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Linking brain, mind and behavior
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Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment
also support more general human cognitive processes. Yet traditional brain imaging paradigms typically
allow and record only minimal participant behavior, then reduce the recorded data to single map features of
averaged responses. To more fully investigate the complex links between distributed brain dynamics and
motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI)
systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-
dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods
to model their interrelationships. The new imaging modality should allow new insights into how spatially
distributed brain dynamics support natural human cognition and agency.

© 2009 Elsevier B.V. All rights reserved.

Perhaps the most important challenge for cognitive neuroscience
is to observe and understand how distributed brain processes support
our natural, active, and every-varying behavior and cognition.
Humans are active agents, near continually engaged in actively
attempting to fulfill their needs and desires within a complex and
ever-changing environment, often in concert and/or competitionwith
other human, animal, and/or mechanical agents. At the same time,
concepts tied together under the term “embodied cognition” have
become increasingly important in cognitive science and neuroscience.
From the viewpoint of embodied cognition, cognitive processes have
evolved to optimize the outcome of our body-based behavior within
our 3-D environment. Key concepts include:

a. Perception and cognition support action. A primary function of
human perception is to assist motor control (Churchland et al.,
1994). For example, the dorsal visual pathway directly supports
visually guided actions such as grasping (Goodale and Milner,
1992). In monkeys and humans, motor neurons involved in
controlling tools are active when pictures of tool use are viewed,
even in the absence of overt motor actions or planning (Rizzolatti
and Arbib, 1998).

b. Cognition is situated and time-pressured. New information is
integrated into our continually evolving present cognitive envir-
onment, allowing us to adapt to and predict how events in our

current environment may be influenced by our actions. Action-
motivating events typically require timely environment- and
situation-appropriate action selection.

c. We actively interact with our environment to acquire and maintain
situational awareness. Our typical feeling that we “can see every-
thing” around us rests on the feeling that what we see gives us
enough information to know where to actively look for further
information,whenand if it becomes of interest. To further reduceour
brain memory and processing load, we actively manipulate our
environment, e.g. by counting on our fingers, writing shopping lists
onpaper, erecting signposts, referring tomapsduringnavigation, etc.

d. Features of our environment become part of our cognitive system. Our
brain's body image extends beyond our physical body (Maravita and
Iriki, 2004). For example, a tennis player's racket becomes an integral
part of his or her brain/body action system, influencing the
environment (theball) to shape futureevents (theopponent's return).

e. Our imagination and abstract cognition are also body-based. Even
imaginative and abstract cognition, independent of direct physical
interaction with the environment, are body-based. For instance, sub-
vocal rehearsal of contents in verbal working memory involves the
same brain structures used for speech perception and production
(Wilson, 2001) and imagining limb movements produces activity in
the same brain areas involved in producing the actual movements
(Rizzolatti et al., 2002). We interpret “abstract” linguistic metaphors
and even abstract mathematical entities within (“as-if”) virtual
environments, such as when we “look forward” to the future, or
imagine “thenumber line” (Núnez, 2006).Ouremotional feelingsmay
also involve somatic “as-if” states and events (Damasio et al., 2000).
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1. Functional brain imaging

In the last decade, the new field of cognitive neuroscience has
flourished in large part based on thewidespreadavailability of functional
brain magnetic resonance imaging (fMRI) systems that make visible
some aspects of the intimate relationships between brain metabolism
and cognitive processes, following on the earlier success of average
event-related potential (ERP) assays of electroencephalographic (EEG)
data features linked to cognitive processes. Results of fMRI experiments,
in particular, increasingly show that brain areas and activities originally
evolved to organize the motor behavior of animals in their three-
dimensional (3-D) environments also support human cognition (Rizzo-
latti et al., 2002). This suggests that joint imaging of humanbrain activity
and motor behavior, heretofore considered infeasible, could be an
invaluable resource for understanding the distributed brain dynamic
basis of human cognition and behavior. However, the physical
constraints of fMRI and other current functional brain imaging
modalities severely limit the scope of brain imaging during production
of naturally motivated motor behavior, e.g. whole body behavior in
normal 3-D environments. Although virtual-reality systemsmay be used
in fMRI or electroencephalographic (EEG) experiments, participants in
such experiments neither produce natural behavior nor experience the
concomitant proprioceptive and vestibular sensations.

