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Abstract

Objective: Non-linear relations between multiple biochemical parameters are the basis for the diagno-
sis of many diseases. Traditional linear analytical methods are not reliable predictors. Novel non-
linear techniques are increasingly used to improve the diagnostic accuracy of automated data
interpretation. This has been exemplified in particular for the classification and diagnostic prediction
of cancers based on expression profiling data. Our objective was to predict the genotype from complex
biochemical data by comparing the performance of experienced clinicians to traditional linear analy-
sis, and to novel non-linear analytical methods.
Design and methods: As a model, we used a well-defined set of interconnected data consisting of unsti-
mulated serum levels of steroid intermediates assessed in 54 subjects heterozygous for a mutation of
the 21-hydroxylase gene (CYP21B) and in 43 healthy controls.
Results: The genetic alteration was predicted from the pattern of steroid levels with an accuracy of
39% by clinicians and of 64% by linear analysis. In contrast, non-linear analysis, such as self-orga-
nizing artificial neural networks, support vector machines, and nearest neighbour classifiers, allowed
for higher accuracy up to 83%.
Conclusions: The successful application of these non-linear adaptive methods to capture specific bio-
chemical problems may have generalized implications for biochemical testing in many areas. Non-
linear analytical techniques such as neural networks, support vector machines, and nearest neigh-
bour classifiers may serve as an important adjunct to the decision process of a human investigator
not ‘trained’ in a specific complex clinical or laboratory setting and may aid them to classify the
problem more directly.
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Introduction

We analyzed the genotype to phenotype relation in a
series of 54 subjects heterozygous for a mutation in
the 21-hydroxylase gene (CYP21B) and in 43 healthy
controls. CYP21B was completely sequenced in all
subjects to provide the class label, mutation or wildtype
(Table 1). These genotypical data were related to the
biochemical phenotype by measuring basal serum
levels of the steroid intermediates 17ahydroxyproges-
terone (17-OHP), 21-deoxycortisol (21-DF), dehydro-
epiandrosterone (DHEA), 17a-hydroxypregnenolone
(17-OHPreg) and cortisol (Fig. 1).

The non-classic form of 21-hydroxylase deficiency
based on heterozygous mutations of CYB21B occurs
in approximately 0.2% of the general white population
(1). The mutations induce a partial enzymatic block in
steroid biosynthesis and alter the interrelation of ster-
oid intermediates in the blood. Following augmentation
of this altered steroid pattern by stimulation through
exogenous adrenocorticotropin hormone (ACTH)
approximately 80% of the heterozygous carriers may
be correctly classified by the experienced clinician
(2–4). However, unstimulated steroid levels show an
almost complete overlap between healthy subjects and
carriers heterozygous for the mutation (Fig. 1).
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Subjects and methods

Subjects

The first group consisted of 54 subjects (age, 27–46
years; mean, 34.1 years) with heterozygous mutations
in CYP21B. These subjects were relatives of patients
with homozygous CYP21B mutations leading to the
classical forms of congenital adrenal hyperplasia
(CAH). None of the subjects had clinical symptom of
CAH or of hyperandrogenism. The geographic origin
of most of the subjects with heterozygous mutations
in CYP21B was Germany except for 20–30% of Turk-
ish origin. The personal and family history of the 43
control subjects (age, 28–38 years; mean, 31.5
years) was unremarkable. Blood was sampled between
0800 and 1100 h. The study was approved by the
local Committee on Medical Ethics, and all subjects
gave their informed written consent.

Determination of steroid profiles and genetic
testing

The serum levels of 17-OHP, 21-DF, DHEA, 17-OHPreg
and cortisol were determined in both groups under
basal (unstimulated) conditions (5, 6). Steroids were
measured after extraction and chromatographic purifi-
cation by radioimmunoassay using specific antibodies
(7). The CYP21B gene of both groups was specifically
amplified by PCR as described previously (8). The 10
exons, all exon–intron junctions, intron 2 and 7 and
400 bp of the promoter region of the CYP21B gene
were analyzed on an automated DNA sequencer
(LICOR, Lincoln, NE, USA). In a recent study we

could demonstrate an exact classification of splice site
mutations, the largest group of mutations in this
study (9, 10).

