adaptation and visuomotor rotation adapta-
tion as representative examples of dynamic and kinematic
adaptation, respectively. Specifically, we address whether the
classic results of motor adaptation, the transfer for force-field
and visuomotor rotation adaptation in intrinsic and extrinsic
based coordinates, respectively, can be reproduced in a single
computational model. In the present computational framework,
dynamic and kinematic adaptation affect different terms in the
EOMs governing reaching, thereby inheriting different refer-
ence frames when generalized to an untrained workspace. Thus
geometric properties of cross products determine how an ac-
quired remapping generalizes to an untrained workspace. This
unified framework for kinematic and dynamic adaptation clar-
ifies other aspects of motor learning. We have used Cartesian
coordinates here for convenience, but other spatial coordinate
systems could also be used; what is important is that the
reference frame is not moving with respect to the world.

METHODS

Spatial representation for computing inverse dynamics in reaching
movements. Joint-angle coordinates are popular in robotics (Fig. 1A),
but require the solution of nonlinear inverse kinematics and inverse
dynamics equations, which are ill-posed and may not have unique
solutions (Atkeson 1989). Even when the joint angles are uniquely
determined for a multijointed limb, the equations based on joint angles
are prohibitively complicated because the reference frames are mov-
ing, as seen even in the case of simplest two-link model:

�1 � �I1 � I2 � m1r1
2 � m2r2

2 � m2l1
2 � 2m2l1r2 cos�2��̈1 � �I2

� m2r2
2 � m2l1r2 cos�2��̈2 � m2l1r2�2�̇1 � �̇2��̇2 sin�2 � B1�̇1 (1)

�2 � �I2 � m2r2
2 � m2l1r2 cos�2��̈1 � �I2 � m2r2

2��̈2

� m2l1r2�̇1
2 sin�2 � B2�̇2 (2)

Here �1 and �2 are the shoulder and elbow angles, respectively (Fig.
1A), mi, Ii, li, and ri are the mass, the moment of inertia, the full length,
and the length to the center of mass (COM) of the ith limb segment,
respectively, and Bi is the mechanical viscous coefficient of the ith
joint. Although sensorimotor areas in the parietal and frontal lobes
have been thought to process these inverse kinematics and inverse
dynamics, the transformations that neurons in these areas perform are
still are not understood. The EOMs in the joint-angle representation
have been used for modeling dynamic motor adaptation in a number
of studies (Berniker and Kording 2008; Shadmehr and Mussa-Ivaldi
1994), but not for modeling kinematic motor adaptation (Cheng and
Sabes 2007; Ghahramani and Wolpert 1997; Kitazawa et al. 1995;
Tanaka et al. 2009).

Several invariant characteristics of arm movements are expressed
in spatial variables (Morasso 1981). Therefore, we reformulated
reaching using the spatial positions of limbs in spatial coordinates
(Fig. 1B), which led to equations that are considerably more concise
with physically intuitive interpretations (Hinton 1984; Tanaka and
Sejnowski 2013). For an n-link system in the horizontal plane the
EOMs become:

�i � ��
j�i

n �mjX j,i�1 � A j,0 �
Ij

rj
2X j,j�1 � A j,j�1�

� Bi�Xi,i�1 � Vi,i�1

ri
2 �

Xi�1,i�2 � Vi�1,i�2

ri�1
2 ��

z

(3)

where Xj,i and Xj,0 are the location vectors of the jth segment
measured with respect to ith segment endpoint and to the shoulder,
and V and A are their velocity and acceleration, respectively. Bold
fonts will be used for denoting vectors and matrices (X, V and A),
which hereafter will be referred to collectively as limb segment
vectors. The operator [...]z extracts the z-component of a vector. Only
the z components of cross products were considered because, in our
study, the position, velocity and acceleration vectors were confined to
the same horizontal plane, as assumed in many adaptation experi-
ments. Note that the joint torque at ith joint (�i) consists of cross
products between position and velocity/acceleration vectors of limb
segments.

Equation 3 relates kinematic variables (spatial positions and deriv-
atives on the right-hand side) directly to dynamic variables (joint
torques on the left-hand side), thereby bridging the dynamic and
kinematic views of the motor cortex. The first term on the right-hand
side represents the inertial dynamics, and the second represents the
mechanical viscosity of the limb. Given X, V and A, Eq. 3 computes
the inverse-dynamics of joint torques without having to compute or
represent the joint angles and has several computational advantages
compared with the EOMs for a joint-angle representation.

Two-link model. A simple planer two-link model based on Eq. 3
was used for simulating human psychophysical experiments in the
horizontal plane:

�1 � �m2X20 � A20 �
I2

r2
2X21 � A21 � m1X10 � A10 �

I1

r1
2X10 � A10

�
B1

r1
2 X10 � V10�

z

(4)

�2 � �m2X21 � A20 �
I2

r2
2X21 � A21

� B2�X21 � V21

r2
2 �

X10 � V10

r1
2 ��

z

(5)

Although Eqs. 4 and 5 are based on spatial vectors and are mathe-
matically equivalent to Eqs. 1 and 2 based on joint angles, they
suggest different computational schemes for computing reaching
dynamics. The EOMs based on spatial vectors require four accelera-
tion-dependent cross-product terms from three limb segment vectors:
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	X10 � A10
Z, 	X20 � A20
Z, 	X20 � A21
Z, 	X21 � A21
Z (6)

Here X10, X20 and X21 are spatial vectors connecting the shoulder and
the COM of arm, the shoulder and the COM of forearm, and the elbow
and the COM of forearm, respectively (Fig. 1B), and A10, A20 and A21

are the corresponding accelerations of these spatial vectors. In addi-
tion to the acceleration-dependent terms, we assumed these velocity-
dependent cross products exist in the EOMs, and that the coefficients
of cross-product terms undergo adaptive changes to counteract the
imposed force field. The motor cortex also has to compensate the
viscous force generated in lengthening muscles represented by two
velocity-dependent cross products:

	X10 � V10
Z and 	X21 � V21
Z (7)

which together with the collection of four cross products in Eq. 6 form
a basis set for the inverse dynamics model. The eight biomechanical
parameters in the coefficients were adopted from Shadmehr and
Mussa-Ivaldi (1994) and our previous paper (Table 1).

To summarize, we proposed a computation of reaching dynamics
with spatial cross products rather than joint angles that are conven-
tionally used (Fig. 1C). First, the endpoint position and movement

vectors are computed in the workspace coordinate with a given goal
(i.e., target location); these endpoint vectors are then decomposed into
limb-segment position and movement vectors and the cross products
of limb-segment vectors are computed; and finally joint torques and/or
muscle tensions are reconstructed by taking weighted sums of cross-
product terms.

Vector cross products as neuronal firing rates. The computation of
reaching dynamics based on spatial vectors requires the computation
of cross-product terms as an intermediate variable in converting
kinematic variables (limb segment vectors) into dynamic variables
(joint torques and muscle tensions). If the motor cortex is involved in
this visuomotor transformation, then the firing rates of individual

Endpoint vectors Limb segment vectors

vector cross products joint torques

A B

C

Fig. 1. Motor control in joint-angle and spa-
tial coordinates. A link model of the arm
represented in joint-angle space (A) and in
spatial coordinates (B) is shown. Joint angles
(�1, �2) represent a configuration of the two-
link model in joint-angle space, and spatial
vectors (X10, X20, X21) are used for the spa-
tial representation. C: visuomotor transfor-
mation proposed by the model. Task-oriented
endpoint position and movement vectors are
first determined, and those vectors in turn are
decomposed into limb segment vectors. Vec-
tor cross products are then computed as in-
termediate variables, and joint torques or
muscle tensions are finally generated as
weighted sums of cross products. The read-
out coefficients in the computation of joint
torques from cross products are determined
in nonperturbed conditions according to
Newtonian dynamics. This study posits that
plasticity in the readout coefficients (i.e.,
weights from vector cross products to joint
torques) provides adaptive changes for both
dynamic and kinematic motor adaptation.
See text for definition of terms.