No brain imaging modality besides EEG involves sensors light
enough to allow near-complete freedom of movement of the head and
body. Nor do othermodalities have sufficient time resolution to record
brain activity on the time scale of natural motor behavior, making EEG
the clear choice for brain imaging of humans performing tasks

involving natural movements. Unfortunately, traditional EEG experi-
mental paradigms also severely restrict the body, head, and eye
movements of participants, largely for fear of introducing non-brain
artifacts they produce in traditional EEG system recordings.

2. The minimal behavior approach

The tradition of restricting EEG observations to participants
performing stereotyped, minimally-active motor responses to sudden
onsets of static stimuli continues a long heritage of psychophysical and
psychophysiological applications of methods used in classical physics to
probe the responses of simple physical systems to external impulses. In
traditional EEG experiments, researchers likewise measure only mini-
mal participant behaviors, typically responses to a limited range of
suddenly presented stimuli. Because of the perceived difficulty of
separating brain EEG data from non-brain artifacts, participants in EEG
experiments are asked to sit still, suppressing or minimizing their
natural eye and head movements, waiting for stimulus onsets then
making small, relatively infrequent finger presses (typically, on one or
more “microswitches,” Fig. 1a) to convey their response selections from
among a limited range of choices.

3. Minimizing data complexity

Simple averaging is then typically used to reduce the collected data
to a few average response traces that are then further collapsed into a
small table of average response peak amplitudes and latencies

Fig. 1. Contrasting typical EEG and proposed MoBI recording methods. (a) A participant in a typical cognitive ERP experiment sits quietly, fixating a cross at screen center, waiting for
and then responding to sudden onsets of static visual stimuli with stereotyped, minimized behavioral responses, most often production (“Go”) or withholding (“NoGo”) of minimal
finger movements to depress one or more “microswitches.” The only behavioral measures captured are the sequence of times at which the participant delivers (or withholds) button
presses. (b) Data epochs from single scalp electrodes time-locked to onsets of (here) some class of visual stimuli presses (orange box) or button presses are then averaged to form a
(stimulus-locked (or response-locked) average ERP (green box). The ERP trace is then typically further reduced to a sequence of peak (red disk) amplitude and latency measures.
(c) (Center) Artistic concept of a future mobile brain/body imaging (MoBI) system incorporating high-density dry-electrode EEG, microminiaturized eye scene and gaze tracking,
and wearable cameraless body motion capture using mm-scale chips embedded in a light skull cap and body stocking. Such a systemwould dramatically increase the bandwidth of
recorded participant behavior and experience. (Upper left) A current prototype scene and gaze-following video recording system (EyeSeeCam, Ludwig-Maximilians-University
Munich, Germany) records the scene facing the participant from a central camera, plus a high-resolution record of the subject's point of regard using a movable (top) camera that
follows the participant's eye movements with a few-ms delay. (Lower left) A current cameraless motion capture suit and portable recording system (Moven, Xsens Technologies,
Enschede, Netherlands) records and wirelessly transmits the participant's body movements without need for external cameras. (Upper right) A prototype four-channel wireless dry
electrode EEG system (Lin et al., 2008a,b) incorporating 2×2 mm dry electrode chips with 400 ganged contacts (lower right), creating a small textured surface for acquiring signals
from non-hairy skin without use of gel.
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(Fig. 1b). Finally, researchers look for reliable relationships between
these few summary values and, most often, a single behavioral
dependent variable, the identity of the button the participant chose to
press (or not) in each trial. This approach attempts to reduce the
complexity of the recorded EEG dynamics (now easily recorded with a
bandwidth of a million or more bits per second) to near the
bandwidth of the recorded behavior (typically less than one button
selection per second) by averaging across epochs time-locked to sets
of events assumed to have similar EEG consequences. Yet, given the
complexity and marked moment to moment variability of human EEG
dynamics, and the brain's central role in optimizing the outcome of
our behavior (on all time scales) in face of ever-changing physical and
cognitive circumstances, it is unlikely that this reductive approach to
cognitive EEG research can lead to further dramatic advances in
understanding how our distributed brain dynamics support our
natural behavior and experience.

