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Learning to recognize mirror, rotational and translational symmetries is a difficult problem for massively-parallel network 
models. These symmetries cannot be learned by first-order perceptrons or Hopfield networks, which have no means for 
incorporating additional adaptive units that are hidden from the input and output layers. We demonstrate that the Boltzmann 
learning algorithm is capable of finding sets of weights which turn hidden units into useful higher-order feature detectors 
capable of solving symmetry problems. 

1. Introduction 

Interest in massively-parallel network models 
has recently increased because of the possibility 
that they may be capable of solving difficult prob- 
lems in vision, speech and motor control [I-41. 
Knowledge about the task domain can be "pro- 
grammed" into a network by specifying the con- 
nectivity of the processing elements and the 
strengths of the connections, or weights. For ex- 
ample, networks have been designed to perform 
figure-ground separation in images [5] and to solve 
the traveling salesman problem [6]. It would be 
desirable to have an automatic learning procedure 
that could incorporate knowledge about the task 
domain into the weights given only examples of 
solutions. The network would then be able to 
generalize appropriately. 

Learning in humans is not a single ability 
but a cluster of adaptive abilities. When we 
are introduced to someone we learn to associate 
their name with their face and voice. Faces, 
names and voices are domains in which we are 
already expert, and only the associations amongst 

them need be learned. It is more difficult to re- 
member someone's name in a foreign country, 
where the faces, names and voices are unfamiliar. 
It is even more difficult to learn new domains, 
such as lip reading or interpreting medical 
X-ray photographs. Learning a new domain means 
learning new concepts and new internal represen- 
tations, learning that normally requires long train- 
ing. 

The learning problems examined here are based 
on the categorization of symmetry groups in pat- 
terns presented to an input array. It is possible in 
this domain to classify the difficulty of problems 
and to get insight into possible solutions using our 
own knowledge of symmetries. Symmetries are 
commonly found in nature, such as the bilateral 
mirror symmetry of faces, and symmetry groups 
have been extensively studied in mathematics and 
physics. We will demonstrate a general learning 
algorithm that can discover mirror, rotational and 
translational symmetries in input patterns. These 
empirical results support the conjecture that the 
predicate order of a problem is a measure of its 
learnability [7, 8, 101. 
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2. Perceptrons a Binary Threshold Unit 

The perceptron is a parallel machine that can 
learn to categorize input patterns [9]. The learning 
algorithm requires a training phase during which 
the teacher presents examples from each category 
and provides feedback about the correctness of the 
classification that the perceptron makes. The input 
patterns are normally represented by an array of 
units that can take on only binary values. The 
input units are connected to a set of feature 
analyzers that are then connected to a final set of 
decision units. Each decision unit computes the 
scalar product of the vector of outputs from the 
feature analyzers and the vector of weights on its 
incoming connections. The output of a decision 
unit is 1 if the scalar product exceeds a threshold, 
otherwise it is 0, as shown in fig. 1. 

The feature analyzers are fixed in advance and 
do not learn. All the learning takes place in the 
weights from the feature analyzers to the decision 
units, so when a perceptron is viewed as a learning 
device the states of the feature analyzers can be 
viewed as a pre-processed input vector and the 
inputs are then directly connected to the outputs. 
This simple topology and simple decision rule has 
the advantage that there is a simple procedure for 
incrementally changing the weights which is 
guaranteed to converge on a set of weights that 
allows the decision units to correctly categorize the 
input patterns, provided that such a set of weights 
exists. Unfortunately, there are strong limitations 
on what can be learned by a single layer of mod- 
ifiable weights [lo]. However, these limitations can 
be overcome in several ways if we: 

1) Use exponentially many feature analyzers so 
that all possible combinations of activity in the 
input array are explicitly represented in the fea- 
ture analyzers. 

2) Make the decision units use a more complex 
function for combining the outputs of the feature 
analyzers. 

3) Extend the algorithm so that it also modifies 
the weights on the connections between the input 
array and the feature analyzers, so that the net- 

Input A E  

C 
Binary Boltzmann Unit 

Fig. 1. Input-output decision rules for a) a binary threshold 
unit in a perceptron; and c) the probability of activating a 
binary Boltzmann unit as a function of total input A E, shown 
schematically in b). The temperature T is a scaling factor that 
determines the steepness of the sigmoid as a function of A E. 
Note that in the limit as T +  0, the probability sigmoid in c) 
approaches the step function in a). 

work can develop just those feature analyzers that 
are required for the task. This can also be viewed 
as introducing extra layers of adaptive units be- 
tween the feature analyzers and the decision units 
if the input patterns are equated with the states of 
the feature analyzers rather than the input array of 
the perceptron. 