Table 1. Model parameters for the two-link model

Mass (mi) Inertial Moment (Ii)
Total

Length (li)
COM

Length (ri)

Segment 1 1.93 kg 0.0141 kg m2 0.33 m 0.165 m
Segment 2 1.52 kg 0.0188 kg m2 0.34 m 0.19 m

COM, center of mass.
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neurons in the motor cortex should represent individually or collec-
tively all of the vector cross products in Eq. 3 and Eqs. 4 and 5
(Tanaka and Sejnowski 2013):

rA 	 	X � A
Z or rV 	 	X � V
Z (8)

Each term is a multiplicative response of the spatial position of a limb
and a limb velocity or acceleration, combinations that are represented
by neurons in the motor cortex, modulated by the sine of the angle
between the two vectors. The model neurons are either “acceleration
cells” (rA) or “velocity cells” (rV). We have previously shown that this
hypothesis can explain a wide range of experimental findings reported
in the motor cortex as mathematical properties of vector cross prod-
ucts, such as directional cosine tuning, nonuniform distribution of
preferred directions, postural dependence of preferred directions,
coexistence of multiple reference frames, spatiotemporal properties of
population vector, and (rectified) linear computation of muscle ten-
sions (Tanaka and Sejnowski 2013). Vector cross products can be
computed in a feedforward neural network with the known properties
of motoneurons. The joint torques can be computed by a weighted
sum of these neurons by a single layer of weights in a feedforward
neural network model, as in Eq. 3 or Eqs. 4 and 5. In this framework,
the motor cortex performs an internal inverse model of the arm that
converts desired spatial movements of the limbs in spatial coordinates
into joint torques and muscle forces.

The cross products X � A and X � V remain invariant if the
vectors X, V and A are rotated by a same amount in the horizontal
plane; in other words, the model neurons we assumed to represent the
cross products (Eq. 8) should exhibit the same activities if the
shoulder and the movement direction get rotated by a same amount.
This property is clear if movements are expressed in terms of cross
products but not when joint angles are used, and it furthermore leads
to a testable prediction for how motor adaptation learned at one
workspace generalizes to untrained workspaces in psychophysical
experiments. Although muscle dynamics are more complicated than
the dynamics of the cross products, they have a similar, rotational
dependence on posture. Muscle actions (forces and moments gener-
ated by electrically stimulating muscles) rotate systematically in a
posture-dependent manner (Buneo et al. 1997), consistent with our
previous model of muscle activities as a rectified linear sum of cross
products. Therefore, we expect that our argument based on the
geometric property of cross products to hold even when muscle
actions are taken into consideration.

Adaptive changes in linear read-out computation. In Eqs. 4 and 5,
the coefficients in front of cross products for computing the joint
torques are determined so that a visually planned trajectory is recov-
ered in the nonperturbed setting (i.e., with no viscous force field nor
visuomotor rotation). Since the cross products form basis functions, a
simple way to cancel an imposed force or visuomotor transformation
is to adapt the appropriate coefficients:

��W� � ��1

�2
� � �w11 w12 w13 w14 w15 w16

w21 w22 w23 w24 w25 w26
�

�
	X10 � A10
z

	X20 � A20
z

	X20 � A21
z

	X21 � A21
z

	X10 � V10
z

	X21 � V21
z

� (9)

where the 12 coefficients {wij} can be regarded as linear read-out
weights from the cross products to the joint torques. The first four
columns in the coefficient matrix W are coefficients of the accelera-
tion-dependent bases, and the last two columns are coefficients of the
velocity-dependent bases. This linear read-out computation from cross
products to joint torques is similar to those proposed by Churchland

and Shenoy (Churchland et al. 2012; Shenoy et al. 2011, 2013) and
independently by Sussillo and Abbott (2009); one critical difference is
that in our framework the input neurons compute the cross products
that are explicitly related to reaching dynamics through Newtonian
dynamics, whereas in their frameworks the activities of input neurons
emerge through interactions with other input neurons that are con-
nected recurrently and randomly.

We assumed that the coefficients {wij} were constant over the
entire workspace, and therefore independent of position, so the joint
torques depended on the positions only through the cross products. In
previous studies of motor cortex, motor adaptation depended on
gain-field-like modulation according to the proximity of extrinsic and
intrinsic variables (Baraduc and Wolpert 2002; Brayanov et al. 2012;
Hwang et al. 2003), not modeled in this study.

The model predicted that patterns of postadaptation generalization
should reflect the properties of input neurons representing the specific
cross products. When there are no external perturbations, the coeffi-
cient matrix is:

Wnull � �w11 w12 w13 w14 w15 w16

w21 w22 w23 w24 w25 w26
�

� �m1 � I1 
 r1
2 m2 0 I2 
 r2

2 0 0

0 0 m2 I2 
 r2
2 0 0 � (10)

where all the coefficients are nonnegative. Here, the last two columns
representing the coefficients of cross products between position and
velocity are angular viscosity [a mechanical property of the joints
(Hogan 1984)] and are set to zero because they have negligible effects
on a limb under unperturbed conditions (Hollerbach 1982). Let �(adapt)

denote the adapted joint torque vector that recovers smooth, straight
trajectories toward target, and the coefficients in Eq. 9 are optimized
so as to minimize the squared error between �(adapt) and �(W),

ŵij� � arg minwij����adapt� � ��W��2 (11)

�(adapt) will be found for the two best studied motor adaptation
paradigms: viscous force-field perturbations and visuomotor rotations.
Two questions arise. First, can the linear read-out (Eq. 9) cancel
imposed perturbations sufficiently to recover a straight trajectory
toward the target? Second, can a postadaptation remapping reproduce
the experimentally observed patterns of generalization to an untrained
workspace? We examined these issues by numerically simulating the
adaptive changes.

Desired trajectory of minimum-jerk criterion. An endpoint trajec-
tory can be computed in two ways: either with feedback control as a
function of the current state of the arm and a target position, or with
open-loop feedforward control as a function of time and target
position. Feedforward control of the endpoint trajectory was chosen
for computational simplicity with a point-to-point, minimum jerk
trajectory (Flash and Hogan 1985):

Xhand�t� � Xinitial � �Xtarget � Xinitial��6� t

tf
�5

� 15� t

tf
�4

� 10� t

tf
�3� (12)

where an initial position Xinitial and target position Xtarget were given in
the horizontal plane, and Xhand was the distal end of the forearm for the
two-link model. The cross products X � A and X � V were first
computed as a function of time by using Eq. 12 as the desired trajectory,
and then the joint torques were computed from the cross products by
using Eq. 9 as the internal dynamics model. For a single initial position,
eight targets uniformly distributed on a circle of 10-cm radius separated
by 45° were considered both for training and generalization.

In simulating human psychophysical experiments, the movement
amplitude was 10 cm and the movement duration tf was 800 ms for
force fields and 500 ms for visuomotor rotation adaptations. Joint
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torques were computed in a feedforward manner as described above
using Eqs. 9 and 12. For simulations of force-field adaptation, a
feedback controller that modeled a reflex response was included (see
Trajectory simulation) in addition to the feedforward controller. An
additional 200 ms of stationary endpoint [i.e., Xhand (t) � Xtarget (t �
tf)] was appended to the minimum-jerk trajectory of 800 ms, allowing
the feedback controller to bring the hand to the target. First, the
shoulder and elbow angles (�1 and �2, respectively) were uniquely
determined. Then the segment-position vectors (X10, X20 and X21 for
the two-link model) were computed accordingly from Xhand, from
which the corresponding cross products were computed.

Trajectory simulation. The imposed dynamic force-field and kine-
matic visuomotor rotation perturbations were applied in the joint-
torque space of Eq. 9, but the results of the psychophysical were
reported in terms of endpoint trajectories. We simulated the two-link
dynamics with given joint torques supplied by the model to compare
the experiments with the model. For the viscous force-field adapta-
tion, a velocity-dependent external force was imposed, and for the
visuomotor rotation the spatial coordinates were rotated.

