
Physica 22D (1986) 260-275
North-Holland, Amsterdam

LEARNING SYMMETRY GROUPS WITH HIDDEN UNITS: BEYOND THE PERGEPTRON

Terrence J. SEJNOWSKI and Paul K. KIENKER
Biophysics Department, Johns Hopkins University, Baltimore, MD 21218, USA

and

Geoffrey E. HINTON
Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA 15213, USA

Learning to recognize mirror, rotational and translational symmetries is a difficult problem for massively-parallel network
models. These symmetries cannot be learned by first-order perceptrons or Hopfield networks, which have no means for
incorporating additional adaptive units that are hidden from the input and output layers. We demonstrate that the Boltzmann
learning algorithm is capable of finding sets of weights which turn hidden units into useful higher-order feature detectors
capable of solving symmetry problems.

1. Introduction

Interest in massively-parallel network models
has recently increased because of the possibility
that they may be capable of solving difficult prob-
lems in vision, speech and motor control [I-41.
Knowledge about the task domain can be "pro-
grammed" into a network by specifying the con-
nectivity of the processing elements and the
strengths of the connections, or weights. For ex-
ample, networks have been designed to perform
figure-ground separation in images [5] and to solve
the traveling salesman problem [6]. It would be
desirable to have an automatic learning procedure
that could incorporate knowledge about the task
domain into the weights given only examples of
solutions. The network would then be able to
generalize appropriately.

Learning in humans is not a single ability
but a cluster of adaptive abilities. When we
are introduced to someone we learn to associate
their name with their face and voice. Faces,
names and voices are domains in which we are
already expert, and only the associations amongst

them need be learned. It is more difficult to re-
member someone's name in a foreign country,
where the faces, names and voices are unfamiliar.
It is even more difficult to learn new domains,
such as lip reading or interpreting medical
X-ray photographs. Learning a new domain means
learning new concepts and new internal represen-
tations, learning that normally requires long train-
ing.

The learning problems examined here are based
on the categorization of symmetry groups in pat-
terns presented to an input array. It is possible in
this domain to classify the difficulty of problems
and to get insight into possible solutions using our
own knowledge of symmetries. Symmetries are
commonly found in nature, such as the bilateral
mirror symmetry of faces, and symmetry groups
have been extensively studied in mathematics and
physics. We will demonstrate a general learning
algorithm that can discover mirror, rotational and
translational symmetries in input patterns. These
empirical results support the conjecture that the
predicate order of a problem is a measure of its
learnability [7, 8, 101.

0167-2789/86/$03.50 O Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)

T.J. Sejnowski et al./Learning symmetry groups with hidden units

2. Perceptrons a Binary Threshold Unit

The perceptron is a parallel machine that can
learn to categorize input patterns [9]. The learning
algorithm requires a training phase during which
the teacher presents examples from each category
and provides feedback about the correctness of the
classification that the perceptron makes. The input
patterns are normally represented by an array of
units that can take on only binary values. The
input units are connected to a set of feature
analyzers that are then connected to a final set of
decision units. Each decision unit computes the
scalar product of the vector of outputs from the
feature analyzers and the vector of weights on its
incoming connections. The output of a decision
unit is 1 if the scalar product exceeds a threshold,
otherwise it is 0, as shown in fig. 1.

The feature analyzers are fixed in advance and
do not learn. All the learning takes place in the
weights from the feature analyzers to the decision
units, so when a perceptron is viewed as a learning
device the states of the feature analyzers can be
viewed as a pre-processed input vector and the
inputs are then directly connected to the outputs.
This simple topology and simple decision rule has
the advantage that there is a simple procedure for
incrementally changing the weights which is
guaranteed to converge on a set of weights that
allows the decision units to correctly categorize the
input patterns, provided that such a set of weights
exists. Unfortunately, there are strong limitations
on what can be learned by a single layer of mod-
ifiable weights [lo]. However, these limitations can
be overcome in several ways if we:

1) Use exponentially many feature analyzers so
that all possible combinations of activity in the
input array are explicitly represented in the fea-
ture analyzers.

2) Make the decision units use a more complex
function for combining the outputs of the feature
analyzers.

3) Extend the algorithm so that it also modifies
the weights on the connections between the input
array and the feature analyzers, so that the net-

Input A E

C
Binary Boltzmann Unit

Fig. 1. Input-output decision rules for a) a binary threshold
unit in a perceptron; and c) the probability of activating a
binary Boltzmann unit as a function of total input A E, shown
schematically in b). The temperature T is a scaling factor that
determines the steepness of the sigmoid as a function of A E.
Note that in the limit as T + 0, the probability sigmoid in c)
approaches the step function in a).

work can develop just those feature analyzers that
are required for the task. This can also be viewed
as introducing extra layers of adaptive units be-
tween the feature analyzers and the decision units
if the input patterns are equated with the states of
the feature analyzers rather than the input array of
the perceptron.