From a mathematical point of view, the basic problem is that
complex functional relationships between two high-dimensional and
highly variable signals (EEG and behavior) cannot be well character-
ized by first reducing each signal to a few average measures and then
comparing them. Rather, what is needed is a new and quite different
approach incorporating better recording and modeling of relation-
ships between high-density EEG and more natural and higher-fidelity
behavioral recordings.

4. A new direction: recording what the brain controls

Clearly, a new experimental approach is required to gain a deeper
understanding of the ways in which complex, distributed, and ever-
varying neural dynamics support our natural, ever-varying behavior.
We propose that this approach should begin with recording as much
as possible of the motor behavior and physiological processes, and
events that the participant's brain is organizing. Methods for capturing
unconstrainedmulti-joint motions of the head, limbs, and trunk in 3-D
space have evolved rapidly over the last 2 decades, engendering a
paradigm shift in the field of motor control away from the study from
the study of simple movements, such as button presses or single joint
motions, to the study of more complexly coordinated, multi-joint
naturalistic movements. Positions of dozens of points on the limbs and
body can now be captured at high spatial and temporal resolutions
during naturalistic movements, and self-contained, “cameraless”
motion capture suits are also becoming available (Fig. 1c).

5. Mobile EEG recording

To truly allow high-quality EEG monitoring of naturally-moving
subjects, EEG systems must have characteristics not available in current
brain imaging systems. To allowdense spatial sampling, the EEG sensors
must be small and lightweight, and not require uncomfortable skin
preparation. Further, ideally the systemshould avoid the riskof electrical
bridging between nearby contacts by avoiding the use of conductive gel.
To minimize weight and susceptibility to system movement artifacts,
EEG acquisition and amplification circuits must also be small, light-
weight, and battery-powered. To maximize mobility and allow near
real-timeuse of the recorded data ormeasures derived from it, theymay
use wireless telemetry. Continuing research into microelectronic bio-
sensors has lead to several dry electrode designs (AlizadehTaheri et al.,
1996; Gondran et al., 1995; Griss et al., 2001; Lin et al., in press), making
trulymobile, wireless EEG systems incorporating dry sensor technology
(Fig. 1c, upper right) and small, lightweight, wearable data acquisition
circuits now feasible.

6. Audiovisual scene recording

Another behavioral dimension key to our interactions with our
environment and other agents is eye movements (Liversedge and

Findlay, 2000). Recording and analysis of eye movements and point of
regard of mobile subjects is also challenging. Novel approaches, such
as that shown in Fig. 1c (upper left), might in future be miniaturized
for wearability, as in the artist conception (center). The brain also
supervises the body's autonomic functions, including cardiac activity,
respiration, perspiration, etc. (Critchley et al., 2003). It is advisable,
therefore, for a more adequate behavioral measurement system to
concurrently measure and jointly analyze these functions as well.
Recording all this information synchronously poses both a hardware
and software engineering challenge. For example, recordings from
multiple electrodes placed on and near the neck must sum a large
number of distinct head and neck muscle sources. Thus, while current
very-high density (256-channel) EEG recordings may adequate for
initial development, still higher-density systemsusingdryelectrodes to
avoid gel bridgingmay ultimately prove desirable. A pilot embodiment
of the MoBI concept (Fig. 2a) allows recording during an unprece-
dented although still partially limited range of natural behavior.

7. Mobile EEG analysis

Successful methods for adequate analysis of EEG data in experi-
ments involving a range of participant movements must take into
account several factors:

1. EEG sources. Scalp EEG signals sum source activities arising within
cortical domains whose local field activity becomes partially
synchronized, giving rise to far-field potentials that each project,
by volume conduction, to nearly all the scalp electrodes, where
they are summed with differing relative strengths and polarities
(Makeig et al., 2004). Scalp EEG signals also sum a variety of
volume-conducted non-brain (“artifact”) processes including eye
movement, cardiac, and muscle activities, plus line and channel
noise, that under favorable circumstances may be separated from
the data contributed by brain sources (Jung et al., 2000b).