A key concept that Minsky and Papert [lo] 
introduced in their influential analysis of per- 
ceptrons is the order of the problem, which roughly 
corresponds to the &mum number of input 
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units that carry any information relevant to the 
required output. (A more formal definition of pre- 
dicate order is given in appendix A.) For example, 
the boolean OR function has order 1 because the 
value of a single input unit contains some informa- 
tion about the output. In contrast, the boolean 
EXCLUSIVE-OR (XOR) function has order 2 
because each unit of the input array, considered in 
isolation, contains no information about the out- 
put value. The parity function of n binary input 
units is order n, and XOR is the special case with 
n = 2 (see section on XOR below). 

Perceptrons are only capable of solving prob- 
lems that are first order in their feature analyzers. 
They cannot, for example, learn to solve the XOR 
problem unless they are given appropriate hand- 
wired feature analyzers. This is also true of many 
other types of networks and learning algorithms 
that have been proposed, such as the network 
proposed by Hopfield [Ill for associative memory. 
It can be proved thdt there exists no set of weights 
and thresholds for three binary units that allows a 
three-unit Hopfield network to store the four pat- 
terns (1 lo),  (1 011, (01 I), and (000) without 
storing other additional patterns. Higher-order 
problems can, however, be solved by introducing 
additional units that we call hidden units because 
they receive no external inputs and have no exter- 
nal outputs. As will be demonstrated, the XOR 
problem is a relatively easy second-order problem 
that can be solved if one hidden unit is added to 
the network. 

Networks like the perceptron in which there is 
only one layer of modifiable weights avoid the 
most difficult issue in learning - constructing ap- 
propriate internal representations. In a perceptron, 
all the units have their behavior specified exter- 
nally. The behavior of the feature analyzers is a 
pre-wired function of the input patterns, and the 
required behavior of the decision units is specified 
by the teacher. This means that there are no 
"hidden" units that are free to represent novel 
features that would help with the required dis- 
crimination. As soon as hidden units are intro- 
duced, learning becomes much harder because the 

learning procedure must decide what the hidden 
units should represent. Minsky and Papert sug- 
gested that the limitation of the perceptron learn- 
ing algorithm to a single layer of modifiable weights 
could not be overcome. We show here that at least 
one generalization of the perceptron can learn to 
use hidden units to solve difficult problems. 

3. Boltzmann machines 

Boltzmann machines were designed to solve a 
class of optimization problems in vision called 
constraint-satisfaction problems [3, 12, 131. The 
processing units in the machine have binary values 
like that of the perceptron, but all links between 
the units have reciprocal connections with the 
same weight. The symmetric connectivity enables 
the convergence of the networks to be analyzed 
using techniques from physics [ll]. In particular, 
it is possible to define the energy of the network as 

where s, is the state of the ith binary unit and w,, 
is the weight between the ith and j th units. (In 
this paper the weights can only take on integer 
values.) The binary threshold rule governing the 
binary units in the perceptron is deterministic, but 
in a Boltzmann machine the decision rule is prob- 
abilistic: 

where pi is the probability for the ith unit to be in 
state 1, P(x)  is a sigmoidal probability function 
(fig. I), T is a parameter analogous to temperature 
and is a measure of the noise introduced into the 
decision [14], and the total input to the unit is 

AE, = EwiJsJ. 
J 

(3) 

Thresholds are taken into account by giving each 
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unit a connection to a unit that always has value 1, 
the "true" unit. The value of the weight to the true 
unit is a bias, or the negative of the threshold, to 
that unit. 

The energy function of a network is a cost 
function that must be minimized to solve the 
constraint-satisfaction problem. The probabilistic 
decision rule, which is applied asynchronously, 
allows the network to escape from local energy 
minima. Simulated annealing (gradually lowering 
the temperature T) can be used to find good states 
of low energy [15]. In this paper simulated anneal- 
ing will not be used to find the globally optimal 
solution, but to rapidly reach equilibrium at the 
temperature where learning takes place. In all the 
simulations reported here the learning tempera- 
ture was chosen arbitrarily to be T = 10. 