A key concept that Minsky and Papert [lo]
introduced in their influential analysis of per-
ceptrons is the order of the problem, which roughly
corresponds to the &mum number of input

262 T.J. Sejnowskl et a[. / Learnrng symmetry groups wzth htdden unrfs

units that carry any information relevant to the
required output. (A more formal definition of pre-
dicate order is given in appendix A.) For example,
the boolean OR function has order 1 because the
value of a single input unit contains some informa-
tion about the output. In contrast, the boolean
EXCLUSIVE-OR (XOR) function has order 2
because each unit of the input array, considered in
isolation, contains no information about the out-
put value. The parity function of n binary input
units is order n, and XOR is the special case with
n = 2 (see section on XOR below).

Perceptrons are only capable of solving prob-
lems that are first order in their feature analyzers.
They cannot, for example, learn to solve the XOR
problem unless they are given appropriate hand-
wired feature analyzers. This is also true of many
other types of networks and learning algorithms
that have been proposed, such as the network
proposed by Hopfield [Ill for associative memory.
It can be proved thdt there exists no set of weights
and thresholds for three binary units that allows a
three-unit Hopfield network to store the four pat-
terns (1 lo), (1 011, (01 I), and (000) without
storing other additional patterns. Higher-order
problems can, however, be solved by introducing
additional units that we call hidden units because
they receive no external inputs and have no exter-
nal outputs. As will be demonstrated, the XOR
problem is a relatively easy second-order problem
that can be solved if one hidden unit is added to
the network.

Networks like the perceptron in which there is
only one layer of modifiable weights avoid the
most difficult issue in learning - constructing ap-
propriate internal representations. In a perceptron,
all the units have their behavior specified exter-
nally. The behavior of the feature analyzers is a
pre-wired function of the input patterns, and the
required behavior of the decision units is specified
by the teacher. This means that there are no
"hidden" units that are free to represent novel
features that would help with the required dis-
crimination. As soon as hidden units are intro-
duced, learning becomes much harder because the

learning procedure must decide what the hidden
units should represent. Minsky and Papert sug-
gested that the limitation of the perceptron learn-
ing algorithm to a single layer of modifiable weights
could not be overcome. We show here that at least
one generalization of the perceptron can learn to
use hidden units to solve difficult problems.

3. Boltzmann machines

Boltzmann machines were designed to solve a
class of optimization problems in vision called
constraint-satisfaction problems [3, 12, 131. The
processing units in the machine have binary values
like that of the perceptron, but all links between
the units have reciprocal connections with the
same weight. The symmetric connectivity enables
the convergence of the networks to be analyzed
using techniques from physics [ll]. In particular,
it is possible to define the energy of the network as

where s, is the state of the ith binary unit and w,,
is the weight between the ith and j th units. (In
this paper the weights can only take on integer
values.) The binary threshold rule governing the
binary units in the perceptron is deterministic, but
in a Boltzmann machine the decision rule is prob-
abilistic:

where pi is the probability for the ith unit to be in
state 1, P(x) is a sigmoidal probability function
(fig. I), T is a parameter analogous to temperature
and is a measure of the noise introduced into the
decision [14], and the total input to the unit is

AE, = EwiJsJ.
J

(3)

Thresholds are taken into account by giving each

T.J. Sejnowski et a/./ Learning symmetry groups with hidden units 263

unit a connection to a unit that always has value 1,
the "true" unit. The value of the weight to the true
unit is a bias, or the negative of the threshold, to
that unit.

The energy function of a network is a cost
function that must be minimized to solve the
constraint-satisfaction problem. The probabilistic
decision rule, which is applied asynchronously,
allows the network to escape from local energy
minima. Simulated annealing (gradually lowering
the temperature T) can be used to find good states
of low energy [15]. In this paper simulated anneal-
ing will not be used to find the globally optimal
solution, but to rapidly reach equilibrium at the
temperature where learning takes place. In all the
simulations reported here the learning tempera-
ture was chosen arbitrarily to be T = 10.

The idea of implementing constraints as interac-
tions between stochastic processing elements was
proposed by Moussouris [16] who discussed the
identity between Boltzmann distributions and
Markov random fields [17]. The idea of using
simulated annealing to find low energy states in
parallel networks has been investigated by several
different groups. Geman and Geman [18] estab-
lished limits on the allowable speed of the anneal-
ing schedule and showed that simulated annealing
can be very effective for removing noise from
images. Hinton and Sejnowski [3] showed how the
use of binary stochastic elements could solve some
problems with other relaxation techniques, in par-
ticular the problem of learning the weights.
Smolensky [19] has been investigating a similar
framework he calls "harmony theory", and Cerny
[20] has applied simulated annealing to multi-
processors. Paretto [21], Amit et al. [22, 231, and
Toulouse et al. [24] have studied the properties of
networks that have random weights.

