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ABSTRACT The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of
intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk
interpretations elucidate two of thesemechanisms:molecular diffusion in crowded environments and cytoskeletal transport along
microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres
migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and
fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data
demonstrates that cytoskeletal transport alongmicrotubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian)
behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk
provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM.
INTRODUCTION
Diffusion plays a fundamental role in every biochemical
process in living cells. Just as essential for intracellular
transport is cytoskeletal migration, which includes all motor
protein-mediated transport. Characterizing and distinguish-
ing these and other transport mechanisms within a cell
is critical to understanding cellular function. Topologic
complexity of crowded intracellular space renders mathe-
matical representations of processes as basic as molecular
diffusion problematic. Whereas some studies (1,2) relied
on Brownian motion to represent intracellular diffusion,
others (3,4) found evidence of anomalous (nonFickian)
diffusive behavior that requires the use of more evolved
random walk models (e.g., fractional Brownian motion
and continuous time random walk, described below).

Modeling cytoskeletal transport is even more chal-
lenging, because it involves a complex interplay of various
mechanisms. These include the variety of molecular motors
that traverse the cytoskeleton (5,6), cytoskeleton self-
assembly kinetics (7,8), and the interaction between micro-
tubule and actin filament transport (9,10). Many of these
processes are fundamentally different from Fickian diffu-
sion, and initial work has successfully modeled cytoskeletal
transport as anomalous diffusion (11,12). A major goal of
our analysis is to extend this knowledge by elucidating
the underlying processes from single-particle measure-
ments and to identify useful modeling tools for future
efforts.

An immediate impetus for studying intracellular trans-
port comes from electron microscopy studies, which re-
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vealed how large macromolecular complexes, organelles,
and cytoskeletal components combine to produce a dense
environment that interacting biomolecules must navigate,
either through diffusion or cytoskeletal transport (13).
However, the fixation required for electron microscopy
arrests diffusive motion, making light microscopy critical
for characterizing these processes. Recent advances in
light microscopy gave rise to a number of experiments
looking at intracellular transport (11,14–18). The three-
dimensional (3D) single-particle tracking experiments
reported below will add to the growing understanding of
diffusion and other transport mechanisms in biological
systems.
EXPERIMENT DESCRIPTION

We consider three distinct, biologically relevant conditions
to acquire particle trajectories. Specifically, single fluores-
cent microspheres are tracked in a buffer solution, a cellular
extract with microtubules intact, and an extract with depoly-
merized microtubules. The use of an extract prepared from
Xenopus eggs (rather than from intact live cells) greatly
simplifies the experiments, while maintaining an environ-
ment statistically similar to the in vivo intracellular
space. The protein concentration in the cytosolic fraction
was ~100 mg/mL, similar to protein concentrations seen
in live cells.

Single-particle tracking is a powerful technique that
has become common in analyzing diffusion in biological
systems (19). However, particle-tracking methods are
typically limited to two dimensions due to the physical
constraints on the speed of moving the sample or the micro-
scope objective in the third dimension. We developed a light
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microscopy technique that employs acousto-optic deflectors
(AODs) to realize 3D imaging of volumes with high
temporal resolution and no macroscopically moving parts
(20,21). Several recent AOD microscopes employed a
4-AOD setup to produce 3D random access, two-photon
imaging in tissue; these devices use point scanning to
increase temporal resolution (22–24). Point scanning is
inappropriate for tracking single molecules, because the
stochastic nature of their movements requires rapid scan-
ning of the entire volume within which the particle is
moving. Our microscope employs a simpler 2-AOD setup
to perform rapid raster scans of small volumes, which
enabled us to record single-particle trajectories.
FICKIAN AND NON-FICKIAN DIFFUSION

Single-particle tracking microscopy enables one to track
how the position Xi(t) of the ith fluorescent microsphere
changes with time t. These trajectories can be used to
compute the mean-square displacement (MSD) over N
microspheres,

�
d2ðtÞ� ¼ 1

N

XN
i¼ 1

kXiðtÞ � Xið0Þk2; (1)

where h,i denotes the ensemble average. The MSD charac-
teristic of Fickian diffusion grows linearly with time,�

d2
� ¼ 6Dat; (2)

where Da is a diffusion coefficient. For diffusion in
free space (solvent fluid), Da can be calculated from the
Stokes-Einstein relation

Da ¼ kBT

6pmr
; (3)

where kB is the Boltzmann constant, T is temperature, m is
the viscosity of the solvent fluid, and r is the radius of the
diffusing molecule. If Fickian diffusion takes place in
a crowded environment whose pores are filled with a solvent
fluid, the value of Da is reduced to account for the medium’s
porosity and tortuosity. Such a reduction in effective diffu-
sion coefficient Da has been observed in a variety of biolog-
ical phenomena (14,25,26).