For simulations that evaluated the degree of generalization in
force-field adaptation, two types of perturbation were imposed on the
hand. One was an extrinsic force field, Fextrinsic � BVhand, that

depended on the endpoint velocity Vhand in spatial coordinates, with
corresponding joint torques were �extrinsic � JT(�)Fextrinsic, where
JT(�) is the Jacobean matrix for the transformation between spatial

and joint angle coordinates. The B matrix was ��10.1 �11.2

�11.2 11.1 �
(N·s/m). A second type of perturbation was an intrinsic force field,
�intrinsic � W�̇, which depended on the joint angle velocity �̇ � (�̇1,
�̇2)

T, where the matrix W was determined by JR
TBJR, with JR denoting

the Jacobian matrix at the trained workspace (defined below).
For Fig. 2, the trained and test workspaces were (�1, �2) � (15°,

85°) and (�1, �2) � (65°, 85°), respectively, to reproduce the previous
results in Shadmehr and Mussa-Ivaldi (1994). For Figs. 3 and 4, the
trained workspace was (�1, �2) � (36°, 107°) [or (x, y) � 0, 40 cm],
and the test workspace was varied systematically to examine gener-
alization patterns to various initial postures.

For visuomotor rotation adaptation (Fig. 5), we simulated the
experiment in Krakauer et al. (2000). A counterclockwise (CCW)
rotation of 60° was imposed onto the visual feedback of the hand and
adapted in the trained workspace [(�1, �2) � (45°, 90°)] by optimizing
the coefficients to cancel the imposed rotation. The optimized coef-
ficients were used to determine the degree of generalization at test

A B

C D
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y 
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m
)

x (cm)

x (cm)

y 
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m
)
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m
)

y 
(c

m
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y 
(c

m
)
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x (cm)
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Fig. 2. Behavioral generalization after adapting to a viscous force field. Hand trajectories before adaptation (A), after adaptation (B), and after-effects to the viscous force
field at the right workspace (C) are shown. Simulated model trajectories and desired minimum-jerk trajectories are solid and dashed lines, respectively (left) and are
compared with the corresponding experimental trajectories (right). Eight directions of movement are color-coded. Generalization to hand trajectories in the left workspace
when an intrinsic (D) or an extrinsic force field (E) was imposed after the linear readout model was trained at the right workspace. [The experimental figures are adapted
from Figs. 9A, 9D, 13D, 15B, and 15A, respectively, from Shadmehr and Mussa-Ivaldi (1994), with permission.]
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postures [(�1, �2) � (0°, 90°) and (�1, �2) � (90°, 90°)] by changing
the shoulder angle with the elbow angle unchanged. For Fig. 6, the
degree of generalization to multiple starting postures was tested by
training the linear model on a clockwise (CW) rotation of 60° at the
central workspace (�1, �2) � (36°, 107°) [or (x, y) � 0, 40 cm], and
then testing the learned remapping for transfer to other workspaces in
the reachable region.

For viscous force-field adaptation simulations, we included a
feedback controller that compensated for deviations in the trajec-
tory using joint-angle coordinates. This modeled a stretch reflex
caused by the imposed force field, corresponding to an experimen-
tal setting in which subjects were allowed to make movement
corrections based on online visual feedback (Shadmehr and Mussa-
Ivaldi 1994). The position-derivative feedback torques were com-
puted using either joint angles

��fb� � Kp��* � �� � Kv��̇* � �̇� (13)

where Kp and Kv stand for the elastic and viscous feedback matrices,
respectively (the parameter values used in simulations are adopted
from Shadmehr and Mussa-Ivaldi 1994, summarized in Table 2). The
joint torques were a sum of the feedforward (Eq. 9) and the feedback
(Eq. 13) controllers. The trajectories were computed by solving the
EOMs with the viscous force field (F � BVhand), the linear read-out
(Eq. 9) and the feedback torques (Eq. 13). For visuomotor rotation
adaptation, subjects in several studies were instructed to make rapid,
point-to-point or out-back reaching movement without online correc-
tion (Krakauer et al. 2000, 2004; Tanaka et al. 2009) [but see Taylor
et al. (2013)], so feedback control was not included in the simulation.

Summary of simulation steps. The steps for the simulations are
summarized here for clarity. First, the coefficient matrix was opti-
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Fig. 3. Generalization of intrinsic viscous force
field to multiple workspace locations. The
model learned the force field at the central
location [(x, y) � (0, 40)], and 14 peripheral
locations were tested with the intrinsic-based
force field for generalization, which were posi-
tioned with one of three distances from the
shoulder (30, 40 or 50 cm) and one of five
directions (�30°, �15°, 0°, 15° or 30°). A:
polar plots of directional errors at the training
workspace (center, red) and the test workspaces
(peripheral, black). Solid lines at each work-
space represent directional errors for eight tar-
get directions, and dashed lines represent null
directional errors for reference. They over-
lapped almost completely, indicating that there
were little directional errors at all locations.
The scale ticks along the radial axes indicate
15° directional errors (positive and negative
values for clockwise and counterclockwise de-
viations, respectively). Hand trajectories at dis-
tal [(x, y) � (0 cm, 50 cm); B] and proximal [(x,
y) � (0 cm, 50 cm); C] to the body, and left [(x,
y) � (�25 cm, 35 cm); D] and right [(x, y) �
(25 cm, 35 cm); E] from the center workspace
are shown. The corresponding locations were
indicated by the letters in A.
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mized as follows. For a given initial and target points (Xinitial and
Xtarget) and a movement duration (tf), a desired trajectory of endpoint
was computed as the minimum-jerk formula of Eq. 12. For visuomo-
tor rotation adaptation, this minimum-jerk trajectory was counterro-
tated to cancel the imposed rotation transformation so that the adapted
torque computed below recovered a trajectory toward a target. Then,
from the trajectories of the limb segment vectors (X10, X20 and X21),
their temporal derivatives were computed (V10, V20 and V21 for
velocity and A10, A20 and A21 for acceleration), from which the cross
products were obtained in Eqs. 6 and 7. With these cross products, the
adapted torque �(adapt) in Eq. 11 was computed as �(adapt) � �(Wnull)
for visuomotor rotation and �(adapt) � �(Wnull) � �(force field) for
viscous force-field adaptation, respectively, where the coefficient
matrix Wnull was defined in Eq. 10 and �(force field) was either �extrinsic

or �intrinsic, depending on the type of imposed force field. Finally, the
coefficients of cross products were optimized to minimize the

squared error between the adapted torque and the linear approxi-
mation �(W) in Eq. 11. The squared error was averaged over all
movement directions (in our case the eight cardinal directions) for
a given initial starting posture. This optimization problem had a
unique solution because the squared error was a convex quadratic
function of W.

Using the optimized coefficient matrix, the feedforward torque
�(W) was computed from Eq. 9. For visuomotor adaptation, the
trajectory was simulated with only the feedforward torque as

I����̈ � G��, �̇� � ��W� (14)

For viscous force-field adaptation, the feedback torque in Eq. 13 was
included with the imposed force field torque and the feedforward torque:

I����̈ � G��, �̇� � ��W� � ��fb� � ��force field� (15)
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Fig. 4. Generalization of extrinsic viscous force
field to multiple workspace locations. A: polar
plots of directional errors at the training work-
space (center, red) and the test workspaces with
the extrinsic-based force field (peripheral,
black). Hand trajectories at distal [(x, y) � (0
cm, 50 cm); B] and proximal [(x, y) � (0 cm, 50
cm); C] to the body, and left [(x, y) � (�25 cm,
35 cm); D] and right [(x, y) � (25 cm, 35 cm);
E] from the center workspace are shown. The
same format was used as in Fig. 3.
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Here I(�) and G(�, �̇) denote the inertia matrix and the centripetal and
Coriolis force terms, respectively. Note that the joint angles were used
here only for the purpose of the simulations.