4. The Boltzmann learning algorithm

The goal of the learning algorithm is to produce
a network which correctly categorizes input pat-
terns according to the following procedure: the

input units are "clamped" to a particular pattern
while the network relaxes into a state of low
energy in which the output units have the correct
values. The input and output units will be called
"visible" units to distinguish them from the hid-
den units. The difficult part of learning is to
decide how to use the hidden units to help achieve
the required behavior of the visible units. The
statistical structure of the input-output mapping
must be captured by the weights between the
units, and only the first-order statistics of the
input pattern can be captured by direct connec-
tions between input and output units. The role of
the hidden units is to capture higher-order statisti-
cal relationships and this can be accomplished if
significant underlying features can be found that
have strong, regular relationships with the pat-
terns on the visible units. The hard part of learn-
ing is to find the sets of weights which turn the
hidden units into useful feature detectors.

The Boltzmann learning algorithm is closely
related to the EM algorithm for estimating the
parameters of exponential distributions to fit in-
complete data 1251 and an earlier algorithm pro-
posed by Baum for estimating the parameters in a
hidden Markov chain that has been successfully
used for speech recognition [26]. These are maxi-
mum likelihood methods that work by adjusting
parameters to increase the probability that the
observed data were generated by the underlying
model. The Boltzmann learning algorithm, which
is also a maximum likelihood method, has the
advantage that it can be easily implemented in a
parallel network of simple processing units. It is
derived from a measure of how effectively the
weights in a network are being used for modeling
the structure of the environment 13, 131. In this
paper the environment will always have the struc-
ture of a mapping between a set of input units and
a set of output units. Each step in the algorithm
depends on estimating the gradient of this mea-
sure with respect to the weights and making incre-
mental changes to the weights to reduce the dis-
crepancy between the model and the environment.

264 T.J. Sejnowski et a[./ Leurning syrnrnet? groups with hidden units

We assume that the environment clamps a par-
ticular vector over the input units and keeps it
there long enough for the network to reach ther-
mal equilibrium with ths vector as a boundary
condition. We also assume that there is no struc-
ture in the sequential order of the environmentally
clamped vectors. Therefore the complete structure
of the ensemble of input-output mappings can be
specified by giving the probability distribution of
each of the 2" vectors over the v visible units.
Note that this probability distribution does not
depend on the weights in the network because the
environment clamps the visible units.

A particular set of weights can be said to con-
stitute a perfect model of the structure of the
environment if it leads to exactly the same prob-
ability distribution of visible output vectors when
the visible input vectors are clamped. Let
P-(0,l Ip) be the probability distribution of ob-
taining an output state 0, when the input is
clamped to state Ip and the network has been
allowed to reach equilibrium. The goal of the
learning algorithm is to find weights which match
the desired input-output mapping P+(O, 1 Ip) to
the actual one, P-(O,lIp), but this will not in
general be possible since there are exponentially
many possible mappings and there are at most
only n(n - 1)/2 symmetrical weights and n
thresholds among n units. However, it may be
possible to do well with relatively few weights if
the mappings contain regularities that can be ex-
pressed in the weights.

An information-theoretic measure [27] of the
distance between the two probability distributions
is given by

where P(Ip) is the probability distribution over
input vectors. G is never negative and is zero only
if the desired and actual probability distributions
of the mappings are identical. The G-measure is
sometimes called the asymmetric divergence or

information gain because it reflects the distance
from the output probabilities produced by the
model to the environmental distribution. Minimiz-
ing G is also equivalent to maximizing the log of
the likelihood of generating the correct mappings.
The likelihood ratio is weighted by the actual
probability of occurrence of that mapping, which
gives greater weight to events that occur more
frequently.

The network's model of the required mapping
can be improved by changing the weights so as to
reduce G . At first sight this would seem to require
global information about the network, since
changing a single weight will change the probabili-
ties of many global states in ways that depend on
all the other weights in the network. Fortunately,
this information is available locally; that is, the
gradient of G with respect to w,, depends only on
the behavior of the ith and j th units. It can be
shown that

where P,: is the probability, averaged over all
mappings, that the ith and jth units are both on
when the inputs and outputs of the network are
clamped, and P,; is the corresponding co-occur-
rence probability when only the inputs to the
network are clamped [13].

Because the system is Markov and therefore
ergodic, the ensemble-average probabilities in eq.
(5) can be approximated by time-average probabil-
ities in thermal equilibrium. A fast annealing
schedule was used to reach approximate equi-
librium: (2@40, 2@35, 2@30, 2@25, 2@20,
2@16, 2@14, 2@12, 14@10), where 2@40 means
that each of the units was probed twice at a
temperature of 40. Co-occurrence statistics were
accumulated during the last 5@10 iterations and
the weights were updated after several input pat-
terns were presented (typically 5). Several different
ways to collect the statistics are discussed in ap-
pendix B. The difference

i? J. Sejnowski et al./learning syrnmetty groups wztlz hidden unzts 265

can be used to estimate the gradient of G, but
because the average is very inaccurate, only the
sign was used to decide to change the weight by
+ 1 if A > 0 and - 1 if A < 0. Using this gradient
descent procedure the weights tended to become
large because that is one way to improve the
performance on patterns already learned. Unfor-
tunately, large weights cause high energy barriers
so that the network is unable to approach equi-
librium in the time allowed. To counteract this
tendency, the weights were made to decay by 1
with a small probability that was proportional to
the magnitude of the weight (typically around
0.0001 times the magnitude of the weight).