Training and testing of classifiers{TX}

In the first step of analysis the four different classifi-
cation algorithms were applied to the data: the linear
discriminant analysis (LDA), the k-nearest-neighbour
classifier (k-NN), the ‘neural-gas’ clustering algorithm
and the support vector machine (SVM). The algorithms
are explained breifly below. The classifiers applied to the
serum levels of the steroid intermediates 17-OHP, 21-
DF, DHEA, 17-OHPreg and cortisol. Since it has been
reported that the diagnosis of CAH might be based on
fewer parameters (11), we tried to predict mutations
of CYP21B from the unstimulated levels of 17-OHP
and cortisol only applying the same training and test-
ing procedure as on the full data. Each one of the algor-
ithms is applied in a ‘leave-one-out’ approach. The full
data set is split into test and training data cases. In this
work, the number of test cases is one. The remaining
training data cases are used to train the classifier
(LDA, neural gas, SVM) or to classify the test case
directly (k-NN). To evaluate one algorithm, it is applied
to each test/training data separation and the mean
value and standard deviation of correct classification
is computed as an indication of accuracy.

Linear discriminant analysis (LDA)

The linear Fisher discriminant was introduced to com-
pute a one-dimensional projection of the data that
maximizes the distance of projected class means, in
regard to minimizing the result within class covariance.
Based on the means and variances of the two classes
the linear classification function can be computed
explicitly.

k-Nearest-neighbour classifier (k-NN)

Nearest-neighbour algorithms (NNs) are ubiquitous in
many research areas such as pattern recognition,
machine learning and case-based reasoning (12).

Table 1 Frequency of mutations in the CYP21B gene.

Mutation Number of subjects

IVS2-13A/C . G (656 -13A/C . G, intron 2) 26
Ile172Asn (1001 T . A, exon 4) 11
CYP21B deletion 9
G110fs (708_715del8, exon 3) 5
Arg356Trp (2110C . T, exon 8 3

Figure 1 Profiles of steroid intermediates under basal (unstimulated) conditions in (n ¼ 54) subjects with heterozygous 21-hydroxylase
mutations (carriers) and in (n ¼ 43) healthy controls.
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The k-NN algorithm is a simple generalization of case-
based reasoning, which is k-NN for k ¼ 1. It maintains
the set of training cases and classifies the test case
according to the most frequent class among the k
examples in the training set that are most similar to
the test case. In practice, if there is a tie, the class
assigned to the smallest distance of k-NN is chosen.
Basically, the motivations for such a large diffusion of
NN reside in its good performance, which can be
obtained in many situations, and its ease of use, as
no parameter needs to be tuned and very little experi-
ence is required on the part of the user.

Neural-gas clustering

Because of the relatively small number of profiles avail-
able, we used self-organizing artificial neural networks
(13) instead of the standard multi-layer perceptrons
(14). The architecture of the self-organizing artificial
neural networks used in this study (neural-gas algor-
ithm) is based on the principle of competitive learning
(15, 16) and is a derivative of Kohonen’s topology-con-
serving feature map algorithm (17, 18). In contrast to
the LDA the neural-gas model is not based on the
assumption of a linear relation between the input
data and the predicted class or cluster. During the
learning process (training) single neurons respond
selective to different clusters in the sets of training pat-
terns. After successful training each neuron (or code-
book vector) is placed on the center of mass of a
class, thereby representing the cases of that cluster.
So the neural-gas model will elaborate differences in
the profiles of steroid intermediates between healthy
controls and subjects with heterozygous mutations of
the 21-hydroxylase gene (CYP21B). A classification
function was developed on the basis of the trained
neural gas which represents the cluster structure. The
steroid patterns of subjects with heterozygous
mutations of the 21-hydroxylase gene or healthy con-
trols were associated with every neuron. To allow for
a stable classification we used 100 differently initialized
networks for each training and testing run respectively.
A majority vote was used for final classification.