2. EEG and movements. It seems likely the brain may use naturally
emergent local field synchronies (cortical EEG sources) to focus its
extremely high-dimensional synaptic scale activity onto much
lower-dimensional control of motor behavior. If so, then regular
relationships between EEG and motor actions may be found in
MoBI data, as indeed we and others are already finding. Particularly
salient relationships between EEG changes and body movements
may occur at movement decision points, particularly when move-
ments are distinctly motivated, for example accompanying quick
reactions to unexpected events.

3. Loci of expected effects.Many cortical regions are likely interactively
involved in supporting motivated motor behavior—not only
primary motor areas directly supporting brain motor commands,
but also areas supporting motor planning and expectation,
perceptual motor and sensorimotor integration, spatial awareness
and executive function, including areas directly connected to sub-
cortical brain “valuation” systems that support rapid behavioral
adjustments to anticipated or potential threats, rewards, and errors.

4. Correlation versus causation. Observed relationships between EEG
changes and motor actions may not always reflect their direct
neural coupling. For example, continual changes in the cortical
distribution of alpha band power during inquisitive movements
may index concurrent shifts in the distribution of sensory attention
(Worden et al., 2000).

5. EEG artifacts. A primary challenge to performing EEG brain imaging
in mobile circumstances is extracting meaningful event-related
brain dynamics from recorded signals that necessarily include
significant non-brain artifacts arising from subject eye movements,
head and neck electromyographic (EMG) activity, cardiac artifacts,
line noise, and other non-brain sources. A signal processing
approach developed over the last 2 decades, independent compo-
nent analysis (ICA)(Bell and Sejnowski, 1995), has proven to be
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effective for EEG decomposition into functionally distinct source
activities (Makeig and Jung, 1996; Makeig et al., 2002). ICA can be
considered a data-driven method that learns a set of spatial filters
each of which passes information from a distinct information source
in the recorded multichannel data (Makeig et al., 2004).

In particular, ICA can be an effective method of identifying and
separating several classes of artifacts from the data (Jung et al.,
2000a). Under favorable circumstances, ICA decomposition of con-
tinuous or discontinuous high-density EEG data allows the separate
and concurrent monitoring of dozens of EEG brain and non-brain
artifact sources (Fig. 2b, c, d), thus avoiding much of the often severe
data reduction integral to traditional analysis methods that reject
from analysis EEG data epochs containing movement artifacts.
Applied to data from mobile participants, ICA can separate and
monitor EMG activity from individual head and neck muscles that,
since they do not move appreciably, have spatially fixed patterns of
projection to the EEG electrodes (Fig. 2c, e, f). ICA can also isolate into
a small component subspace other artifacts whose projections to the
recording array are not static but move in spatially stereotyped
patterns, for example slow blinks or cardiac artifacts. Spatially labile
and non-stereotyped artifacts, however, can quickly spew series of
hundreds of unique scalp distributions into the data, each de facto
independent of the rest of the recorded data and not separable into a

low-dimensional independent component subspace. For example,
such artifacts may result if extreme head and scalp movements
produce small movements of many of the electrodes on the scalp.
Such spatially non-stereotyped artifacts need to be identified and
removed from the training data before or during ICA decomposition
(Onton et al., 2006).

Finally, electrodes improperly attached to the scalp, most often
those placed on labile scalp tissue over face, neck, and scalp muscles,
may each contribute independent single-channel noise to some or all
of the data, again posing a challenge to artifact separation by standard
“complete” ICA methods that train a number of source filters equal to
the number of recording channels. While “overcomplete” ICA
methods that can learn more filters than this have been developed
(Lewicki and Sejnowski, 2000), they require stricter assumptions
about the nature of the sources, and may become less robust as signal
complexity increases. Therefore, developing methods for identifying
and modeling changes in the spatial source distribution of the EEG
data is an important goal for ICA research (Lee et al., 1999).