RESULTS

This study focuses on workspace generalization to under-
stand the coordinate system or systems used for motor adap-
tation. Pioneering studies examined the degree to which motor
adaptation generalizes to an untrained workspace by only
changing the shoulder angle with the elbow angle unchanged in
the horizontal plane (Krakauer et al. 2000; Shadmehr and
Mussa-Ivaldi 1994). In this case, all of the limb segment
vectors (X, V and A) underwent the same rotation in the
horizontal plane, transforming into R(�)X, R(�)V and R(�)A,
respectively, where R(�) is rotation matrix around the z-axis
by angle �. In contrast, the cross products are invariant,
[R(�)X] � [R(�)V] � X � V and [R(�)X] � [R(�)A] �
X � A, owing to the geometry of cross products. Therefore, for
the cross product terms, the movement direction vectors V and
A with a given posture X are equivalent to the rotated direction
vectors R(�)V and R(�)A with a new posture R(�)X (Fig. 2).
This shoulder-based pattern of generalization is obvious in the
cross-product representation but not in the joint angle repre-
sentation and is critical in reproducing the experimentally
observed patterns of motor generalization.

Another form of motor generalization, less investigated, is to
vary the elbow and shoulder angles while keeping the shoul-
der-to-hand direction unchanged (Brayanov et al. 2012; Hwang
et al. 2003). In contrast to experiments in which only the
shoulder rotates, limb segment vectors undergo rotations and
dilations different with respect to each vector. This type of
posture change also occurs in motor remapping when general-
izing to a workspace that is proximal or distal to a trained
workspace. In these electrophysiological and modeling studies,
the preferred direction of motor cortical neuron changed as the
hand position was systematically altered (Ajemian et al. 2000;
Caminiti et al. 1990; Wu and Hatsopoulos 2006, 2007). Nu-
merical simulations were performed to test the predictions of
the model for how motor remapping generalized to untrained
workspaces.

Generalization in force-field adaptation. We first investi-
gated how a learned remapping in one workspace generalized
to another workspace, a procedure that has been used to
uncover the neural representation of movement primitives
responsible for motor adaptation in human psychophysical
experiments (Shadmehr 2004; Thoroughman and Shadmehr
2000). Shadmehr and Mussa-Ivaldi (1994) imposed a viscous
force field on the hand that was proportional to hand velocity,
Fextrinsic � BVhand. A learned viscous force field maximally
transferred from one location to another location within the
same limb when the force field was represented in an intrinsic,
shoulder-based reference frame but not in the extrinsic, work-
space reference frame (Shadmehr and Mussa-Ivaldi 1994).
They modeled and reproduced the results of this generalization
experiment using bases of joint angular velocities rather than
extrinsic endpoint vectors, but stopped short of uncovering the
underlying computational explanation. We here show that the
cross products and the linear readout can reproduce the exper-
imental findings parsimoniously.

The exact inverse model of arm dynamics under the influ-
ence of the external viscous force field included inertial and
viscous force-field terms:

��1
�adapt� � �1

�inertial� � �1
�viscous�

�2
�adapt� � �2

�inertial� � �2
�viscous� (16)

where the inertial terms for a desired trajectory �X→� and its
derivatives (V

→
and A

→
) are:

�
�1
�inertial� � m1X10 � A10 �

I1

r1
2X10 � A10

� m2X20 � A20 �
I2

r2
2X21 � A21

�2
�inertial� � m2X21 � A20 �

I2

r2
2X21 � A21

(17)

and the torques required to cancel the viscous force-field terms
are:

A B CCenter (trained) Left (test) Right (test)

x (cm)

y 
(c

m
)

x (cm)x (cm)

Fig. 5. Directional generalization of visuomotor rotation remapping. A: cursor from adapted movements (solid) and desired (dashed) trajectories at the trained
workspace [(�1, �2) � (45°, 90°)]. The cursor trajectories were obtained by rotating the simulated hand trajectories by the imposed rotation so that the comparison
with the desired trajectories was made straightforward. Cursor from movements adapted in the trained workshops (solid) and desired (dashed) trajectories in the
left workspace [(�1, �2) � (90°, 90°); B] and in the right workspace [(�1, �2) � (0°, 90°); C] are shown.
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��1
�viscous�

�2
�viscous� � � �JT���Fextrinsic � �JT���BVhand (18)

where the negative sign was needed to cancel the imposed
force field. When the torques in Eq. 18 are added to the inverse
model, the force field is completely canceled, and straight
trajectories to targets are recovered.

The first step in canceling the force field was to adjust the linear
readout coefficients of the cross-product bases to minimize the
squared error between �(adapt) in Eq. 16 and �(W) in Eq. 9.
Because the cost function is quadratic and the read-out is linear,
the coefficients were computed by solving a pseudoinverse prob-
lem. Note that the torques in Eq. 18 are proportional to Vhand,

which is a product of the Jacobian matrix and joint angular
velocities, and that the joint angular velocities are expressed as
cross products between limb positions and velocity vectors as

�̇1 � �X10 � V10

r1
2 �

z

and �̇2 � �X21 � V21

r2
2 �

z

� �X10 � V10

r1
2 �

z

(19)

therefore, to approximate the torques in Eq. 18 with cross-
product bases, the coefficients of the velocity-dependent cross
products were expected to change.

The joint angles for the initial posture were (�1, �2) � (15°,
85°) in the right workspace (trained workspace) and (�1, �2) �
(65°, 85°) in the left workspace (the untrained test workspace)
as in the experiment. The coefficients before the training in the
force field were (the numerical values for Eq. 10):

W � �2.45 1.52 0 0.52 0 0

0 0 1.52 0.52 0 0 � (20)

Using these coefficients, the endpoint trajectories in the force
field were “hooked” as a result of the imposed force field,
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Fig. 6. Under- and over-generalization of rotated remapping for visuomotor rotation. A: cursor (solid) and desired (dashed) trajectories at the trained workspace [(x, y) � (0 cm,
40 cm)]. Under-generalization at a distal posture [(x, y) � (0 cm, 45 cm); B], and over-generalization at a proximal posture [(x, y) � (0 cm, 35 cm); C] are shown. D:
the degree of generalization over the entire workspace. Color at each point in the workspace indicates the degree of counterrotation averaged over eight movement
directions. The gray dashed line indicates iso-distance locations 40 cm from the shoulder. Values larger than 60° represent over-generalization, and values smaller than
60° represent under-generalization. A, B, and C indicate the locations of the starting hand position for A, B, and C, respectively.

Table 2. Gain matrices for position and velocity feedback control

Position Gain Matrix Velocity Gain Matrix

Kp � �15 6

6 16 � Kv � �2.3 0.9

0.9 2.4 �
Kp and Kv, elastic and viscous feedback matrices, respectively.
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which deviated the trajectory away from the target initially
before the feedback control brought them back to the target
(Fig. 2A). The approximate inverse model in Eq. 9 was then
obtained by optimizing the coefficients in the force field based
on Eq. 11 in the right workspace to cancel the imposed force
field. The values of the optimized coefficients were

W � �3.46 1.19 0.58 0.51 �80.58 22.61

0.22 �0.085 1.73 0.58 �21.47 39.93�
(21)

With these optimized coefficients, the endpoint trajectories
became straight, indicating that the linear read-out approxi-
mately canceled the imposed force field (Fig. 2B). The largest
changes in these coefficients were in the velocity-dependent
cross products (the last two columns), while the coefficients for
acceleration-dependent cross product (the first four columns)
were less affected, as expected since the imposed force field
was velocity dependent. To simulate the after-effects of adap-
tation, hand trajectories were simulated with the optimized
coefficients but without the force field. The trajectories mir-
rored the error directions of initial errors (the hooks were
opposite to those before adaptation) (Fig. 2C), indicating that
an internal model of force field was acquired. These simulation
results reproduced the experimental findings (Shadmehr and
Mussa-Ivaldi 1994).