The idea of implementing constraints as interac- 
tions between stochastic processing elements was 
proposed by Moussouris [16] who discussed the 
identity between Boltzmann distributions and 
Markov random fields [17]. The idea of using 
simulated annealing to find low energy states in 
parallel networks has been investigated by several 
different groups. Geman and Geman [18] estab- 
lished limits on the allowable speed of the anneal- 
ing schedule and showed that simulated annealing 
can be very effective for removing noise from 
images. Hinton and Sejnowski [3] showed how the 
use of binary stochastic elements could solve some 
problems with other relaxation techniques, in par- 
ticular the problem of learning the weights. 
Smolensky [19] has been investigating a similar 
framework he calls "harmony theory", and Cerny 
[20] has applied simulated annealing to multi- 
processors. Paretto [21], Amit et al. [22, 231, and 
Toulouse et al. [24] have studied the properties of 
networks that have random weights. 

4. The Boltzmann learning algorithm 

The goal of the learning algorithm is to produce 
a network which correctly categorizes input pat- 
terns according to the following procedure: the 

input units are "clamped" to a particular pattern 
while the network relaxes into a state of low 
energy in which the output units have the correct 
values. The input and output units will be called 
"visible" units to distinguish them from the hid- 
den units. The difficult part of learning is to 
decide how to use the hidden units to help achieve 
the required behavior of the visible units. The 
statistical structure of the input-output mapping 
must be captured by the weights between the 
units, and only the first-order statistics of the 
input pattern can be captured by direct connec- 
tions between input and output units. The role of 
the hidden units is to capture higher-order statisti- 
cal relationships and this can be accomplished if 
significant underlying features can be found that 
have strong, regular relationships with the pat- 
terns on the visible units. The hard part of learn- 
ing is to find the sets of weights which turn the 
hidden units into useful feature detectors. 

The Boltzmann learning algorithm is closely 
related to the EM algorithm for estimating the 
parameters of exponential distributions to fit in- 
complete data 1251 and an earlier algorithm pro- 
posed by Baum for estimating the parameters in a 
hidden Markov chain that has been successfully 
used for speech recognition [26]. These are maxi- 
mum likelihood methods that work by adjusting 
parameters to increase the probability that the 
observed data were generated by the underlying 
model. The Boltzmann learning algorithm, which 
is also a maximum likelihood method, has the 
advantage that it can be easily implemented in a 
parallel network of simple processing units. It is 
derived from a measure of how effectively the 
weights in a network are being used for modeling 
the structure of the environment 13, 131. In this 
paper the environment will always have the struc- 
ture of a mapping between a set of input units and 
a set of output units. Each step in the algorithm 
depends on estimating the gradient of this mea- 
sure with respect to the weights and making incre- 
mental changes to the weights to reduce the dis- 
crepancy between the model and the environment. 
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We assume that the environment clamps a par- 
ticular vector over the input units and keeps it 
there long enough for the network to reach ther- 
mal equilibrium with ths  vector as a boundary 
condition. We also assume that there is no struc- 
ture in the sequential order of the environmentally 
clamped vectors. Therefore the complete structure 
of the ensemble of input-output mappings can be 
specified by giving the probability distribution of 
each of the 2" vectors over the v visible units. 
Note that this probability distribution does not 
depend on the weights in the network because the 
environment clamps the visible units. 

A particular set of weights can be said to con- 
stitute a perfect model of the structure of the 
environment if it leads to exactly the same prob- 
ability distribution of visible output vectors when 
the visible input vectors are clamped. Let 
P-(0,l Ip) be the probability distribution of ob- 
taining an output state 0, when the input is 
clamped to state Ip and the network has been 
allowed to reach equilibrium. The goal of the 
learning algorithm is to find weights which match 
the desired input-output mapping P+(O, 1 Ip) to 
the actual one, P-(O,lIp), but this will not in 
general be possible since there are exponentially 
many possible mappings and there are at most 
only n(n  - 1)/2 symmetrical weights and n 
thresholds among n units. However, it may be 
possible to do well with relatively few weights if 
the mappings contain regularities that can be ex- 
pressed in the weights. 

An information-theoretic measure [27] of the 
distance between the two probability distributions 
is given by 

where P(Ip) is the probability distribution over 
input vectors. G is never negative and is zero only 
if the desired and actual probability distributions 
of the mappings are identical. The G-measure is 
sometimes called the asymmetric divergence or 

information gain because it reflects the distance 
from the output probabilities produced by the 
model to the environmental distribution. Minimiz- 
ing G is also equivalent to maximizing the log of 
the likelihood of generating the correct mappings. 
The likelihood ratio is weighted by the actual 
probability of occurrence of that mapping, which 
gives greater weight to events that occur more 
frequently. 