Diffusion processes in which the MSD grows nonlinearly
with time, �

d2
� ¼ 6Dat

a; (4)

are referred to as anomalous or nonFickian. A process is
called subdiffusion if 0 < a < 1, and superdiffusion if
1 < a < 2. Here a ¼ 1 corresponds to Fickian (classical)
diffusion, and a ¼ 2 is known as the ballistic limit (27).
Anomalous diffusion has been observed at a variety of
scales in a plethora of applications, including solute trans-
port in geologic formations (28,29), transport of polynucle-
otides through pores (30,31), and diffusion of fluid through
tissue (32,33). Anomalous diffusion has also been observed
in cytoskeletal transport (11,12); a major goal of this report
is to identify transport mechanisms that could give rise to
this behavior.

A time-averaged MSD provides a useful alternative to the
ensemble-averaged MSD, especially in biological systems
in which it is common to have only a few trajectories with
a relatively short observation time. The time-averaged
MSD of the ith microsphere is defined by

d2i ðD; tÞ ¼ 1

t � D

Zt�D

0

½Xðt0 þ DÞ � Xðt0Þ�2dt0; (5)

where D is a lag time (34). The ensemble average of the
time-averaged MSDs for all N experimental trajectories,
hd2i ¼ ð1=NÞPN

i¼1d
2
i , is then fit with an equation

D
d2
E

¼ 6DaD
a þ C: (6)

The fitting parameter C accounts for noise in the measure-
ments of trajectories, such that a noiseless MSD would be
fit with C ¼ 0. In the following analysis, the experimental
MSD is shifted by subtracting this constant, which can be
thought of as removing noise. Analysis without this shift
gave qualitatively similar but quantitatively inferior results.
Despite a long history of using the ensemble-averaged MSD
for analyzing random walks (19), recent work has shown
that it can produce misleading results (35,36). Furthermore,
many single-particle tracking experiments in biology have
shown that comparing the time-average MSD for different
particles does not necessarily match the ensemble-averaged
MSD (37).

Stochastic processes whose time-averaged behavior
differs from their ensemble average (over multiple realiza-
tions) are called ‘‘nonergodic’’ (38). Ergodicity or lack
thereof is an intrinsic property of a process. Experimental
verification of a process’s ergodicity requires observation
times that are sufficiently long for the process to self-
average. The practical limits on observation time imposed
by our microscope do not provide sufficient time for a given
trajectory to self-average, making ergodicity analysis inap-
propriate. Instead, we analyze a pre-ergodic regime in which
robust nonergodic measures can be observed (19). We define
the dimensionless random variable xi ¼ d2i =hd2i, and obtain
a distribution fxi

ðXÞ of time-averaged MSDs. This distribu-
tion can be used to characterize the ergodic properties of
the process, such that the distribution fxi

ðXÞ ¼ dðX� 1Þ,
where d is the Dirac delta function, denotes an ergodic
process, and divergence from this distribution reveals ergo-
dicity breaking.
Biophysical Journal 104(8) 1652–1660
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RANDOM WALK MODELS OF ANOMALOUS
DIFFUSION

In classical random walk models, the final position XN of
a particle after N equal time steps is a sum of N random
spatial increments Dxn (n ¼ 1,.,N),

XN ¼
XN
n¼ 1

Dxn: (7)

The choice of a probability density function (PDF) for these
increments, jDx(,), uniquely specifies a model of this
class. For example, a Gaussian PDF jDx(,) corresponds to
Brownian motion (BM).