Support vector machines (SVMs)

In recent years, kernel-based methods have been the
object of much interest and research in the machine
learning community. The success of many kernel
methods is based on the concept of combining well-
known linear algorithms, such as principal component
analysis, with non-linear kernel functions. While the
application of these functions allows more powerful
non-linear solutions, the kernelized algorithms (19,
20) retain most properties of their linear versions.
The most prominent algorithm among these is the
support vector machine (SVM) proposed by Vapnik
(21) for binary classification. The SVM is gaining

popularity due to many attractive features and its
superb classification performance, shown in numerous
applications. It realizes pattern recognition between
two classes by finding a decision function (hyperplane)
determined by selected points from the training data,
termed support vectors. In general this hyperplane cor-
responds to a non-linear decision boundary in the input
space. While traditional techniques for pattern recog-
nition are based on minimizing the empirical risk (i.e.
on the attempt to optimize the performance on the
training set), SVMs minimize the structural risk (i.e.
the probability of yet-to-be-seen patterns to be classified
correctly for an unknown probability distribution of the
data). The SVM with a Gaussian kernel is trained and
its parameters (width of Gaussian) and C (regulariz-
ation) are optimized using the LIBSVM1 package,
which combines the sequential minimal optimization
(SMO) (22, 23) and the SVMLight2 algorithm. In this
study, we used a SVM with Gaussian and linear kernels
and ten-fold cross-validation

Diagnosis by human investigators

To compare the diagnostic results obtained from the
artificial neural networks with the conventional clinical
approach, four investigators known for their experience
in the field were asked to classify the profiles of basal
(unstimulated) levels of serum steroids of all subjects
into heterozygous mutations or healthy control.

Statistical analysis

The 95% confidence intervals were calculated for
the sensitivity, specificity and accuracy of the neural
networks as well as for the diagnosis of each of the
experts.

Results

It is clearly demonstrated in Fig. 1. that there is a huge
overlap of unstimulated serum levels of all five steroids
measured for the diagnostic procedure of heterozygous
CYB21B mutations between healthy controls and sub-
jects with heterozygous CYB21B mutations. Clinicians
were unable to identify the genetic disorder from
these unstimulated steroid levels (Fig. 1, Table 2). Com-
parably, multivariate LDA did not classify the genotype
from unstimulated steroid levels (Table 2). Introducing
three different non-linear methods (self-organizing
neural networks (neural-gas algorithm), nearest-
neighbour classifiers and SVMs) into the analysis
dramatically enhanced diagnostic accuracy from unsti-
mulated data only up to 83% (Table 2), a value reached
by the experienced clinicians from steroid profiles under
ACTH stimulation only (2–4). We further tested
whether all steroid intermediates are essential for a
successful classification. Reducing the steroid input
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pattern to the two most commonly used steroid par-
ameters, 17-OHP and cortisol, the diagnostic accuracy
of non-linear analysis by neural networks and SVMs
remained almost constant between 73 and 78%
(Table 2). In contrast, the performance of LDA and
nearest-neighbour classifier declined to values around
60% (Table 2).

In our model study, the insufficiency of linear
decision boundaries is exemplified by multivariate
LDA which was not able to reliably distinguish between
healthy controls and heterozygous subjects (Table 2).
Similar results were obtained by the clinicians, in par-
ticular in respect to sensitivity since they were focuss-
ing on detecting the genetic disorder from the subtle
alterations already present in the unstimulated steroid
profiles (Table 2). Introducing non-linear decision
boundaries into the classification problem dramatically
enhanced the predictive performance (Table 2).

Discussion

How to choose a suitable form of decision boundary?
Novel non-linear adaptive techniques from machine
learning have been demonstrated to be capable of
selecting and locating the appropriate form of the
decision boundary (24 –27). These approaches are
able to learn such complex non-linear decision bound-
aries from data sets of well-defined examples without
having fixed thresholds or using a fixed rule based
decision procedure. The basic methods for using these
non-linear adaptive techniques are similar to those of
conventional discriminant analysis. The data sets
used in solving the classification problem have to be
collected from a representative population of cases
and the outcome must be known by some well-verified

method (gold standard). These criteria are met in our
study where we used a well-controlled model to test
the performance of human experts, linear analysis
and non-linear analysis in the prediction of the genetic
disorder from specific steroid patterns.