Except in the XOR problem, the input units
were not connected directly to the output units
but communicated only indirectly through a layer
of hidden units. The output units were intercon-
nected but there were no interconnections amongst
the hidden units. Allowing connections between
hidden units did not significantly affect the perfor-
mance, but made it more difficult to interpret the
solutions.

5. Unlearning

Crick and Mitchison [28] have suggested that a
form of reverse learning might occur during REM
sleep in mammals. A simulation of reverse learn-
ing was performed by Hopfield et al. [29] who
independently had been studying ways to improve
the associative storage capacity of simple networks
of binary processors. In their algorithm an input is
presented to the network as an initial condition
and the system evolves by falling into a nearby
energy minimum. However, not all local energy
minima represent stored information. In creating
the desired minima, they accidentally create other
spurious minima and to eliminate these they use
" unlearning": The learning procedure is applied
with reverse sign to the states after starting from
random initial conditions. Following this proce-
dure the performance of the system in accessing
states was found to be improved.

There is an interesting relationship between the
reverse learning proposed by Crick and Mitchison
and Hopfield et al. and the form of the learning
algorithm which we derived by considering how to
minimize an information theoretic measure of the
discrepancy between the environmental structure
and the network's internal model [3]. The two
phases of our learning algorithm resemble the
learning and unlearning procedures: positive
Hebbian learning occurs in phase' during which
information in the environment is captured by the
weights; during the testing phase- the system sam-
ples states according to their Boltzmann distribu-
tion and Hebbian learning occurs with a negative
coefficient.

However, these two phases need not be imple-
mented in the manner suggested by Crick and
Mitchison. For example, during phase- the aver-
age co-occurrences could be computed without
making any changes to the weights. These aver-
ages could then be used as a baseline for making
changes during phase+; that is, the co-occurrences
during phase' could be computed and the base-
line subtracted before each permanent weight
change. Thus, an alternative but equivalent pro-
posal for the function of dream sleep is to re-
calibrate the baseline for plasticity - the break-even
point which determines whether a synaptic weight
is incremented or decremented. This would be
safer than making permanent weight decrements
to synaptic weights during sleep and solves the
problem of deciding how much "unlearning" to
do.

6. XOR

The XOR problem will be used to illustrate
several general properties of solutions produced by
the Boltzmann learning algorithm. This problem is
small enough that it can be run many times and all
possible solutions can be catalogued. The average
learning curve for 20 runs is shown in fig. 2. Two
measures were used to assess the performance of a
network. For the fast cooling schedule given above

266 T.J. Sejnowski et al./Learning symmetry groups with hidden units

0
O 0 16 2 4 3 2 4 0

Number of Presentations (10')

Fig. 2. Performance of the XOR network, averaged over 20
runs, as a function of the number of individual input presenta-
tions. The performance with a fast annealing schedule reached
96% within 2,000 presentations. With a slower annealing sched-
ule the same weights gave a virtually perfect performance.

the typical performance was 96% correct at T = 10;
when a much slower cooling schedule was used
(255 iterations down to T = 4) the performance
was virtually perfect. (A Boltzmann machine can-
not be perfect at finite temperature.)

Two graphical ways to represent a network are
illustrated in fig. 3. In the first, more traditional
form each reciprocal connection of the network is
represented as an arc and the value of the weight
is represented by a number on the arc. The same
network is shown in a form where each weight is
represented as a black or a white square, and the
connection is implicitly indicated by the position
of the square within the unit icon. In the example
shown, the hidden unit, in the center, has two
excitatory weights to the input units, which can be
considered the "receptive field" of the unit. The
hidden unit in turn excites the output unit. How-
ever, this was not the only way that the hidden
unit can be used to solve the problem. Eight
different classes of solution were found. Some of
these solutions were more common than others, as
indicated in table I. All of the runs were started
from zero weights, which biased the search in
weight space toward some classes of solutions.

Output

Hidden

Input

Fig. 3. Two ways of representing a network that solves the
XOR problem as found by the Boltzmann learning algorithm.
a) Conventional representation: The circles represent the two
input units in the bottom layer, the output unit in the top
layer, and the hidden unit in the middle layer. The lines
between the units are labeled with the weight of the reciprocal
link between each pair of units. The single line drawn to a unit
is a link to the true unit, and the value represents the bias to
that unit. b) A more compact self-similar representation of the
same network as in a). Each unit has the same "L" shape as
the shape formed by all four units. The squares within each
unit represent weights, and the position of a square within the
unit matches the position within the network of the unit to
which the weight connects. White squares are excitatory
weights, black squares are inhibitory weights, and the area of
the square is proportional to the magnitude of the weight. The
bias to a unit is shown in the position occupied by that unit in
the network.

T.J. Sejnowski et al./ Leurning symmetry groups with hidden units 267

Table I
S u m m y of eight different ways that a single hidden unit can be
used in an XOR network. The desired input-output mapping is
shown on the left side of the table and each column on the right
side shows the state of the hidden unit for one solution to the
problem. The Boltzmann learning algorithm was run 339 times
starting each run with zero weights. Each of the codes was found
at least once and the fraction of the total number of runs of each
type is listed beneath each column.