8. Brain data preprocessing

Scalp-recorded EEG signals are each mixtures of activity from a
variety of brain as well as non-brain sources, and the number of
possible brain source domains (e.g., cortical patches) is quite large.

Fig. 2. Pilot mobile brain/body imaging. (a) A pilot 3-D object orienting MoBI experiment. Wearing a lightweight battery-powered 256-channel EEG system (Biosemi, Inc.) and
motion capture suit (Phasespace, Inc.) incorporating 30 infrared emitters whose positions are captured at 480 Hz by 12 cameras, the participant turns their head to look toward (left),
point to (center), or walk and point to (right) one of several displayed objects as cued by instructions displayed on a task screen (center). Custom (DataRiver) software synchronizes
the high-density EEG and full-body motion capture data, stores it, and simultaneously makes it available across a local area network (LAN) for online computation, allowing
interactive stimulus control based on current body position or movement and/or EEG measures. The synchronized EEG and behavioral data allow assessment of functional links
between brain dynamics and behavior. Independent component analysis (ICA) separates the EEG data into a number of temporally and (often) functionally distinct sources that may
be localized, e.g. via their equivalent model dipole(s), as illustrated for one subject in (c). For example, (b) an independent component (IC) source localized to in or near left
precentral gyrus (BA 6) exhibits blocking of high-beta band activity following cues to point to objects on the left or right, while another right middle frontal (BA 6) IC source
(d) exhibits mean theta- and beta-band increases followed by mu- and beta-band decreases during and after visual orienting to the left or right. (e) An IC source accounting for
activity in a left neckmuscle produces a burst of broadband EMG activity during left pointingmovements, and while maintaining a right pointing stance, while (f) a right neckmuscle
IC source exhibits an EMG increase during right head turns and during maintenance of left-looking head position.

98 S. Makeig et al. / International Journal of Psychophysiology 73 (2009) 95–100



Author's personal copy

Thus the problem of identifying the unknown EEG source signals and
their individual projections to the scalp sensors from the data is a
difficult blind source separation and physical inverse problem.Methods
and software for imaging the source dynamics of cortical activity from
high-density scalp recordings are steadily evolving (Michel et al., 2004).
Applied to EEG data, independent component analysis (ICA) algorithms
learn spatial filters that linearly separate EEG into a sum of component
processes with maximally temporally independent time courses
(Makeig et al., 2004;Makeig et al.,1996).Many independent component
(IC) source processes project to the scalp with a nearly “dipolar” pattern
compatible with a cortical patch source. Spatial equivalent dipole
location (in or near brain, else in or near eyes or scalp muscles) can be
estimated using a electrical head model, optimally one built from the
participant MR head image (Mosher et al., 1999). Open source software
is available (Delorme and Makeig, 2004). However, ICA decomposition
into separate source activities can be thought of as a signal pre-
processing step that enables but does not suffice for joint analysis of the
brain EEG and behavioral data. Further, pre-analysis of body motion
capture data is also non-trivial.

9. Movement data preprocessing

Modern biomechanical data analysis proceeds from recording the
changing positions, velocities, and/or accelerations, in external world
or body-centered coordinates, of sensors placed on the body surface,
to computing movements of each body and limb segment relative to
another in a body-centered reference frame, to estimating the time
courses of the particular muscular forces that produce those joint
movements (Poizner et al., 1995; Soechting and Flanders, 1995)
Determining joint movements from motion capture records is a
mathematical inverse problem, as a kinematic transformation is
needed between trajectories of the recorded body surface positions
and those of the underlying joint angles (Soechting and Flanders,
1992). Determining the muscular rotary forces (torques) applied to
the limb segments to produce the observed joint/limb trajectories is a
further inverse problem requiring a biomechanical model of the body
skeleton and musculature (Winter and Eng, 1995), for which open
source software is becoming available (Delp et al., 2007).