We then examined the workspace generalization using the
adapted coefficients in Eq. 21 for two types of imposed force
field In the left workspace, one based on the spatial or extrinsic
coordinate Fextrinsic � BVhand, and another based on the joint
angle coordinate, Fintrinsic � JL

�TJR
TBJRJL

�1Vhand, where JL and
JR are the Jacobian matrices at the center of the left and right
workspaces, respectively. The force field learned at the right
workspace did not transfer to the left workspace if the force
field remained invariant in the external spatial coordinate (Fig.
2D), but fully transferred if the force field in the left workspace
was invariant in the joint-angle coordinate (Fig. 2E). Again,
these patterns of generalization reproduced those reported in
the psychophysical experiments (Shadmehr and Mussa-Ivaldi
1994). This shoulder-based generalization occurred because
the adaptive terms in the inverse model have the form X � A
and X � V, which were invariant when the shoulder and
velocity vectors were rotated by the same angle.

In human psychophysical experiments, a limited number of
workspaces outside the adaptation location, typically one and
at most two, have been used to assess generalization of motor
adaptation to a new workspace (Krakauer et al. 2000; Malfait
et al. 2002; Shadmehr and Mussa-Ivaldi 1994; Wang and
Sainburg 2005). To understand the coordinate frame in which
generalization occurs, however, the entire workspace should be
examined systematically. We, therefore, simulated the patterns
of generalization to a number of workspace locations, for both
extrinsic and intrinsic force fields.

The generalization of the intrinsic force field at the central
location center position, (x, y) � (0 cm, 40 cm), was tested at
14 peripheral locations (Fig. 3A). The directional error between
the actual initial trajectory (300 ms) and desired trajectory was
used as a measure of generalization. For the intrinsic force
field, the remapping transferred almost completely to all of the
untrained workspaces (Fig. 3A). In fact, the trajectories that
were distal, proximal, left and right from the trained workspace

appeared indistinguishable to those at the trained workspace
(Fig. 3, B–E). This complete generalization was expected for
the intrinsic force field because the learned remapping was
learned mostly through the velocity-dependent cross products,
which are linear sums of joint angular velocities (see Eq. 19).

An extrinsic force field (Fextrinsic � BVhand) was next
learned at the central position and tested at the 14 peripheral
positions. The values of optimized coefficients were:

W � � 7.86 0.29 2.32 �1.01 �15.29 54.53

0.071 �0.008 1.58 0.49 40.04 24.09�
(22)

and once again most of the changes were to the coefficients of
the velocity-dependent cross products. In contrast to general-
ization for the intrinsic force field, the motor adaptation for the
extrinsic force field transferred to untrained workspaces was
more complex (Fig. 4A): when the shoulder-to-hand direction
coincided with that of the training, straight trajectories were
conserved, indicating almost complete transfer of motor adap-
tation (Fig. 4, B and C). For workspaces that were left or right
from the trained workspace, however, the distribution of di-
rectional errors were nonuniform over the movement directions
and skewed in specific ways (Fig. 4, D and E). Experiments
could be performed to test these predictions.

Generalization in visuomotor rotation adaptation. Adapting
to a visually rotated environment, known as visuomotor rota-
tion, is a well-studied kinematic adaptation paradigm. Initially,
rotated visual feedback causes errors in the initial movement
direction and endpoint position. With repetition, the direction
errors decrease following a learning curve as the hand move-
ment directions counterrotate to compensate, eventually recov-
ering trajectories that head straight toward the targets. Al-
though force fields and visuomotor rotations both disturb the
endpoints of movements, they are fundamentally different with
respect to whether movement kinematics or dynamics are
perturbed.

There are two approaches to modeling visuomotor adapta-
tion. One is to counterrotate the input trajectory so that a
perceived hand endpoint moves straight to a target (the vecto-
rial planning hypothesis) (Gordon et al. 1994). Alternatively,
the mapping from a desired trajectory to joint torques can be
adjusted to make a straight movement to a counterrotated
direction, without counterrotating the input trajectory, as ex-
pressed in Eq. 9.

In vectorial remapping, visuomotor adaptation can be mod-
eled by converting the intended endpoint vectors (position X
and velocity V) into the perceived endpoint vectors (position X̃
and velocity Ṽ):

X̃ � R�X � X0� � X0 (23)

Ṽ � RV (24)

where R is a rotation matrix. Conversely, to make a straight
movement to a target in the visual space, the intended vectors
must be counterrotated or remapped:

X � R�1�X̃ � X0� � X0 (25)

V � R�1Ṽ (26)

Vectorial planning by input remapping predicts that a move-

1226 MOTOR ADAPTATION WITH CROSS PRODUCTS

J Neurophysiol • doi:10.1152/jn.00002.2014 • www.jn.org

on February 26, 2015
D

ow
nloaded from

 



ment to a learned direction should generalize to a new starting
point (Krakauer et al. 2000; Wang and Sainburg 2005). Al-
though the remapping is computationally simple, this hypoth-
esis also requires that the movements of other limb segments
be remapped, which is not as simple, since there is no simple
linear transformation for remapping the other spatial vectors
(X10, X20, and X21).

Alternatively, rotated visual feedback can be approximately
compensated by reweighting the connections from the cross
products to the joint torques as in Eq. 9, without adjusting the
desired trajectory. As in the case of force-field adaptation,
these coefficients were optimized to cancel an imposed visual
rotation of CCW 60° in the center workspace, with joint angles
(�1, �2) � (45°, 90°) as in a psychophysical experiment
(Krakauer et al. 2000). Coefficients were optimized for a
counterrotated trajectory by minimizing the squared error be-
tween �(CW) and �(W) in Eq. 11. The optimized coefficients
were:

W � ��0.36 0.60 4.21 2.00 0.78 �0.18

0.74 �0.74 1.18 0.50 0.023 �0.12�
(27)

which have both positive and negative values implying that
some of the terms changed the sign of their impact after
adaptation. This approximation worked almost perfectly in the
center workspace where the rotation remapping was trained
(Fig. 5A). To investigate how the learned remapping general-
ized to other, untrained workspaces, we simulated reaching in
two other workspaces by changing the shoulder angle while the
elbow angle remained unchanged [left workspace with joint
angles (�1, �2) � (90°, 90°) and right workspace with joint
angles (�1, �2) � (0°, 90°)]. The rotated visual feedback was
compensated in both test workspaces in the extrinsic reference
frame almost as perfectly as in the trained workspace (Fig. 5,
B and C), consistent with a previous study, which concluded
that generalization of learned visuomotor remapping to other
untrained workspace occurred not in the intrinsic joint-based
reference frame but in an extrinsic spatial reference frame
(Krakauer et al. 2000; Wang and Sainburg 2005). The model
successfully reproduced this experimental finding.

To fully determine the reference frame, generalization to the
entire workspace should be examined more systematically, so
we simulated how remapping transferred from one workspace
to multiple untrained workspaces. The linear readout model
was trained for CW 60° rotation at the central workspace [40
cm in front of the shoulder or (x, y)�(0 cm,40 cm)]. The
optimized coefficients were

W � ��2.17 2.33 �2.43 �3.74 �0.29 0.087

0.052 0.45 �0.11 1.02 �0.034 0.039�
(28)

At this workspace location, the imposed rotation was almost
completely canceled by counterrotating the hand trajectories
(Fig. 6A). When tested at a workspace distal from the body
with the shoulder-to-hand direction fixed [(x, y) � (0 cm, 45
cm)], however, the cursor movements were CW rotated from
the straight trajectories toward the targets, indicating that the
imposed rotation was not completely compensated and the
visuomotor remapping under-generalized (Fig. 6B). When
tested at a workspace proximal to the body [(x, y) � (0 cm, 35

cm)], the cursor movements were rotated CCW from the
straight trajectories toward the targets, indicating that the
visuomotor rotation over-generalized (Fig. 6C). From Fig. 6, B
and C, it seemed appropriate to evaluate the degree of transfer
by the average rotation angles over eight targets, so the angles
between the model’s simulated hand trajectories and the cor-
responding minimum-jerk trajectories were computed at peak-
velocity locations. A coherent pattern of generalization
emerged with rotational symmetry (Fig. 6D): the learned re-
mapping generalized almost completely to workspaces where
the shoulder angle in the initial posture was rotated with the
elbow angle fixed, whereas the learned remapping under- or
over-generalized when tested at distal or proximal workspaces,
respectively.