Inputs Output Hidden unit

0 0 0 0 1 0 1 0 1 0 1
0 1 1 1 0 1 0 0 1 0 1
1 0 1 1 0 0 1 1 0 0 1
1 1 0 1 0 0 1 0 1 1 0
Percentage of runs: 4% 54% 16% 1% 16% 1% 7% 0.3%

Thus, several different networks were found that
could solve the problem, and the pattern of weights
found on a particular run depended on the par-
ticular path through weight space taken by the
probabilistic algorithm. In each solution the hid-
den unit was used to select one of the inputs as
different from the rest; in a sense, the hidden unit
was used to represent a second-order fact about
the input pattern, and this intermediate represen-
tation carried enough information to solve the
second-order XOR problem. In the following ex-
amples, the hidden units also "discover" inter-
mediate representations that allow the network to
solve a higher-order problem, although in those
cases it is not as obvious what representations
have been found or how many there are.

7. Mirror symmetries

Consider a square N X N array of randomly
generated binary patterns that have an axis of
reflection symmetry, as shown in fig. 4. For every
axis of symmetry, there are 2 N 2 / 2 different input
patterns. The task is to teach a network to cor-
rectly categorize these patterns according to the
axis of symmetry. To make the problem more
difficult, imagine that the arrangement of the pixels
is randomly scrambled by fiber optics, so that the

Fig. 4. Sample input patterns for the 10 X 10 mirror symmetry
problem. The dark squares represent input units that are
clamped to value 1 and the light squares are units that are
clamped to value 0.

symmetry is not apparent. How difficult a problem
is this? This is a second-order problem in the sense
of Minsky and Papert because single pixels by
themselves carry no information about the solu-
tion to the problem, but information can be ex-
tracted from pairs of pixels that are related by the
mirror symmetries. In terms of predicates, the
solution can be written as a conjunction of
second-order disjunctions (see Valiant [7] for a
general discussion). For example, the predicate for
horizontal mirror symmetry is:

where ai and b, represent pixels in the array that
are mirror reflections of each other with respect to
the horizontal axis.

Input patterns were generated with three axes of
symmetry, horizontal, vertical and one of the diag-

268 T.J. Sejnowski et ul./ Leurning symmetry groups with hidden units

onals, with each pixel having a probability of 0.4
of being on. Patterns with more than one axis of
symmetry were rejected. Each unit in the input
array was connected to each of the hidden units,
which were in turn connected to each of three
output units representing the three axes of mirror
symmetry. The hidden units were not connected
with one another. The weights were updated after
every 5 randomly generated input patterns. Learn-
ing curves for arrays of size 4 X 4 and 10 x 10 with
12 hidden units each are shown in fig. 5. The
larger array took longer and had poorer overall
performance; however, the number of possible in-
put patterns for the large array was about 242
times larger than for the small array.

The pattern of weights for the 4 X 4 array is
shown in fig. 6, and for the 10 x 10 array in fig. 7.
Different runs with the same size of array had
different patterns of weights, but in all runs, for all
sizes of arrays, the patterns of weights shared the
same qualitative properties: The weights of each
hidden unit were either symmetric or antisymmet-
ric about one or more of the three axes. For many

/
Oo 10

Number of Presentations (lo4)

Fig. 5. Learning curves showing the performance for the 4 X 4
and 10 x 10 mirror symmetry problems with 12 hidden units
each, using the fast annealing schedule. With slow annealing
the performance at 100,000 presentations was 98.2% for the
4 x 4 problem and 90% for the 10 X 10 problem.

hidden units the weights were antisymmetric about
two of the axes and symmetric around the one axis
that had an output weight of opposite sign frdm
the other two axes. The weight to the symmetric
axis was excitatory if the bias of the hidden unit
was negative, or inhibitory if the bias was positive.
The spatial distribution of the weights from the
input units withn the receptive field varied consid-
erably amongst hidden units, with many types of
geometric features represented: linear features, cir-
cular features, and isolated pixels. The relation-
ships amongst the receptive fields of the hdden
units were important; however, the hidden units
have no direct connections, so the joint relation-
ships amongst the hidden units must be mediated
by feedback connections from the output units.

In nearly every run all the weights to some
hidden units were much smaller than average, and
they made no apparent contribution to the solu-
tion of the problem. The reason for this is not
clear, but one possible explanation may be related
to the tendency for the weights to decay. When the
learning has reached steady-state, the size of each
weight is determined by a balance between the
tendency to decay and the learning gradient;
therefore, weights to hidden units that make no
significant contribution tend to get smaller. A unit
that has small weights may find it more difficult to
establish a direction in weight space that is not
already occupied by some other hidden unit. In a
sense, the hidden units tend to repel each other
from the "territory" they cover in the space of
input patterns.