The continuous time random walk (CTRW) generalizes
this classical framework by allowing for time increments,
Dtn (n ¼ 1,.,N), of variable (and random) duration.
Thus, CTRW is characterized by two PDFs: one for random
spatial increments, jDx(,); and the other for random time
increments, jDt(,). After N steps of the CTRW, it takes
a particle the time

TN ¼
XN
n¼ 1

Dtn (8)

to reach its position XN given by Eq. 7. The choice of the
PDFs jDx(,) and jDt(,) defines a manifold in the space of
CTRW models. For example, selecting jDx(,) to be a power
law and requiring jDt(,) to have a finite mean value yields
a family of Lévy flight models. The latter were used to
describe a wide range of seemingly random phenomena,
such as search patterns of flying albatrosses (39), human
travel (40), and financial markets (41). Another combination
of these two PDFs, a Gaussian jDx(,) and a power-law
jDt(,), results in a particle’s MSD that exhibits subdiffusive
scaling with time (42,43) and was used to model subdiffu-
sive transport in biological systems (37,44). In this regime,
a particle’s MSD exhibits weak ergodicity breaking and the
mean value of random time increments, Dtn, does not exist
(45). This renders the calculation of a time-averaged MSD
problematic and necessitates the reliance on an analytically
derived distribution of time-averaged MSDs (45):

lim
t/N

fxi
ðXÞ ¼ G1=að1þ aÞ

aX1þ1=a
la

�
G1=að1þ aÞ

X1=a

�
: (9)

Here a comes from the underlying temporal distribution
used in the derivation jDt(,) ~ Dt�(1þa); G(x) is the gamma
function; and la(x) is the one-sided Lévy stable distribution.
Using this analytical distribution, the pre-ergodic analysis
performed on the experimental data can be directly com-
pared to a CTRW model.

Fractional Brownian motion (fBM) is another generaliza-
tion of the classical random walk, which postulates that
taking a step in one direction changes (i.e., increases or
Biophysical Journal 104(8) 1652–1660
decreases, depending on the correlation) the probability
that the next step will be in the same direction (46). This
non-Markovian process is characterized by a two-point
correlation function�

Xiðt1ÞXjðt2Þ
� ¼ KHdij

�
t2H1 þ t2H2 � jt1 � t2j2H

�
; (10)

where KH is a fractional diffusion constant; dij is the
Krönecker delta; and H ¼ a/2 is the Hurst exponent. In
this case, Xi and Xj are uncorrelated when i s j and the
correlation function hXiXii is isotropic. The fBM framework
was used to model intracellular diffusion (47). It has been
shown recently that fBM is ergodic in the limit of large
observation times, although for short observation times
this is not the case (19).

We use measurements of single-particle trajectories in
cytoplasm to discriminate among these three alternative
random-walk interpretations, i.e., to select a model that
captures best both molecular diffusion in crowded environ-
ments and cytoskeletal transport along microtubules. To
achieve a robust model selection, we rely on the fact that
BM, CTRW, and fBM have distinct ergodic behaviors,
particularly when observation time is short (19). This makes
pre-ergodic analyses uniquely suited for single-particle
tracking in biological systems (which are often character-
ized by strict limits on observation time). We show that
a pre-ergodic analysis can be leveraged to differentiate
each experimental condition and to identify a corresponding
random walk model.
METHODS

Xenopus egg extract preparation

Xenopus egg extract is prepared using the protocol described by Hetzer

et al. (48). Only the cytosolic fraction described is used in this study.
Microsphere preparation and imaging

Streptavidin-coated fluorescent microspheres from Polysciences

(Warrington, PA) are prepared as specified by manufacturer instructions,

resuspended in PBS/BSA binding buffer (0.02 M phosphate-buffered

saline, 8 mg/mL NaCL, and 10 mg/mL bovine serum albumin) at a concen-

tration of 1.25% and stored at 4�C. The microspheres have a diameter of

1.019 mm (50.018 mm), excitation frequency peak at 441 nm, and emission

peak at 486 nm. These are introduced into extract at a concentration deter-

mined by experiment where a concentration is chosen based on sparse but

plentiful microsphere coverage when viewed by microscope, allowing easy

acquisition of long trajectories without capturing trajectories where some

frames have overlapping microspheres. This resulting solution is deposited

onto uncoated glass slides, covered with a coverslip, and sealed using nail

polish to minimize evaporation. The sample thickness is estimated to be

roughly 10 mm. This is determined by focusing on microspheres stuck to

the slide, and measuring the distance traveled by the stage to put the micro-

spheres stuck to the coverslip in focus. As the extract contains microtubules,

there is also a question as to how they are ordered. Although this is difficult

to determine with our setup, it is expected that the microtubules will

be randomly distributed and unordered, although it may be there is some

bias toward the plane of the slide, as the sample volume is comparatively
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narrow in the orthogonal direction. For the case of the buffer solution, the