Integration of visual and proprioceptive representations
through cross products. Expressing EOMs in a spatial repre-
sentation has a number of computational advantages compared
with a joint-angle representation: shorter and more concise
EOMs, an intuitive physical interpretation, no explicit compu-
tation for inverse kinematics, and fast adaptive learning be-
cause there are fewer adaptive coefficients to learn. However,
this spatial representation requires spatial vectors in the spatial
coordinates that are linearly dependent on each other and thus
redundant, and not all combinations yield a valid limb config-
uration, whereas the joint angles always yield a valid limb
configuration. Although vector cross products of spatial posi-
tion and velocity or acceleration can be computed by a feed-
forward network from visually selective model neurons, this
does not ensure consistency among the redundant vectors.

Here we show how the consistency among the redundant
basis of spatial vectors can be maintained by proprioceptive
feedback. One way to monitor the consistency among the
spatial vectors is to compare the hand endpoint and limb-
segment positions computed from the visual and propriocep-
tive inputs in spatial coordinates. The hand endpoint, (xhand,
yhand), and joint angles, (�1, �2), are related by forward kine-
matics:

xhand � l1 cos�1 � l2 cos��1 � �2� (29)

yhand � l1 sin�1 � l2 sin��1 � �2� (30)

and similar equations hold for the proximal limb segments.
Alternatively, the visual and proprioceptive information

from limb positions can be integrated in a common cross-
product representation. The cross products in the EOMs can be
computed in a feedforward network of neurons that represent
visual positions and velocities (Tanaka and Sejnowski 2013):

	X � V
z � �
i,j

wijRij�X, V�
� � d�=d�=w��=, �=� fx��, �=� fv��, �=� (31)

� fx��, �i� � �X�cos�� � �i�
fv��, � j� � �V�cos�� � � j�

(32)

where (||X||, �) and (||V||, �) are polar coordinate representa-
tions of the hand position and velocity vectors, and �i and �j
are angles of preferred position and velocity. [X � A]Z can be
computed similarly from neurons that represent visual posi-
tions and accelerations.

The vector cross products can also be computed from pro-
prioceptive feedback, which provides information about mus-
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cle lengths, joint angles and their temporal derivatives. Joint
angles and their derivatives can be converted into cross prod-
ucts in a spatial reference frame:

	X10 � A10
z � r1
2�̈1,

	X21 � A21
z � r2
2��̈1 � �̈2� ,

	X21 � A20
z � �r2
2 � l1r2cos�2��̈1 � r2

2�̈2 � l1r2�̇1
2sin�2,

	X20 � A20
z � �l1
2 � r2

2 � 2l1r2cos�2��̈1

��r2
2 � 2l1r2cos�2��̈2 � l1r2�2�̇1 � �̇2��̇2sin�2

(33)

	X10 � V10
z � r1
2�̇1,

	X21 � V21
z � r2
2��̇1 � �̇2�

(34)

for the two-link model. Similar but much more complicated
expressions can be derived for a general n-link arm. These
expressions suffer from the same curse of dimensionality that
led us to abandon a joint-based reference frame for motor
control.

More generally, [X � A]Z and [X � V]Z can be computed
with multiplicative, gain-field responses of joint angles and
their derivatives as

�
i,j

w̃ij f i��1, �2� · gj��̇1, �̇2, �̈1, �̈2� (35)

where fi and gj are basis functions that can be used to compute
cross product in a single-layered feedforward network. For the
case of two-link model, the basis functions are fi

(�1, �2)} � {1,
cos �2, sin �2} and {gi(�1, �2)} � {�̇1�̇2, �̇{22, �¨¨1, �¨¨2}.
The computation in Eq. 35 requires that the information about
position, velocity and acceleration be accessible to the motor
cortex; extant electrophysiological studies have reported motor
cortical activities related to hand position (Georgopoulos et al.
1984; Paninski et al. 2004), velocity (Moran and Schwartz
1999; Paninski et al. 2004) and acceleration (Flament and Hore
1988). Other studies fitted the activities of motor cortical
neurons systematically with hand position, velocity and accel-
eration and reported different proportions: 16.5%, 26.6%, and
1.7% (Ashe and Georgopoulos 1994) and 9%, 80%, 11%
(Stark et al. 2007) for position, velocity and acceleration,
respectively.

DISCUSSION

Cross products are a computationally efficient basis that can
serve as a set of motor primitives for motor adaptation. Their
geometric structure makes explicit predictions for a range of
motor adaptation experiments. We have shown that the cross-
product basis naturally reproduces the previous results of the
joint-angle based transfer in viscous force-field adaptation, and
space-based transfer in adaptation to visuomotor rotation with
the shoulder angle rotated. Our model predicts that CW rota-
tion learned at the central workspace over-generalizes to prox-
imal workspace and under-generalizes to distal workspace, a
prediction that differentiates our model from the vectorial
planning hypothesis. To our knowledge, this is the first study
that proposes a computational model explaining both force-
field and visuomotor rotation adaptation in a unified way.
Furthermore, proprioceptive signals can maintain consistent

limb positions in space through the cross-product basis, which
conveniently integrates visual and proprioceptive information
in a unified way.

A unified view of dynamic and kinematic motor adaptation.
Dynamic motor adaptation and kinematic motor adaptation
have traditionally been considered to involve two distinct
adaptive mechanisms in different neural circuits. We have
shown that both types of adaptation can be modeled in a unified
way in a model where vector cross products form basis func-
tions for motor adaptation with adaptive coefficients that can-
cel the imposed perturbation. Coefficients of velocity-depen-
dent, viscous terms were mostly altered for the force-field
adaptation, and the adapted internal model generalized in a
shoulder-based reference frame. Coefficients of acceleration-
dependent, inertial terms were primarily adapted for visuomo-
tor rotation, and the remapping generalized in an extrinsic
reference frame. Thus the cross-product representation ex-
plains why multiple reference frames for behavioral general-
ization have been observed under different conditions. Our
results demonstrate an alternative to the common consensus in
the field of motor control that kinematic and dynamic adapta-
tion have independent neural substrates.

In the simulations, the cross-product terms were chosen for
adaptation by optimization. The adaptation could be imple-
mented in the brain by using an error signal to modify the
coefficients of the cross-product terms by gradient descent,
which could be implemented by Hebbian plasticity since only
a single layer of weights needs to be adjusted.

Generalization in motor adaptation predicted by cross-
product representation. Experimental studies of generalization
after motor adaptation typically test only one (Krakauer et al.
2000; Shadmehr and Mussa-Ivaldi 1994) or two (Wang and
Sainburg 2005) workspace locations because of limited re-
sources. For force-field adaptation, a shoulder-based reference
frame was reported after testing a generalization pattern at a
tested workspace location with the same elbow angle of the
trained workspace; this leaves open the question of how chang-
ing the elbow angle affects the pattern of generalization. The
model can be easily tested over a wide range of test work-
spaces, making systematic predictions for motor generaliza-
tion. In particular, the model predicted that the shoulder angle
should have a dominant effect on generalization patterns for
force-field adaptation while the influence of the elbow angle
should be negligible. Wang and Sainburg (2005) reported that
visuomotor remapping generalized to other movement vectors
but did not report under- or over-generalization. There are two
possible reasons: one is that the predicted deviations of the
model were not large enough to notice (see Fig. 6, A–C), and
the other is that they examined only two movement directions.
To detect the model’s prediction of under- or over-generaliza-
tion would require a dense sampling of movement directions
and workspaces.

Some electrophysiological and modeling studies addressed
the reference frame(s) by examining the change of preferred
directions of motor cortical neurons (Ajemian et al. 2001;
Caminiti et al. 1990; Wu and Hatsopoulos 2006, 2007).
Caminiti et al. (1990) concluded that the adaptation was in a
shoulder-based reference frame based on three workspaces, but
with a limited number of workspaces it would be difficult to
dissociate shoulder- from joint-based reference frames. Later,
Wu and Hatsopoulos (2006) examined nine workspaces and
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reported that different cortical motor neurons had joint-based,
shoulder-based or extrinsic reference frames, consistent with
the hypothesis of cross-product representation. In the future,
the design of psychophysical and electrophysiological experi-
ments should include multiple workspaces in a systematic way.