In all of the mirror symmetry problems thus far
the symmetry axes were fixed. A more difficult
problem is to categorize mirror input patterns
when the axes of symmetry wire allowed to trans-
late. For example, if the edges of the 10 x 10 array
are identified so that it has the topology of a torus,
then the vertical axis can be positioned between
any of the 10 pairs of adjacent columns. It is then
no longer possible to solve the problem with recep-
tive fields of arbitrary geometry: the only transla-
tionally invariant patterns with the required sym-
metries are stripes and checkerboards. These are

T.J. Sejnowslci et ul./ Learning symmetry groups with hidden ratits

Fig. 6. Self-similar representation of the weights found by the Boltzmann learning algorithm for the 4 x 4 mirror symmetry problem.
The 16 input units are arranged in a square array below, the 3 output units are in the top layer, and the 12 hidden units are between
them. The output units from left to right represent the horizontal, vertical and right diagonal nurror symmetries respectively. (See fig.
3 for an explanation of the graphical representation used for weights.)

270 T.J. Sejnowski et al./ Learning symmetry groups with hidden units

Fig. 7. Receptive field patterns formed by the weights to the hidden units found by the Boltzmann learning algorithm for the 10 X 10
mirror symmetry problem. Only the weights to the 12 hidden units are shown, with the weights from the input units shown in the
10 X 10 array, the weights to the 3 output units shown above the array, and the bias shown on the upper left comer. The output units
from left to right represent the horizontal, vertical and right diagonal mirror symmetries respectively.

precisely the patterns of weights found by the
learning algorithm, as shown in fig. 8.

8. T-C problem

A third-order problem is one that cannot be
solved without using intermediate units that ex-
amine triples of input units. Minsky and Papert
([lo], p. 102) describe a third-order problem that
requires the discrimination between two 5-unit

templates for a "T" and a "C" shape that can
occur in any position in an array and in any 90"
orientation, as shown in fig. 9. We have used
networks with the same connectivity as that used
for the mirror symmetry problem and have ex-
plored how the learning scales with the size of the
array and the number of hidden units.

The learning algorithm was able to solve the
T-C problem using finite arrays with the topology
of a torus; the weights are shown in fig. 10 for a
6 x 6 array with 24 hidden units. The way that the

T.J. Sejnowski et al./ Learning symmetry groups with hidden units

Fig. 8. Receptive field patterns formed by the weights to the hidden units found by the Boltzmann learning algorithm for the 10 X 10
mirror symmetry problem with translated symmetry axes. Only the weights to the 12 hidden units are shown, with the weights from
the input units shown in the 10 X 10 array, the weights to the 3 output units shown above the array, and the bias shown on the upper
left corner. The output units from left to right represent the horizontal, vertical and right diagonal mirror symmetries respectively.

Fig. 9. a) Eight input templates for the T-C problem. The "T" is shown in the top row and the "C" in the bottom row, each in four
different orientations. The templates can be translated to any position in the square array, with the edges of the array identified so
that the topology is that of a torus. b) Distance between point-pair spectra is the same for the "T" and the "C" patterns allowing for
all possible 90" rotations of the templates. For example, there are 4 second order pairs of adjacent units in both templates. The lowest
order spectra that distinguish the two rotation- and translation-invariant templates are point-triples [lo].

272 T.J. Sejnowski et al. / Learning symmetry groups with hidden units

Fig. 10. Receptive field patterns formed by the weights to the hidden units found by the Boltzmann learning algorithm for the 6 X 6
T-C problem. Only the weights to the 24 hidden units are shown. The bias is shown on the upper left comer, and the two weights to
the two output units are shown on the top; the left output unit represents the "T" and the right output unit represents the "C".

problem was solved by the network was less obvi-
ous than in the case of mirror symmetries. One
common feature was a large inhibitory weight
flanked by two smaller excitatory weights, some-
times arranged in triples that alternated between
one row of inhibitory weights and two rows of
excitatory weights. This was an effective combina-
tion because the "T" has two rows of three con-
tiguous units in it, whereas "C" only has one and

thus a 'T" would be more likely to turn off the
hidden unit.

Learning curves for arrays of size 4 x 4 through
10 x 10 with 24 hidden units are shown in fig. 11.
As the size of the array increased, a longer learn-
ing time was required to reach steady state, and
the performance became worse. Especially for the
larger arrays there was a long period at the begin-
ning of the learning when the performance was at

T.J. Sejnowski et a[. / Learning symmetry groups with hidden units 273

40
2 5 5 0 7 5 100

Number of Presentations (lo4)

Fig. 11. Dependence of the rate of learning on the size of the
input array for the T-C problem. Learning curves are shown
(in some cases terminated before reaching an asymptote) for
arrays of size 4 x 4 to 10 x 10, each with 24 hidden units.

chance level, and only gradually did patterns de-
velop in the weights. This probably indicates that
a random search for particular combinations of
weights must occur before gradient descent can be
effective.