microspheres are diluted in PBS to again obtain a sparse coverage. To

remove cytoskeletal transport along microtubules and investigate free

diffusion in the cytosolic fraction, nocodazole is applied, which is known

to interfere with microtubule polymerization. The extract is incubated at

37�C for 1 h with 10 mM nocodazole, similar to previous protocols (11).

The resulting solution is again deposited onto coverslips with sparse

coverage.
B C

D E

FIGURE 1 Summary of data collection and methods. (A) Block diagram

of the microscope used in this work. Custom PC software controls all

microscope functions and finalizes data acquisition. After scan parameters

are entered, the scan program is sent to a field-programmable gate array

(FPGA) as a metalanguage string of hexadecimal characters and saved

into onboard memory. A Start command is sent with the number of repeats

to begin a scan by driving a direct digital synthesis (DDS) board, producing

a series of frequencies and chirp rates directing the acquisition of the

volume, while a concurrent trigger signal is sent to the data acquisition

oscilloscope. A laser diode (LD) is directed by the acousto-optic deflectors

(AOD), through a telescope tube (TT), and reflected by a dichroic mirror

(DM) onto the back-aperture of an objective (OBJ). The light emitted by

the sample is collected on a photomultiplier tube (PMT) and converted

into an image on the PC. (B) Example image from the microscope. Note

that high and low concentrations, as seen here, are common, and that all

trajectories are taken from single molecules that never overlap. (Dashed

line) The z cut shown to the right. (C–E) Example trajectories of a

bead in a (C) buffer solution; (D) extract; and (E) extract treated with

nocodazole.
Acousto-optic deflector microscopy

In this study, we use a microscope that uses acousto-optic deflectors

(AODs) to guide a laser beam instead of mirrors (20). A block diagram

of this microscope can be found in Fig. 1 A. An AOD is a device that intro-

duces sound waves into a transparent crystal to form a transient diffraction

grating. The angle of optical diffraction is related to the frequency of sound

so that the available range of beam deflection is given by the equation

Dqz
lDf

v
; (11)

where Dq is the total sweep angle; l is the optical wavelength; Df is the

acousto-optic bandwidth; and y is the speed of sound in the acoustic

medium. It is apparent from this equation that sweeping the acoustic

frequency through a given range will direct the focus along a line. The

use of two orthogonal AODs, therefore, produces raster scanning in the

(x,y) plane (21). A cylindrical lensing effect is created by the finite propa-

gation time of the sound wave, so that the effective focal length (F.L.) of an

AOD sweeping through a range of acoustic frequencies is given by

F:L: ¼ v2

l

�
df

dt

	�1

; (12)

where df/dt is the rate of change of the sound frequency. By prescribing

a precise range of frequencies and several rates of sweeping, one for

every desired focal plane, a full 3D volume can be imaged at a rate

of ~100 Hz (21).