The network's model of the required mapping 
can be improved by changing the weights so as to 
reduce G .  At first sight this would seem to require 
global information about the network, since 
changing a single weight will change the probabili- 
ties of many global states in ways that depend on 
all the other weights in the network. Fortunately, 
this information is available locally; that is, the 
gradient of G with respect to w,, depends only on 
the behavior of the ith and j th units. It can be 
shown that 

where P,: is the probability, averaged over all 
mappings, that the ith and jth units are both on 
when the inputs and outputs of the network are 
clamped, and P,; is the corresponding co-occur- 
rence probability when only the inputs to the 
network are clamped [13]. 

Because the system is Markov and therefore 
ergodic, the ensemble-average probabilities in eq. 
(5) can be approximated by time-average probabil- 
ities in thermal equilibrium. A fast annealing 
schedule was used to reach approximate equi- 
librium: (2@40, 2@35, 2@30, 2@25, 2@20, 
2@16, 2@14, 2@12, 14@10), where 2@40 means 
that each of the units was probed twice at a 
temperature of 40. Co-occurrence statistics were 
accumulated during the last 5@10 iterations and 
the weights were updated after several input pat- 
terns were presented (typically 5). Several different 
ways to collect the statistics are discussed in ap- 
pendix B. The difference 
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can be used to estimate the gradient of G, but 
because the average is very inaccurate, only the 
sign was used to decide to change the weight by 
+ 1 if A > 0 and - 1 if A < 0. Using this gradient 
descent procedure the weights tended to become 
large because that is one way to improve the 
performance on patterns already learned. Unfor- 
tunately, large weights cause high energy barriers 
so that the network is unable to approach equi- 
librium in the time allowed. To counteract this 
tendency, the weights were made to decay by 1 
with a small probability that was proportional to 
the magnitude of the weight (typically around 
0.0001 times the magnitude of the weight). 

Except in the XOR problem, the input units 
were not connected directly to the output units 
but communicated only indirectly through a layer 
of hidden units. The output units were intercon- 
nected but there were no interconnections amongst 
the hidden units. Allowing connections between 
hidden units did not significantly affect the perfor- 
mance, but made it more difficult to interpret the 
solutions. 

5. Unlearning 

Crick and Mitchison [28] have suggested that a 
form of reverse learning might occur during REM 
sleep in mammals. A simulation of reverse learn- 
ing was performed by Hopfield et al. [29] who 
independently had been studying ways to improve 
the associative storage capacity of simple networks 
of binary processors. In their algorithm an input is 
presented to the network as an initial condition 
and the system evolves by falling into a nearby 
energy minimum. However, not all local energy 
minima represent stored information. In creating 
the desired minima, they accidentally create other 
spurious minima and to eliminate these they use 
" unlearning": The learning procedure is applied 
with reverse sign to the states after starting from 
random initial conditions. Following this proce- 
dure the performance of the system in accessing 
states was found to be improved. 

There is an interesting relationship between the 
reverse learning proposed by Crick and Mitchison 
and Hopfield et al. and the form of the learning 
algorithm which we derived by considering how to 
minimize an information theoretic measure of the 
discrepancy between the environmental structure 
and the network's internal model [3]. The two 
phases of our learning algorithm resemble the 
learning and unlearning procedures: positive 
Hebbian learning occurs in phase' during which 
information in the environment is captured by the 
weights; during the testing phase- the system sam- 
ples states according to their Boltzmann distribu- 
tion and Hebbian learning occurs with a negative 
coefficient. 

However, these two phases need not be imple- 
mented in the manner suggested by Crick and 
Mitchison. For example, during phase- the aver- 
age co-occurrences could be computed without 
making any changes to the weights. These aver- 
ages could then be used as a baseline for making 
changes during phase+; that is, the co-occurrences 
during phase' could be computed and the base- 
line subtracted before each permanent weight 
change. Thus, an alternative but equivalent pro- 
posal for the function of dream sleep is to re- 
calibrate the baseline for plasticity - the break-even 
point which determines whether a synaptic weight 
is incremented or decremented. This would be 
safer than making permanent weight decrements 
to synaptic weights during sleep and solves the 
problem of deciding how much "unlearning" to 
do. 