10. Identifying links between behavior and EEG dynamics

To interpret the proposed polymodal mobile brain/body imaging
data requires development of adequate methods for modeling
relationships between rapidly changing high-dimensional brain
source activities and the complexities of natural motor behavior. To
discover relationships between high-dimensional synchronously
recorded brain and body movement data, they first should each be
non-linearly transformed in ways appropriate to the nature and
origin of each type of data. Then the structure of the transformed
joint data may be explored using data-information based machine
learning methods (Baker et al., 2006), and the EEG brain sources
imaged using statistical inverse imaging methods (Michel et al.,
2004; Wipf et al., 2007). Simple averaging of power spectral
changes in independent component time courses unmixed from
preliminary MoBI experiments reveal spectral shifts with distinct
temporal relationships to particular phases of simple reaching
movements (Hammon et al., 2008; Makeig et al., 2007) (Fig. 2b, d).
However, new data-driven, multi-factorial analysis methods that
identify characteristic time-domain or frequency-domain EEG
patterns associated with particular movement and/or task contexts
are needed to model the expected richness of the data. Modeling
transient coupling between activities of distributed, quasi-indepen-
dent sources in different brain areas is a further important
dimension of data mining and modeling research.

11. Open questions

The prospect of EEG-based mobile brain/body imaging (MoBI)
raises many methodological, experimental, and theoretical questions:

1. Recording methods: How many EEG channels, and what recording
montage, sampling rate, and resolution are optimal?

2. Artifacts: Within what range of body movements can mobile EEG
data be successfully analyzed? How best to identify and deal with
movement artifacts in both the EEG and motion capture signals?

3. Signal processing: What preprocessing of the EEG and motion-
capture signals is optimal for modeling their interrelationships?
Towhat extent is transformation of the bodymotion capture data to
a model of muscle forces and joint angles necessary or desirable?

4. Psychophysiology: How can electromyographic (EMG) and other
psychophysiological signals (for example, respiratory and electro-
cardiographic) be incorporated in the analysis?

5. Audiovisual scene analysis: How can information about the
participant's audiovisual experience and eye gaze history best
be incorporated into the analysis?

6. Context: How can the moment-by-moment evolution of the
experiential and motivational context of participant movements
best be observed, represented, and incorporated into the analysis?

7. Simple movements: What are the EEG correlates of simple
movements such as reaching to touch or grasp objects? How do
they depend on the motivation of the action? How do EEG
dynamics during walking co-vary with challenges in the terrain?
How do they depend on the pace and motivation of the
movements? How are they altered in pathologies that affect
motor behavior?

8. Sensory processing: How are active shifts in attention and body
orientation from one object (or agent) to another represented in
the EEG? How do EEG dynamics associated with visual processing
of presented (2-D) object images (or agents) differ from
approaching and viewing the actual (3-D) objects (or agents)?

9. Learning andmemory:What EEGdynamics are associatedwith (3-D)
spatial learning and with active (3-D) recall?

10. Motivation: How do the EEG dynamics associated with externally
cued and self-motivated actions differ?

11. Decision-making: What EEG dynamics are associated with motor
decisions and in-flight motor adjustments, respectively? Again,
how does motivation matter?

12. Abstract cognition: Do EEG dynamics associated with abstract
cognition (for example, counting and use or appreciation of
metaphor) resemble dynamics associated with related actions?

13. Social neuroscience: What EEG dynamic patterns are associated
with orienting to, responding to, and imitating other people
versus inert or moving objects? How does this depend on the
social context and the intent of the actions?

12. Conclusions and future directions

As MoBI technology and analysis methodologies are developed,
investigations using a wide range of experimental paradigms will
become possible, perhaps beginning with simple motivated actions
(such as 3-D orienting, pointing, and grasping as in Fig. 2a) (Hammon
et al., 2008), and finally extending to a wide range of tasks and natural
behaviors including biomechanical adaptation and learning, naviga-
tion, and social interactions. Though many existing experimental
designs in all these areas might be fruitfully exploited, the tight
coupling between EEG, novelty, and valuation suggest that these
factors receive more explicit attention in MoBI experiment designs.
The result of combining these sensor development, data analysis, and
source imaging technologies should be the development, in coming
years, of truly dynamic, higher-definition imaging of distributed EEG
brain dynamics supporting natural cognition and behavior.
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