Our setup uses an integrated two-dimensional (2D) acousto-optic

deflector, model No. 2DS-100-45-100 (Brimrose, Sparks, Maryland),

which consists of two orthogonally mounted TeO2 AODs. This device is

placed in line with a collimated 405-nm single mode laser diode. A 1:1

telescope directs the beam onto the back-aperture of a 40� oil immersion

objective with 1.35 NA. The refractive index of the oil used for all slides

imaged is 1.518. Emitted light is collected by a model No. H7422-40

photomultiplier tube (Hamamatsu, Bridgewater, NJ) and acquired by a

WaveRunner 64Xi oscilloscope (LeCroy, Chestnut Ridge, NY). The

AODs are driven by a model No. AD9959 direct digital synthesizer

(DDS) (Analog Devices, Norwood, MA), which is controlled by custom

firmware on a Cyclone 2 field-programmable gate array (FPGA) (Altera,

San Jose, CA). The FPGA circuit is designed and implemented in-house

and provides tight control over the timing of the scan. Further details can

be found in Appendix A. All acquired images are saved in the NetCDF

scientific data format (49), which preserves the intensity of each pixel

and allows labeling with metadata for parameters such as voxel size in

physical units. Conversion to common graphical formats for postprocessing

and analysis is provided by an in-house plug-in employing the software Im-

ageJ (National Institutes of Health, Bethesda, MD) (50). This setup results

in a maximum field of view of ~102 � 102 mm2, and a varying focal length

up to 20 mm from the fixed nominal focal plane of the objective.

In previous work using AODs, it was noted that a 2-AOD scanner neces-

sarily produces astigmatic 3D scans (24). This is incorrect. A simple solu-

tion for the astigmatism is to scan at an angle to the 2-AOD system’s

acoustic propagation axes. If both AOD channels are sweeping the sound

frequencies at the same rate, this results in a raster scan oriented at 45�
to the AOD devices’ orientations with the effective focal lengths of both

AODs being equal, i.e., without astigmatism. If the two AODs are simply

mounted behind one another without a 1:1 telescope between them as in

our simple system, the effective focal planes will not be parfocal; in such

a setup, the astigmatism is fully corrected by tilting the scan direction at

an angle slightly different from 45� so the effective focal planes line up

in space. The appropriate correction depends on the details of the entire

optical system and must be calculated for every focal plane. In this work,

proximity of the two AOD devices and small excursions from nominal

focal plane make the astigmatism negligible relative to other sources of

measurement error, so every plane is scanned at 45� to simplify volume

reconstruction.
Biophysical Journal 104(8) 1652–1660
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Imaging protocol

The protocol for imaging is the same for all acquisitions. The scan param-

eters used are 100 � 100 pixels, with a focal area of 102 � 102 mm2. Each

volume contained 10 focal planes, or slices, captured with a distance

between them of 1 mm. An example of a single slice and z projection is

shown in Fig. 1 B. The data acquisition rate is set at 1 MHz, so that with

the time to fill the AOD the total acquisition time per volume is 86 ms.

At these rates some slight smearing of the point spread function is apparent

due to movement of the particle during the acquisition; this does not signif-

icantly affect the results of our analysis. Due to memory constraints on the

oscilloscope used, 100 frames are collected before pausing to offload the

memory, and then repeated 10 times for a total of 1000 frames. Each 100

frame acquisition takes 8.6 s, followed by ~6 s spent clearing the oscillo-

scope memory. Therefore, for a full 10-repeat acquisition, the final observa-

tion occurs at 140 s. Throughout all experiments there are sufficient

microspheres on a slide to image a single microsphere for one full scan, fol-

lowed by focusing on a different particle. This minimized photobleaching,

and assured a broad coverage of the available space for diffusion. Images

are gathered for a maximum of 4 h per slide, at which time diffusive motion

is no longer evident. This is due to the microspheres sticking to the slide and

coverslip, as can be seen by moving the focal plain to show immobile pop-

ulations in each plane. Whereas microspheres become stuck continually

through the experiment, these are not tracked during the image analysis

stage. No temperature control is used during the experiments. For all exper-

iments room temperature is ~22�C. Any small variation in temperature

should have a small effect on the resulting behavior. Referring to Eq. 3,

a difference of 1 K changes the diffusion constant by ~0.3%, which is

well within experimental error.
A

B

Data analysis

The resulting volumes are analyzed using the Imaris software suite

(Bitplane, South Windsor, CT). A first pass of particle positions is auto-

mated by the software, using the internal particle tracking algorithm.