6. XOR 

The XOR problem will be used to illustrate 
several general properties of solutions produced by 
the Boltzmann learning algorithm. This problem is 
small enough that it can be run many times and all 
possible solutions can be catalogued. The average 
learning curve for 20 runs is shown in fig. 2. Two 
measures were used to assess the performance of a 
network. For the fast cooling schedule given above 
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Fig. 2. Performance of the XOR network, averaged over 20 
runs, as a function of the number of individual input presenta- 
tions. The performance with a fast annealing schedule reached 
96% within 2,000 presentations. With a slower annealing sched- 
ule the same weights gave a virtually perfect performance. 

the typical performance was 96% correct at T = 10; 
when a much slower cooling schedule was used 
(255 iterations down to T =  4) the performance 
was virtually perfect. (A Boltzmann machine can- 
not be perfect at finite temperature.) 

Two graphical ways to represent a network are 
illustrated in fig. 3. In the first, more traditional 
form each reciprocal connection of the network is 
represented as an arc and the value of the weight 
is represented by a number on the arc. The same 
network is shown in a form where each weight is 
represented as a black or a white square, and the 
connection is implicitly indicated by the position 
of the square within the unit icon. In the example 
shown, the hidden unit, in the center, has two 
excitatory weights to the input units, which can be 
considered the "receptive field" of the unit. The 
hidden unit in turn excites the output unit. How- 
ever, this was not the only way that the hidden 
unit can be used to solve the problem. Eight 
different classes of solution were found. Some of 
these solutions were more common than others, as 
indicated in table I. All of the runs were started 
from zero weights, which biased the search in 
weight space toward some classes of solutions. 

Output 

Hidden 

Input 

Fig. 3. Two ways of representing a network that solves the 
XOR problem as found by the Boltzmann learning algorithm. 
a) Conventional representation: The circles represent the two 
input units in the bottom layer, the output unit in the top 
layer, and the hidden unit in the middle layer. The lines 
between the units are labeled with the weight of the reciprocal 
link between each pair of units. The single line drawn to a unit 
is a link to the true unit, and the value represents the bias to 
that unit. b) A more compact self-similar representation of the 
same network as in a). Each unit has the same "L" shape as 
the shape formed by all four units. The squares within each 
unit represent weights, and the position of a square within the 
unit matches the position within the network of the unit to 
which the weight connects. White squares are excitatory 
weights, black squares are inhibitory weights, and the area of 
the square is proportional to the magnitude of the weight. The 
bias to a unit is shown in the position occupied by that unit in 
the network. 
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Table I 
S u m m y  of eight different ways that a single hidden unit can be 
used in an XOR network. The desired input-output mapping is 
shown on the left side of the table and each column on the right 
side shows the state of the hidden unit for one solution to the 
problem. The Boltzmann learning algorithm was run 339 times 
starting each run with zero weights. Each of the codes was found 
at least once and the fraction of the total number of runs of each 
type is listed beneath each column. 

Inputs Output Hidden unit 

0 0 0  0 1  0 1 0  1 0 1  
0 1 1  1 0  1 0 0  1 0 1  
1 0 1  1 0  0 1 1  0 0 1  
1 1 0  1 0  0 1 0  1 1 0  
Percentage of runs: 4% 54% 16% 1% 16% 1% 7% 0.3% 

Thus, several different networks were found that 
could solve the problem, and the pattern of weights 
found on a particular run depended on the par- 
ticular path through weight space taken by the 
probabilistic algorithm. In each solution the hid- 
den unit was used to select one of the inputs as 
different from the rest; in a sense, the hidden unit 
was used to represent a second-order fact about 
the input pattern, and this intermediate represen- 
tation carried enough information to solve the 
second-order XOR problem. In the following ex- 
amples, the hidden units also "discover" inter- 
mediate representations that allow the network to 
solve a higher-order problem, although in those 
cases it is not as obvious what representations 
have been found or how many there are. 