The number of hidden units also affected the
rate of learning and the performance. As shown in

5 10 15 20

Number o f Presentat ions (lo4)

Fig. 12. Dependence of the rate of learning on the number of
hidden units for the T-C problem for a 6 X 6 input array. The
number of hidden units varied from 6 to 48, as indicated
beside each learning curve.

fig. 12, learning with only 6 hidden units was slow
and performance was poor. There was significant
variation from run to run so that the rates of
learning and performances of 12 and 24 hidden
units were similar, but were better for 48 hidden
units. The shape of the curve for 6 hidden units
resembled the shape of the slowest learning curves
in fig. 11, which suggests that performance on the
larger arrays could have been substantially im-
proved with more hidden units.

9. Discussion

We have empirically explored the Boltzmann
learning algorithm in several problems that per-
ceptrons can only solve if they are hand-wired for
each task. If the networks are not hand-wired
these problems require adaptive hidden units be-
tween the input and output layers. With a suffi-
cient number of hidden units, good performance
was achieved for second- and third-order prob-
lems, even though the number of input presenta-
tions required was for some problems excessively
large.

True generalization was achieved by the learn-
ing algorithm in the mirror symmetry problem,
since for large arrays the number of possible input
patterns was so large that virtually every input
pattern presented was unique. In contrast, the
T-C problem was much more difficult to learn
even though the total number of T-C patterns
was much smaller and memorization is a possible
strategy for solving the problem. The difficulty of
the problem for the learning algorithm is therefore
correlated better with the order of the problem as
defined by Minsky and Papert than with the ab-
solute number of patterns to be categorized. The
order of a problem is likely to be a good measure
of its degree of difficulty for the Boltzmann learn-
ing algorithm.

For large arrays the T-C problem would have
been substantially easier to solve if the receptive
fields of the hidden units were made smaller than
the entire input array, just as the receptive fields

274 T.J. Sejnowski et al./Learnirzg symmetry groups with hidden units

of ganglion cells are arranged on the retina. A
spatially restricted receptive field gives the hidden
unit considerable information about the topology
of the search space, greatly reducing the number
of combinations of weights from the input units
that need to be searched and reducing the need to
make the receptive field consistent over the entire
array. Restricting the connectivity in a way that is
known to help in the solution of the problem puts
knowledge about the task domain into the net-
work. However, the goal of this study was to see
whether the learning algorithm was capable of
finding internal representations which could solve
the problem without outside intervention. In none
of the simulations for the T-C problem did any
hidden unit narrow its receptive field to cover less
than the entire input array.

Several other learning algorithms have recently
been proposed which are also capable of solving
higher-order learning problems. Barto and
Andersen [30] have presented a stochastic learning
algorithm for layered adaptive networks that does
not require relaxation to equilibrium. This al-
gorithm also requires many input presentations to
solve higher-order problems, although simulations
on a sequential machine run faster because fewer
iterations are needed per presentation. Rumelhart,
Hinton and Williams [31] have introduced a prom-
ising learning algorithm for layered networks that
is deterministic and relies on back-propagation of
errors. We will compare the performance of these
learning algorithms in a later paper.

At least some of the virtues of the perceptron
are preserved in the Boltzmann machine, which
also overcomes some of its limitations. We antic-
ipate that network architectures with hidden units
will be useful in other domains where learning
algorithms are needed.

Acknowledgements

This research was supported by grants from the
System Development Foundation and grants to
T.J.S. from the National Science Foundation,
General Electric Corporation, Exxon Education
Foundation, Allied Corporation Foundation,

Westinghouse, and Smith,
Laboratories.

Appendix A

Order of a predicate

Kline & French

Minsky and Papert [lo] defined a concept of
order for predicates which is useful for analyzing
the computational power of parallel machines. Let
R be the set of atomic propositions and cp be a
predicate over R. Define the support S(cp) as the
number of different atomic propositions in cp.

Dejinition. The order of cp is defined as the smal-
lest number k for which there exists a basis set of
predicates { satisfying:

where L(Qa) is the set of all predicates that can be
expressed as disjunctions, or linear combinations,
of the basis set { @ a } .

The motivation behind this definition is that in
a parallel machine it may be desirable to imple-
ment complex predicates as combinations of sim-
pler ones, and the order of the predicate is an
indication of the minimum complexity required
for the basis set. The basis set may be considered
the internal representations that are used by the
machine to implement the predicate; however, the
order of a predicate is a property only of that
predicate and does not depend on the particular
choice of internal representations.

Appendix B

Collecting statistics

There are several ways to compute estimates of
the ensemble averages needed in the Boltzmann
learning algorithm. A straightforward way to
estimate the ensemble average

T.J. Sejnowski et al./Learning symmetry groups with hidden units 275

is to reach equilibrium and accumulate the time '

average, eq. (5). Since the states are Markov
processes [18, 321 the system is ergodic and the
time average should converge to the ensemble
average.

A better estimate for the ensemble average may
be obtained using information from the summed
inputs to the units as well as their outputs. For
example, the time average can be rewritten as

The first term can be estimated by averaging Pi
given sj = 1, and the latter term can be estimated
by averaging Pj.

References

[I] J.A. Feldman and D.H. Ballard, Connectionist models
and their properties, Cog. Sci. 6 (1982) 205-254.