This is followed by hand-picked filtering to eliminate extraneous points,

and finally each frame is examined by eye to ensure proper positioning

of particles. This step is very time-consuming and is the limiting factor

in obtaining the 3D particle trajectories used in this study. The resulting

output consists of the x, y, and z coordinates of each particle Xi over

time t. Example trajectories for each experimental condition is shown

in Fig. 1, C–E. These trajectories are analyzed as described in the

Introduction.
C

FIGURE 2 Time courses of mean-square displacement. (A and B)

Comparison of averaged trajectories for diffusion in cellular extract, buffer

solution, and cellular extract treated with nocodazole. (Symbols) Experi-

mental data. (Solid lines) Fit using Eq. 6. (A) Short lag-time analysis. (B)

Long lag-time analysis. (C) Comparison of random walk models to exper-

imental results. Note that a time-averaged MSD of CTRW trajectories is

inappropriate, therefore there is no comparison to the experimental condi-

tion of extract with nocodazole.
Random walk model simulation

Brownian motion and fractional Brownian motion processes are simulated

to compare with the experimental results. A BM process is simulated as

a solution to a Langevin equation

Xðt þ dtÞ ¼ XðtÞ þ B½XðtÞ�h
ffiffiffiffi
dt

p
; (13)

where h is Gaussian white noise with zero mean and unit variance, and B is

a diffusion tensor, which in this case is diagonal and isotropic. fBM is

characterized by zero mean, variance that scales algebraically, and a two-

point correlation given in Eq. 10. The fBM trajectories are generated using

the Hosking method (46).

The diffusion constants chosen are informed from the experimental

results reported below. In the case of BM, the diffusion constant used is

B ¼ 0.92I where I is the identity matrix. In the case of fBM, KH ¼ 0.02.

To calculate the correct value for B it is important to remember that the

Da reported in the experimental results is a 3D diffusion constant, where

hd2i¼ 6Dat. This is in contrast to simulations of random walks in each coor-

dinate direction, which has the relation hX(t)2i ¼ 2Dat. Therefore, to find B,
Biophysical Journal 104(8) 1652–1660
we take the experimental value and multiply it by 2. This is not the case for

fBM, where we directly use the value found in experiments. The fBM

simulations are calculated with H ¼ 0.75, again chosen based on the

experimental results. For both BM and fBM, 30 trajectories are simulated

for 500 time steps, similar to the data available from the experimental

results. Simulations of CTRW are not performed because with time steps

of varying length, calculating a time-averaged MSD is unfeasible. All

resulting trajectories are analyzed using the same methods as the experi-

mental trajectories.
RESULTS

Experimental results

As described above, images are acquired under three distinct
conditions: for microspheres in buffer, in a cellular extract
with intact microtubules, and in a cellular extract treated
with nocodazole where the microtubules are depolymerized.
There are 28, 40, and 31 trajectories acquired for each case,
respectively. The time-averaged MSD is calculated for each
trajectory according to Eq. 5. These trajectories are
ensemble-averaged, and the resulting averaged trajectory
is fit using Eq. 6. These average trajectories and the resulting
fit parameters are shown in Fig. 2, A and B, for short and
long times. An important note is that the variance grows
with lag time, as there are fewer segments to average over



FIGURE 3 Time-averaged mean-square displacement distributions for

all experiments. Snapshots of the distribution fxi
ðXÞ for the three experi-

mental conditions at four different lag times D. In the case of buffer, 28

trajectories are analyzed, in the untreated extract case, 40 are analyzed,

and in the case of extract treated with nocodazole, 31 are analyzed. All

figure axes mirror those in the bottom left, but are removed for clarity.

The trend, in the cases of Buffer and Extract þ noc (nocodazole), is

independent of lag time whereas the case of Extract shows a shifting

peak with increasing lag time. To see this trend more clearly, compare

this figure with Fig. 4, which plots the distribution for many values of D.
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as lag time increases. This accounts for the poor fitting seen
at large lag times, and is the reason the full trajectory of 140
seconds is not shown.

Looking at the buffer conditionfirst, Eq. 6 is applied to both
short and long lag-time data to obtain a ¼ 0.98 and 1.12,
respectively. This suggests normal Brownian motion, as ex-
pected for this case. Calculating the diffusion constant using
Eq. 3 gives a diffusion constant of Da ¼ 0.24 mm2/s, which
matches well with the experimental values of Da ¼ 0.42
and 0.45mm2/s. The errormost likely comes fromuncertainty
in position measurement during the image analysis phase.

For the extract condition, which captures cytoskeletal
transport along microtubules, we find a ¼ 1.48 and 1.47
for the short and long lag-time analysis. These values are
consistent with the a ¼ 1.47 (50.07) reported in Caspi
et al. (11) (our a is equivalent to their g). Furthermore, the
fact that a does not appear to be a function of time suggests
the observed superdiffusive behavior arises from long-term
correlations. Comparing the fit diffusion constant is inappro-
priate in this case due to the assumptions inherent to Eq. 3,
namely that the observed particle is in a dilute suspension.