7. Mirror symmetries 

Consider a square N X N array of randomly 
generated binary patterns that have an axis of 
reflection symmetry, as shown in fig. 4. For every 
axis of symmetry, there are 2 N 2 / 2  different input 
patterns. The task is to teach a network to cor- 
rectly categorize these patterns according to the 
axis of symmetry. To make the problem more 
difficult, imagine that the arrangement of the pixels 
is randomly scrambled by fiber optics, so that the 

Fig. 4. Sample input patterns for the 10 X 10 mirror symmetry 
problem. The dark squares represent input units that are 
clamped to value 1 and the light squares are units that are 
clamped to value 0. 

symmetry is not apparent. How difficult a problem 
is this? This is a second-order problem in the sense 
of Minsky and Papert because single pixels by 
themselves carry no information about the solu- 
tion to the problem, but information can be ex- 
tracted from pairs of pixels that are related by the 
mirror symmetries. In terms of predicates, the 
solution can be written as a conjunction of 
second-order disjunctions (see Valiant [7] for a 
general discussion). For example, the predicate for 
horizontal mirror symmetry is: 

where ai and b, represent pixels in the array that 
are mirror reflections of each other with respect to 
the horizontal axis. 

Input patterns were generated with three axes of 
symmetry, horizontal, vertical and one of the diag- 
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onals, with each pixel having a probability of 0.4 
of being on. Patterns with more than one axis of 
symmetry were rejected. Each unit in the input 
array was connected to each of the hidden units, 
which were in turn connected to each of three 
output units representing the three axes of mirror 
symmetry. The hidden units were not connected 
with one another. The weights were updated after 
every 5 randomly generated input patterns. Learn- 
ing curves for arrays of size 4 X 4 and 10 x 10 with 
12 hidden units each are shown in fig. 5. The 
larger array took longer and had poorer overall 
performance; however, the number of possible in- 
put patterns for the large array was about 242 
times larger than for the small array. 

The pattern of weights for the 4 X 4 array is 
shown in fig. 6, and for the 10 x 10 array in fig. 7. 
Different runs with the same size of array had 
different patterns of weights, but in all runs, for all 
sizes of arrays, the patterns of weights shared the 
same qualitative properties: The weights of each 
hidden unit were either symmetric or antisymmet- 
ric about one or more of the three axes. For many 

/ 
Oo 10 

Number of Presentations ( lo4 ) 

Fig. 5. Learning curves showing the performance for the 4 X 4 
and 10 x 10 mirror symmetry problems with 12 hidden units 
each, using the fast annealing schedule. With slow annealing 
the performance at 100,000 presentations was 98.2% for the 
4 x 4 problem and 90% for the 10 X 10 problem. 

hidden units the weights were antisymmetric about 
two of the axes and symmetric around the one axis 
that had an output weight of opposite sign frdm 
the other two axes. The weight to the symmetric 
axis was excitatory if the bias of the hidden unit 
was negative, or inhibitory if the bias was positive. 
The spatial distribution of the weights from the 
input units withn the receptive field varied consid- 
erably amongst hidden units, with many types of 
geometric features represented: linear features, cir- 
cular features, and isolated pixels. The relation- 
ships amongst the receptive fields of the hdden 
units were important; however, the hidden units 
have no direct connections, so the joint relation- 
ships amongst the hidden units must be mediated 
by feedback connections from the output units. 

In nearly every run all the weights to some 
hidden units were much smaller than average, and 
they made no apparent contribution to the solu- 
tion of the problem. The reason for this is not 
clear, but one possible explanation may be related 
to the tendency for the weights to decay. When the 
learning has reached steady-state, the size of each 
weight is determined by a balance between the 
tendency to decay and the learning gradient; 
therefore, weights to hidden units that make no 
significant contribution tend to get smaller. A unit 
that has small weights may find it more difficult to 
establish a direction in weight space that is not 
already occupied by some other hidden unit. In a 
sense, the hidden units tend to repel each other 
from the "territory" they cover in the space of 
input patterns. 

In all of the mirror symmetry problems thus far 
the symmetry axes were fixed. A more difficult 
problem is to categorize mirror input patterns 
when the axes of symmetry wire allowed to trans- 
late. For example, if the edges of the 10 x 10 array 
are identified so that it has the topology of a torus, 
then the vertical axis can be positioned between 
any of the 10 pairs of adjacent columns. It is then 
no longer possible to solve the problem with recep- 
tive fields of arbitrary geometry: the only transla- 
tionally invariant patterns with the required sym- 
metries are stripes and checkerboards. These are 
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Fig. 6. Self-similar representation of the weights found by the Boltzmann learning algorithm for the 4 x 4 mirror symmetry problem. 
The 16 input units are arranged in a square array below, the 3 output units are in the top layer, and the 12 hidden units are between 
them. The output units from left to right represent the horizontal, vertical and right diagonal nurror symmetries respectively. (See fig. 
3 for an explanation of the graphical representation used for weights.) 