In our computational model, an imposed visuomotor rotation
was compensated by adapting the mapping from a desired
trajectory to joint torques without changing the desired trajec-
tory. The cross-product model reproduced the experimental
findings of directional generalization when the elbow angle
was unchanged, as in the experimental condition, and showed
further that the remapping under-generalized when a starting
posture was more distal, and over-generalized when proximal,
in contrast to the vector remapping hypothesis, which predicts
that remapping should generalize uniformly to untrained work-
spaces. Thus the workspace generalization of visuomotor re-
mapping predicted by our model is not based on the extrinsic,
spatial reference frame, but depends on the distance between
the shoulder and the hand. In contrast, the vectorial planning
hypothesis states that a learned remapping of visuomotor
rotation should generalize directionally to any untrained work-
space. By studying each of the vector cross products, it should
be possible to design new experiments to adapt each of the
terms, to further test the predictions of the model.

Proprioceptive encoding of joint state. Proprioceptive sig-
nals from muscle spindles convey muscle length and its
change, which in turn can be used in computing the joint angles
and angular velocities (Proske and Gandevia 2012). Although
muscle spindles do not directly encode angular acceleration,
the cortex could in principle compute acceleration by compar-
ing previous and current proprioceptive inputs, similar to how
the retinal circuitry computes the velocity of visual target (Kim
et al. 2014). It is therefore conceivable that the proprioceptive
kinematic information required to compute Eq. 35 is available
in the parietal and motor cortices. Because the joint angles
always represent a valid limb configuration, the consistency
among the cross products computed from visual inputs in Eq.
31 can be maintained by comparing with those computed from
proprioceptive inputs in Eq. 35 as a reference. Thus vector
cross products represent a common “language” between visual
and proprioceptive information.

The posterior parietal lobe, including the parietal reach
region (PRR) and dorsal area 5 (area 5d), is specialized for the
multisensory integration and coordinate transformations nec-
essary in visuomotor transformation during reaching move-
ments. Neurons in these areas combine retinal, eye- and hand-
related signals in a spatially congruent manner (Battaglia-
Mayer et al. 2000, 2001). PRR and area 5d represent a target in
the eye-centered and the hand-centered reference frame, re-
spectively (Batista et al. 1999; Bremner and Andersen 2012;
Pesaran et al. 2006). Also, whereas PRR maintains potential
and selected reach plans, area 5d encode only selected reach
plans (Cui and Andersen 2007, 2011). The tuning curves of
area 5d neurons are sinusoidal as found in other motor areas,
and activity onsets in area 5d lag those in other motor areas
(Kalaska and Crammond 1992). These lines of evidence sug-
gest that area 5d is downstream of PRR and might monitor
ongoing movements and compute a forward estimate of the
body state for online sensorimotor control (Mulliken et al.
2008). Given these physiological findings, area 5d is a candi-
date for integration of proprioceptive and visual information

for maintaining the consistency of body images. Loss of the
superior parietal lobule in humans does not cause specific
motor deficits, but instead disrupts the body self-image, which
could be the result of impairment in the integration of spatial
and proprioceptive information about the positions of limb
segments and their spatial relationships.

Multiplicative gain fields have been reported for eye position
in lateral intraparietal area of the parietal cortex, consistent
with Eq. 35. Interestingly, gain fields for eye position have also
been found in area 3a of the somatosensory cortex, where they
are based on proprioceptive inputs (Xu et al. 2011). The
proprioceptive signals consistently lagged the actual eye posi-
tion in the orbit by �60 ms, which led the authors of this study
to conclude that they were unlikely to be used for processing
online actions. These findings are consistent with the hypoth-
esis that proprioceptive signals may be used to calibrate the
visual body configuration.

Whereas this study has focused on the feedforward torques
to model fast out-back reaching movements, there is experi-
mental evidence that proprioceptive feedback signals may
contribute to adaptation for discrete movements that require
stabilizing control of final posture. Ghez et al. (2007) demon-
strated that adaptation in out-back reaching (“slicing”) gener-
alized in terms of movement directions; on the other hand,
adaptation in discrete reaching generalized in terms of final
positions. They suggested that the intended trajectory and final
position are represented in different reference frames. Their
findings could also be explained in our computational frame-
work by adaptive feedforward control through adjusting the
torques for out-back reaching, and adaptive feedback control
for final positioning by adjusting the mapping between cross
products computed from vision and proprioception.

Related works. There are a number of computational studies
that modeled electrophysiological recordings in the motor
cortex and psychophysical results in human experiments. The
functions of the motor cortical neurons have been modeled on
the basis of joint angles in most models. Todorov (2002)
assumed that the motor cortex optimizes a tradeoff between
force production error and effort in the presence of multipli-
cative, signal-dependent noise and explained broad (truncated
cosine) tuning with respect to force directions. Lillicrap and
Scott (2013) demonstrated that, if the geometry of the limb and
the biomechanics of muscles are taken into consideration,
nonuniform distribution of preferred directions in the motor
cortex can be explained as a result of optimization in reaching
and isometric force production tasks. Similarly, in Trainin et al.
(2007), the properties of motor cortical neurons, such as broad
directional tuning, nonuniform distributions of preferred direc-
tions and some temporal changes of firing rates were explained
by taking into account the biomechanics of arm and the
dynamics of muscles. In the model of Ajemian et al. (2008),
the posture dependence of preferred directions in the single-
cell level was reproduced by positing that the motor neurons
are tuned to preferred torque directions; however, cosine tun-
ing to torque direction was not derived but assumed.

The above models do not describe how the visual informa-
tion is transformed into intrinsic variables, such as joint angles
and muscle tensions. In contrast, our hypothesis of cross-
product representation in the motor cortex explains the prop-
erties of motor cortex, such as directional cosine tuning and the
nonuniform distribution of preferred directions without explic-
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itly using joint angles (Tanaka and Sejnowski 2013). More-
over, our hypothesis explains the posture dependence of pre-
ferred directions, coexistence of multiple reference frames,
spatio-temporal properties of population vector and linear com-
putation of muscle tensions. Therefore, the cross-product rep-
resentation explains a range of electrophysiological findings as
well as previous studies. It is interesting whether and how our
model conforms to the previous studies.

There have been previous attempts to explain the psycho-
physical results in viscous force-field adaptation. In the study
of Malfait et al. (2005), for example, the intrinsic pattern of
generalization in force-field adaptation was confirmed by trans-
fer at a center location after training at two lateral locations.
This pattern of generalization was explained in a model based
on the � version of the equilibrium-point hypothesis. The
imposed field was adapted by adjusting the values of individual
muscle � values to reduce the error between desired kinematics
and actual joint displacement. The model’s success originates
from the postulate that the force field was learned in terms of
the equilibrium muscle lengths and activations, which are
intrinsic variables. Our model explains the intrinsic pattern of
generalization in force field adaptation in a distinctly different
way: the feedforward torque was learned in bases of cross
products, which are composed of extrinsic variables. The novel
insight about this model is that the intrinsic pattern of gener-
alization does not necessarily indicate an intrinsic-based rep-
resentation of internal model, such as joint angles or muscle
tensions, but can be equally explained in terms of a represen-
tation of cross products of limb positions and movements.

In the computation of feedforward torque, the independence
between velocity-dependent and acceleration-dependent cross
products was implicitly assumed (Eq. 9). At a glance, this
separate coding of velocity and acceleration appears inconsis-
tent with the findings of Hwang et al. (2006), who had subjects
adapt to an acceleration-dependent force field in one movement
direction and tested for generalization in various movement
directions. The pattern of directional generalization indicated
that the basis elements that form the internal model cannot be
linearly separated into elements that were either angular ve-
locity or angular acceleration (Eq. 3 in their paper). This result
does not contradict our assumption of separate coding of
velocity- and acceleration-dependent cross products, since the
acceleration cross products consist of angular velocities and
angular accelerations in a multiplicative way (Eq. 35). It would
be worthwhile to determine whether the cross-product hypoth-
esis explains these results (Hwang et al. 2006).