In the case of nocodazole-treated extract, a ¼ 0.65 in the
short lag-time analysis, but a¼ 0.98 is observed in the long-
time lag case. This transition from anomalous to classic
Fickian diffusion has been observed previously, and typi-
cally results from processes with a finite correlation length
(51). Because a is not a function of time in the extract
case, this suggests these two processes are fundamentally
different. There have been a number of recent studies of
intracellular anomalous diffusion in which this transition
has been noted (11,15–18). These results also show that
the diffusion constant Da is smaller and similar in both
extract cases compared to buffer, as would be expected for
hindered diffusion. Again, comparison to Eq. 3 would be
inappropriate.
Pre-ergodic analysis

As suggested above, analyzing experimentally obtained
particle trajectories in terms of their ergodicity could poten-
tially distinguish what type of underlying processes govern
diffusion in each of our experimental conditions. Several
groups have investigated the ergodicity of random walk
processes and shown differences in the distribution of
time-averaged MSDs fxi

ðXÞ, which act as a representation
of the underlying ergodicity of the process (35,44,45). We
calculate the parameter xi ¼ d2i =hd2i for each experimental
condition and plot histograms of the distributions at four
lag times in Fig. 3. These snapshots at discrete lag times
give a good idea of the shape of these distributions, and
suggest that they each evolve differently with respect to lag
time D. To get a complete picture of the distribution with
respect to lag time, the distribution for many values of D
are plotted in Fig. 4. To help compare these figures, note
that the y axis for all plots in Fig. 3 corresponds to the heat
values in Fig. 4, whereas the y axis in Fig. 4, D, is a fine
discretization of the four lag times spanned in Fig. 3 from
the top to bottom row. With this in mind, it is immediately
clear that each condition shows markedly different statistics.

To categorize these distributions, the same statistics for
random walk processes shown to result in anomalous
diffusion are examined. Based on a comparison of the plots
in Fig. 4 with previous work (19), we use CTRW with
a power-law jDt(,) to model the free diffusion condition
(extractþ nocozadole) and fBM to describe the cytoskeletal
transport condition (extract). Both BM and fBM random
walks are simulated, and the MSD is calculated for each re-
sulting trajectory. The ensemble-averaged MSD from these
simulations is compared to the experimental results in Fig. 2
C, which shows excellent agreement between a BM process
and the buffer case, and fBM and the extract case.

In addition, a distribution of time-averaged MSDs is
calculated from the simulated trajectories. For the case
of CTRW, an analytically derived distribution of time-
averaged MSDs, Eq. 9, is used. Note that the distribution
does not depend on lag time D. Although this distribution
assumes an infinite observation time, is has been shown
that this result matches simulated data with a much shorter
observation time, on the order of 100 time steps (19). To aid
visual comparison, Gaussian white noise (m ¼ 0, s ¼ 0.05)
is added on top of the distribution to simulate the noisy
appearance. Using this analytic distribution and the simu-
lated data, the distribution fxi

ðXÞ is plotted as a function
of lag time in Fig. 4. In the simulations of fractional
Biophysical Journal 104(8) 1652–1660



FIGURE 4 Temporal evolution of time-averaged MSD distributions.

Comparison of distribution fxi
ðXÞ for the three experimental and the three

modeling conditions. BM denotes Brownian motion, CTRW denotes

continuous time random walk, and fBM denotes fractional Brownian

motion. In the case of the experimental data, although there is noise due

to the limited number of trajectories, the trends in each case are distinctive.

Furthermore, the three modeling conditions shown are quite similar to the

paired experimental conditions, suggesting these processes are good

representations of the biological process.
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Brownian motion a ¼ 1.5, as seen in the experimental data.
For the CTRW distribution, a best fit is obtained with a ¼
0.6. This value is motivated from the short lag-time result,
as it appears normal Fickian diffusion is recovered at long
lag times, and we are interested in the anomalous behavior.