270 T.J. Sejnowski et al./  Learning symmetry groups with hidden units 

Fig. 7. Receptive field patterns formed by the weights to the hidden units found by the Boltzmann learning algorithm for the 10 X 10 
mirror symmetry problem. Only the weights to the 12 hidden units are shown, with the weights from the input units shown in the 
10 X 10 array, the weights to the 3 output units shown above the array, and the bias shown on the upper left comer. The output units 
from left to right represent the horizontal, vertical and right diagonal mirror symmetries respectively. 

precisely the patterns of weights found by the 
learning algorithm, as shown in fig. 8. 

8. T-C problem 

A third-order problem is one that cannot be 
solved without using intermediate units that ex- 
amine triples of input units. Minsky and Papert 
([lo], p. 102) describe a third-order problem that 
requires the discrimination between two 5-unit 

templates for a "T" and a "C" shape that can 
occur in any position in an array and in any 90" 
orientation, as shown in fig. 9. We have used 
networks with the same connectivity as that used 
for the mirror symmetry problem and have ex- 
plored how the learning scales with the size of the 
array and the number of hidden units. 

The learning algorithm was able to solve the 
T-C problem using finite arrays with the topology 
of a torus; the weights are shown in fig. 10 for a 
6 x 6 array with 24 hidden units. The way that the 
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Fig. 8. Receptive field patterns formed by the weights to the hidden units found by the Boltzmann learning algorithm for the 10 X 10 
mirror symmetry problem with translated symmetry axes. Only the weights to the 12 hidden units are shown, with the weights from 
the input units shown in the 10 X 10 array, the weights to the 3 output units shown above the array, and the bias shown on the upper 
left corner. The output units from left to right represent the horizontal, vertical and right diagonal mirror symmetries respectively. 

Fig. 9. a) Eight input templates for the T-C problem. The "T" is shown in the top row and the "C" in the bottom row, each in four 
different orientations. The templates can be translated to any position in the square array, with the edges of the array identified so 
that the topology is that of a torus. b) Distance between point-pair spectra is the same for the "T" and the "C" patterns allowing for 
all possible 90" rotations of the templates. For example, there are 4 second order pairs of adjacent units in both templates. The lowest 
order spectra that distinguish the two rotation- and translation-invariant templates are point-triples [lo]. 
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Fig. 10. Receptive field patterns formed by the weights to the hidden units found by the Boltzmann learning algorithm for the 6 X 6 
T-C problem. Only the weights to the 24 hidden units are shown. The bias is shown on the upper left comer, and the two weights to 
the two output units are shown on the top; the left output unit represents the "T" and the right output unit represents the "C". 

problem was solved by the network was less obvi- 
ous than in the case of mirror symmetries. One 
common feature was a large inhibitory weight 
flanked by two smaller excitatory weights, some- 
times arranged in triples that alternated between 
one row of inhibitory weights and two rows of 
excitatory weights. This was an effective combina- 
tion because the "T" has two rows of three con- 
tiguous units in it, whereas "C" only has one and 

thus a 'T" would be more likely to turn off the 
hidden unit. 

Learning curves for arrays of size 4 x 4 through 
10 x 10 with 24 hidden units are shown in fig. 11. 
As the size of the array increased, a longer learn- 
ing time was required to reach steady state, and 
the performance became worse. Especially for the 
larger arrays there was a long period at the begin- 
ning of the learning when the performance was at 
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Fig. 11. Dependence of the rate of learning on the size of the 
input array for the T-C problem. Learning curves are shown 
(in some cases terminated before reaching an asymptote) for 
arrays of size 4 x 4 to 10 x 10, each with 24 hidden units. 

chance level, and only gradually did patterns de- 
velop in the weights. This probably indicates that 
a random search for particular combinations of 
weights must occur before gradient descent can be 
effective. 

The number of hidden units also affected the 
rate of learning and the performance. As shown in 

5 10 15 20 

Number o f  Presentat ions ( lo4 ) 

Fig. 12. Dependence of the rate of learning on the number of 
hidden units for the T-C problem for a 6 X 6 input array. The 
number of hidden units varied from 6 to 48, as indicated 
beside each learning curve. 

fig. 12, learning with only 6 hidden units was slow 
and performance was poor. There was significant 
variation from run to run so that the rates of 
learning and performances of 12 and 24 hidden 
units were similar, but were better for 48 hidden 
units. The shape of the curve for 6 hidden units 
resembled the shape of the slowest learning curves 
in fig. 11, which suggests that performance on the 
larger arrays could have been substantially im- 
proved with more hidden units. 