Relation to neurophysiological findings. Several electro-
physiological studies have reported adaptive changes in the
activities of neurons in the motor cortex of monkeys before and
after adaptation to viscous force field (Gandolfo et al. 2000; Li
et al. 2001) and to visuomotor transformations including rota-
tion (Wise et al. 1998). Gandolfo et al. (2000) and Li et al.
(2001), in a force-field adaptation task, examined tuning curves
of single neurons in baseline, force-field and washout condi-
tions and found neurons whose tuning functions remained
invariant (“kinematic” or “extrinsic” neurons), those whose
tuning functions changed in response to force field (“dynamic”
neurons), and those whose tuning functions changed in re-
sponse to force field and were maintained even after washout
trials (“memory neurons”). Wise et al. (1998), in various
visuomotor transformation tasks, found increased or decreased

modulation, shifted tuning profiles, and more complex changes
in single-neuron activities. They also reported that about one-
half the sampled neurons showed no significant change during
adaptation. These studies indicate that there are in general two
populations of cortical motor neurons: one with invariant
activity profiles, and another with adapted changes in their
activities.

The primary motor cortex (M1) is not a homogeneous area
but is divided into rostral and caudal subareas defined by
cytoarchitectural zones (Geyer et al. 1996), descending path-
ways (Rathelot and Strick 2009), and functional representa-
tions (Sergio et al. 2005). In particular, neuronal activity in the
rostral M1 correlates with overall directions and kinematics of
endpoint movements, whereas neuronal activity in the caudal
M1 correlates with the temporal pattern of force production
and motor output. We previously proposed that the transfor-
mation from cross products to joint torques or muscle tensions
(Eqs. 4 and 5) could be computed within the circuitry of M1
(Tanaka and Sejnowski 2013). Accordingly, the proposed
model in this study predicts two subpopulations: one represent-
ing the cross products whose activities remain invariant, and
the other representing the dynamic variables whose activities
undergo adaptive changes in response to perturbation. This
prediction could be tested by examining functional connections
from the kinematic representation in the rostral M1 to the
dynamic representation in the caudal M1 and by examining
whether and how their tuning profiles change over the course
of motor adaptation.

Limitations of current model. Although our proposed model
is consistent with some of the extant experimental results of
motor adaptation and its generalization, there remain several
unexplained issues. The cross-product basis can explain the
patterns of generalization across workspaces that were exper-
imentally observed in the force-field and visuomotor adapta-
tion, but the broad directional tuning of cross products cannot
explain the narrow width of directional generalization within
the same workspace observed in visuomotor rotation (Bray-
anov et al. 2012; Krakauer et al. 2000). In addition, the
experimental patterns of directional generalization across two
workspaces indicate that motor memory of visuomotor rotation
adaptation is not exclusively intrinsic or extrinsic but rather
encoded in a gain-field combination of intrinsic and extrinsic
representations (Brayanov et al. 2012). These findings appear
at odds with our cross-product hypothesis, which postulates the
plasticity between cross products to dynamic variables (the
bottom two panels in Fig. 1C). These findings might be
explained by plasticity in other aspects of visuomotor transfor-
mation. Our scheme of visuomotor transformation (Fig. 1C)
indicates that other stages of transformation (from endpoint
vectors to limb segment vectors, or from limb segment vectors
to vector cross products) might contribute to motor adaptation
as well, and that plasticity in the other stages may contribute to
the narrow width of generalization and the gain-field combi-
nation of extrinsic and intrinsic representations. In our previous
modeling study, we suggested that the narrow directional
generalization could be attributed to the narrow directional
tuning in the posterior parietal lobe and plasticity between
posterior parietal and frontal motor cortices (Tanaka et al.
2009), which would correspond to the transformation of end-
point vectors to limb segment vectors.
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The adaptation model proposed here assumed that the locus
of the plasticity is in the coefficients of cross-product terms,
which should be regarded as one of several possible processes
that could contribute to motor adaptation. Previous studies
indicated that motor adaptation is not a single neural process,
but rather consists of multiple processes with distinct charac-
teristics, such as time scales and patterns of generalization
(Kording et al. 2007; Smith et al. 2006). For example, a typical
learning curve in motor adaptation can be fit well with a
double-exponential decay, which can be modeled by a multi-
rate state-space model. The fast and slow processes in a
multirate model have different patterns of generalization,
which can be experimentally assessed by trial-by-trial and
postadaptation generalization, respectively (Tanaka et al.
2012). How these multiple processes of motor adaptation
facilitate or compete with each other is relatively less studied.

Our model assumes that the adaptive coefficients of cross
products are globally constant. This leads to a prediction that
adaptation to one field or rotation at one workspace interferes
with adaptation to an opposing field or rotation at another
workspace, regardless of the distance between the two work-
spaces. This is not consistent with Hwang et al. (2003), who
had subjects adapted to force fields of opposite signs at two
workspaces and found that the degree of interference was
maximal when the two workspaces were just 0.5 cm apart and
decreased monotonically as a function of the workspace dis-
tance. They suggested that an internal model of force field
encodes not only velocity, but also position, and that the
internal model is modulated as a function of distance between
the posture in which the force field is learned and another
posture. Similarly, in visual-displacement adaptation, Baraduc
and Wolpert (2002) showed that after-effects of a visual
displacement were maximal when the initial posture of training
and testing were the same and decreased with the distance
between the two postures. These results indicate that our
postulate of globally constant coefficients is an approximation;
the coefficients need to include position dependence in accor-
dance with the experimental findings.

Our model for motor adaptation is based on computing cross
products of rigid body dynamics, but other mechanisms exist
that do not involve rigid body dynamics. For example, human
subjects can learn arbitrary mappings from coordinated finger
postures to cursor locations flexibly (Liu et al. 2011; Liu and
Scheidt 2008; Mosier et al. 2005). Also, in studies of brain
computer interfaces, neural signals translate into cursor motion
that is physically isolated from the musculoskeletal system
(Serruya et al. 2002; Taylor et al. 2002; Wolpaw and McFarland
2004).

Previous studies have shown that motor adaptation consists
of multiple, interacting processes with different time scales
(Smith et al. 2006; Tanaka et al. 2012) or of distinct types of
memory (Herzfeld et al. 2014; Mazzoni and Krakauer 2006).
The model presented here could correspond to one of those
processes, and it is an open question whether and how our
cross-product model can be integrated with other processes of
motor adaptation.

The cross-product basis function used here is a minimal set
that is sufficient to represent joint torques, but other basis
functions could also serve the same purpose as long as they are
complete and are fixed with respect to the external world. Of
particular interest is a recent proposal of a recurrent neural

network with randomly connected units that exhibits chaotic
behaviors, known as reservoir computing. Outputs of the re-
current network can reproduce complex temporal patterns of
neural firing rates as well as muscle activities (Hennequin et al.
2014; Shenoy et al. 2013; Sussillo et al. 2013).

Conclusions. Motor adaption and generalization is a sensi-
tive probe of the underlying motor representation that guides
skilled movements. Although the distinct patterns of general-
ization in viscous force-field and visuomotor rotation adapta-
tion are believed to result from independent neural correlates,
the vector cross-product representation explored here can ac-
count for both the intrinsic and extrinsic patterns of general-
ization, providing a unifying computational framework of
motor adaptation. These results, together with the close match
between the terms in the cross-product representation and the
properties of neurons in the motor cortex and other motor
structures (Tanaka and Sejnowski 2013), provide strongly
converging evidence for the validity of a common spatial
framework for the motor system. The cross product model
makes testable predictions for many other motor adaptation
and generalization experiments.

Having a neural basis of motor primitives is, however, only
a first step toward understanding how the motor system plans
actions and controls muscles. In an optimal feedback model,
there are no preplanned trajectories, unlike the feedforward
planning of motor control assumed here. Models of feedback
motor control need to be formulated using the cross product
representation.
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