[2] D.H. Ballard, G.E. Hinton and T.J. Sejnowski, Parallel
visual computation, Nature 306 (1983) 21-26.

[3] G.E. Hinton and T.J. Sejnowski, Optimal perceptual in-
ference, Proc. IEEE Computer Society Conf. Computer
Vision & Pattern Recognition, Washington, D.C., (1983)
448-453.

[4] T. Poggio, V. Torre and C. Koch, Computational vision
and regularization thepry, Nature 317 (1985) 314-319.

[5] T.J. Sejnowski and G.E. Hinton, Separating figure from
ground with a Boltzmann machine, in: Vision, Brain &
Cooperative Computation, M.A. Arbib and A.R. Hanson,
eds. (MIT Press, Cambridge, 1985).

[6] J.J. Hopfield and D. Tank, "Neural" computation of
decision in optimization problems, Biol. Cybernetics
(1985).

[7] L.G. Valiant, A theory of the learnable, Communications
of the ACM, 27 (1984) 1134-1142.

[8] L.G. Valiant, Learning disjunctions of conjunctions, Proc.
Ninth Intl. Joint Conf. Artif. Intell. (Morgan Kauffmann,
Los Altos, CA, 1985) pp. 560-566.

[9] F. Rosenblatt, Principles of Neurodynamics (Spartan, New
York, 1959).

[lo] M. Minsky and S. Papert, Perceptrons (MIT Press,
Cambridge, 1969).

[l l] J.J. Hopfield, Neural networks and physical systems with
emergent collective computational abilities, Proc. National
Academy of Sciences USA 79 (1982) 2554-2558.

[12] S.E. Fahlman, G.E. Hinton and T.J. Sejnowski, Massively-
parallel architectures for AI: NETL, THISTLE and Boltz-
mann Machines, Proc. National Conf. Artificial Intelli-
gence, Washington, D.C. (1983) 109-113.

[13] D.H. Ackley, G.E. Hinton and T.J. Sejnowski, A learning

algorithm for Boltzmann machines, Cognitive Science 9
(1985) 147-169.
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller
and E. Teller, Equation of state calculations by fast com-
puting machines, J. Chem. Phys. 21 (1953) 1087-1092.
S. Kirkpatrick, D.D. Gelatt and M.P. Vecchi, Optimiza-
tion by simulated annealing, Science 220 (1983) 671-680.
J. Moussoris, Gibbs and Markov random systems with
constraints, J. Statis. Physics, 10 (1974) 11-33.
R. Kindermann and J.L. Snell, Markov random fields and
their applications (American Mathematical Society, Provi-
dence, 1980).
S. Geman and D. Geman, Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images, IEEE
Transactions on Pattern Analvsis and Machine Intelli-
gence 6 (1984) 721-741.
P. Smolensky, Schema selection and stochastic inference in
modular environments, Proc. Natl. Conf. on Artif. Intel.,
Washington, D.C. (1983) 378-382.
V. Cerny, Multiprocessor system as a statistical ensemble:
a way towards general-purpose parallel processing and
mind computers?, preprint, Institute of Physics and Bio-
physics, Camenius University, Bratislava, Czechoslovakia
(1983).
P. Paretto, Collective properties of neural networks: a
statistical physics approach, Biological Cybernetics 50
(1984) 51-62.
D.J. Amit, H. Gutfreund and H. Sompolinsky, Spin-glass
models of neural networks, Phys. Rev. A 32 (1985)
1007-1018.
D.J. Arnit, H. Gutfreund and H. Sompolinsky, Storing
infinite numbers of patterns in a spin-glass model of
neural networks, Phys. Rev. Letters 55 (1985) 1530-1533.
G. Toulouse, S. Dehaene and J.-P. Changeux, Spin glass
model of learning by selection, Proc. National Academy of
Sciences USA 83 (1986) 1695-1698.
A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum
likelihood from incomplete data via the EM algorithm, J.
Roy. Stat. Soc. B39 (1977) 1-38.
L.R. Bahl, F. Jelinek and R.L. Mercer, A maximum likeli-
hood approach to continuous speech recognition, IEEE
Trans. Pattern Analysis and Machine Intelligence, 5 (1983)
179-190.
S. Kullback, Information theory and statistics (Wiley,
New York, 1959).
F. Crick and G. Mitchison, The function of dream sleep,
Nature 304 (1983) 111-114.
J.J. Hopfield, D.I. Feinstein and R.G. Palmer, "Unlearn-
ing" has a stabilizing effect in collective memories, Nature
304 (1983) 158-159.
A.G. Barto and C.W. Andersen, Structural learning in
connectionist systems, Proc. Seventh Annual Conf. Cogni-
tive Science Soc. (1985).
D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning
internal representations by error propagation, in: Parallel
Distributed Processing: Explorations in the Microstruc-
ture of Cognition, vol. 1: Foundations, D.E. Rumelhart
and J.L. McClelland, eds. (MIT Press, Cambridge, 1986).
R. Binder, The Monte-Carlo method in statistical physics
(Springer, New York, 1978).