9. Discussion 

We have empirically explored the Boltzmann 
learning algorithm in several problems that per- 
ceptrons can only solve if they are hand-wired for 
each task. If the networks are not hand-wired 
these problems require adaptive hidden units be- 
tween the input and output layers. With a suffi- 
cient number of hidden units, good performance 
was achieved for second- and third-order prob- 
lems, even though the number of input presenta- 
tions required was for some problems excessively 
large. 

True generalization was achieved by the learn- 
ing algorithm in the mirror symmetry problem, 
since for large arrays the number of possible input 
patterns was so large that virtually every input 
pattern presented was unique. In contrast, the 
T-C problem was much more difficult to learn 
even though the total number of T-C patterns 
was much smaller and memorization is a possible 
strategy for solving the problem. The difficulty of 
the problem for the learning algorithm is therefore 
correlated better with the order of the problem as 
defined by Minsky and Papert than with the ab- 
solute number of patterns to be categorized. The 
order of a problem is likely to be a good measure 
of its degree of difficulty for the Boltzmann learn- 
ing algorithm. 

For large arrays the T-C problem would have 
been substantially easier to solve if the receptive 
fields of the hidden units were made smaller than 
the entire input array, just as the receptive fields 
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of ganglion cells are arranged on the retina. A 
spatially restricted receptive field gives the hidden 
unit considerable information about the topology 
of the search space, greatly reducing the number 
of combinations of weights from the input units 
that need to be searched and reducing the need to 
make the receptive field consistent over the entire 
array. Restricting the connectivity in a way that is 
known to help in the solution of the problem puts 
knowledge about the task domain into the net- 
work. However, the goal of this study was to see 
whether the learning algorithm was capable of 
finding internal representations which could solve 
the problem without outside intervention. In none 
of the simulations for the T-C problem did any 
hidden unit narrow its receptive field to cover less 
than the entire input array. 

Several other learning algorithms have recently 
been proposed which are also capable of solving 
higher-order learning problems. Barto and 
Andersen [30] have presented a stochastic learning 
algorithm for layered adaptive networks that does 
not require relaxation to equilibrium. This al- 
gorithm also requires many input presentations to 
solve higher-order problems, although simulations 
on a sequential machine run faster because fewer 
iterations are needed per presentation. Rumelhart, 
Hinton and Williams [31] have introduced a prom- 
ising learning algorithm for layered networks that 
is deterministic and relies on back-propagation of 
errors. We will compare the performance of these 
learning algorithms in a later paper. 

At least some of the virtues of the perceptron 
are preserved in the Boltzmann machine, which 
also overcomes some of its limitations. We antic- 
ipate that network architectures with hidden units 
will be useful in other domains where learning 
algorithms are needed. 
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Appendix A 

Order of a predicate 

Kline & French 

Minsky and Papert [lo] defined a concept of 
order for predicates which is useful for analyzing 
the computational power of parallel machines. Let 
R be the set of atomic propositions and cp be a 
predicate over R. Define the support S(cp)  as the 
number of different atomic propositions in cp. 

Dejinition. The order of cp is defined as the smal- 
lest number k for which there exists a basis set of 
predicates { satisfying: 

where L(Qa) is the set of all predicates that can be 
expressed as disjunctions, or linear combinations, 
of the basis set { @ a } .  

The motivation behind this definition is that in 
a parallel machine it may be desirable to imple- 
ment complex predicates as combinations of sim- 
pler ones, and the order of the predicate is an 
indication of the minimum complexity required 
for the basis set. The basis set may be considered 
the internal representations that are used by the 
machine to implement the predicate; however, the 
order of a predicate is a property only of that 
predicate and does not depend on the particular 
choice of internal representations. 

Appendix B 

Collecting statistics 

There are several ways to compute estimates of 
the ensemble averages needed in the Boltzmann 
learning algorithm. A straightforward way to 
estimate the ensemble average 
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is to reach equilibrium and accumulate the time ' 

average, eq. (5). Since the states are Markov 
processes [18, 321 the system is ergodic and the 
time average should converge to the ensemble 
average. 

A better estimate for the ensemble average may 
be obtained using information from the summed 
inputs to the units as well as their outputs. For 
example, the time average can be rewritten as 

The first term can be estimated by averaging Pi 
given sj = 1, and the latter term can be estimated 
by averaging Pj. 
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