In contrast to non-linear analysis, human experts
failed to classify the disease from unstimulated steroid
levels. The close similarity of their results to the results
of linear analysis, suggests that the clinicians were
unable to use the subtle non-linear relations between
unstimulated steroid parameters for making their diag-
nostic decision. The predictive results of the neural net-
work approach may be further evaluated in larger
groups (28) and with formal testing of the influence
of assay noise, interassay variability and the type of
assay used. The observation that only two commonly
assayed hormonal parameters out of the five initially
included in predicting the genotype are sufficient to
maintain the predictive power of non-linear analysis
is in favour of a rather robust performance of the ana-
lytical procedure. However, the objective of our appli-
cation of machine learning techniques is a screening
test for further diagnostic refinement and not to achieve
an accuracy close to 100%, which would be a require-
ment for genetic counselling for instance.

The present study is in line with the successful use of
non-linear analytical methods such as neural networks
and phase space reconstruction in the diagnosis of
myocardial infarction (26), certain forms of epilepsy
(27) and cancer based on expression profiling (29,
30). The efficacy of the non-linear approaches rests
on their capability to delineate non-linear interactions
by progressively learning from examples.

Correct classification of multivariate interconnected
biochemical data is the essence of many diagnostic
steps in medicine. Non-linear relations are frequent
and in many instances no simple threshold levels can
be defined. Thus, simple linear threshold analysis fails
and the diagnostic accuracy of the experienced clini-
cian is based on the detection of non-linear relations.
In heterozygous CYP21B mutations this relation only
becomes apparent following augmentation of the rela-
tive relations by ACTH stimulation.

Medical experts gather their experience from a large
number of cases accumulated over a long time span by
learning complex interactions of laboratory par-
ameters, not easily evident. The novel non-linear tech-
niques used in this study are capable of learning such
non-linear relations from large data sets of well-defined
examples. They are able to reduce the required time
span to minutes and might help to reduce the costs of
a diagnostic procedure. The successful application of
these non-linear adaptive methods to capture specific
biochemical problems may have generalized impli-
cations for biochemical testing in many areas. Non-
linear analytical techniques such as neural networks,
SVMs and nearest-neighbour classifiers may serve as
an important adjunct to the decision process of a

Table 2 Diagnostic performance of four computer-based
classification algorithms and four human investigators using basal
(unstimulated) serum levels of 17-OHP, 21-DF, DHEA,
17-OHPreg and cortisol (A) and 17-OHP and cortisol only (B).

Diagnosis method
Sensitivity

(%)
Specificity

(%)
Accuracy

(%)

A
Linear discriminant analysis 60 (46–71) 70 (55–81) 64 (54–73)
‘Neural-gas’ algorithm 81 (69–90) 79 (65–89) 80 (71–87)
k-NN classifier 74 (61–84) 63 (48–76) 69 (59–77)
Support vector machine 78 (77–79) 88 (87–89) 83 (82–83)
Expert 1 24 (15–37) 75 (60–85) 43 (34–53)
Expert 2 26 (16–39) 86 (73–93) 43 (34–53)
Expert 3 5 (2–15) 92 (80–97) 31 (23–41)
Expert 4 13 (6–24) 93 (81–98) 41 (32–51)
B
Linear discriminate analysis 54 (41–66) 70 (55–81) 61 (51–70)
‘Neural-gas’ algorithm 81 (69–90) 74 (60–85) 78 (69–85)
k-NN classifier 57 (44–70) 63 (48–76) 60 (50–69)
Support vector machine 87 (86–88) 56 (55–57) 73 (73–74)

The 95% confidence interval (CI) is given in parentheses. P-values are
given for the comparison between the classification performance of the
‘neural gas’ algorithm and each of the four experts.
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human investigator not ‘trained’ in a specific complex
clinical or laboratory setting and may help them to
classify the problem more directly.
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