Examining the distributions of time-averaged MSDs and
recalling that these distributions are analogous to ergodicity,
the differences between these processes become clear. As
seen in Fig. 4, for a BM process the distribution remains
Gaussian and centered around x ¼ 1 for all lag times, as ex-
pected. fBM is ergodic at short lag times with a peak
centered at x ¼ 1, and slowly shifting toward x ¼ 0 with
increasing lag time. This evolution of the distribution of
time-averaged MSDs with lag time is similar to previously
reported results looking at fBM with short observation times
(19). CTRW is a nonergodic process which is characterized
by a peak independent of lag time and shifted toward x ¼ 0,
and again was reported previously in He et al. (45).
DISCUSSION

Comparing the experimental and model plots in Fig. 4, simi-
larities are immediately apparent. For free diffusion in
a buffer, the distribution has the same characteristics as
a BM process. For the case of free diffusion in the extract
after treatment with nocodazole, a shifted distribution that
is independent of lag times is observed, similar to a
Biophysical Journal 104(8) 1652–1660
CTRW process. An interesting facet of this result is that
although we saw a transition from anomalous to Fickian
diffusion in the MSD analysis, in the ergodicity analysis it
appears there is no dependence on lag time. However, as
we are analyzing these results in a pre-ergodic regime,
this may simply reflect the lack of self-averaging achieved
over the time period analyzed. Future investigation of this
relationship may provide insight into the relationship
between ergodicity and this transition. Finally, in the case
of cytoskeletal transport along microtubules (extract),
a distribution starting centered and slowly shifting toward
zero with increasing lag time is seen. In the untreated extract
case, one would expect free diffusion and cytoskeletal trans-
port along microtubules to occur in concert, but the statistics
suggest that cytoskeletal transport dominates in this experi-
mental condition. The similarities to the simulated data are
striking and illuminating. A word of caution: it is very
important to recognize that there are a variety of random
walk processes and the field remains one that is rapidly
evolving. We are not claiming that the intracellular pro-
cesses are exactly represented by the described random
walk processes, but simply that the statistics seen here
appear to be well modeled by such processes.

The lack of consensus in the published literature suggests
that intracellular transport is very complicated. Here, we
have shown that cytoskeletal transport along a microtubule
is statistically distinct from free diffusion within the exam-
ined cytosolic fraction. This result shows cytoskeletal
transport is not simply diffusion with a higher diffusion
constant, but a distinct process, providing a unique method
for transport. This supports the idea that cytoskeletal trans-
port is essential, as traditional diffusion would be unable to
mimic this behavior. Furthermore, we have shown these
processes arewell modeled by fBM andCTRW, respectively.
Despite this success, there is still contrary evidence re-
garding the intracellular diffusion process. As already
mentioned, both fBM (47) and CTRW (44) have successfully
modeled experimental data from free diffusion in the cytosol.
Our data and analysis suggests that CTRWis amore accurate
model for intracellular free diffusion, although the difference
between our experiments on a slide and results from living
cells may explain this discrepancy. Although they are
instructive, the measures of diffusion used here, the scaling
over time (a) and a measure of ergodicity (x), provide an
incomplete description of these processes. Organization
and structure within cells likely has a major impact on trans-
port, and improvements in tracking smaller particles in
living cells, for extended observation times, will allow
a more complete characterization of intracellular transport.
However, the models proposed here present a powerful tool
for beginning to understand these processes.

There are a few previous results that relate to what we
have shown here. In this work, the boundary effects present
with cell membranes are not accounted for, yet previous
work has shown that boundaries can have a nonnegligible
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effect on random walk processes (52,53). Therefore,
an important next step is to perform these experiments
in vivo to properly account for these effects in experiments.
Another recent study focused on the diffusion of membrane-
bound proteins in migrating cerebellar granule cells; the
authors observed a net forward transport toward the leading
front (54). This biased diffusion was modeled using
Brownian motion with a drift component, despite the pres-
ence of bursts of biased motion in which the observed
protein moved in the same direction for several consecutive
steps. The similarity with our observations in the extract
case suggests that an fBM process with positive correlation
may provide an accurate model for the described behavior.
An important distinction is their finding that the process is
dependent on the motor protein myosin II, which interacts
with actin filaments. In our case, the transport appears
to be microtubule-mediated, but cytoskeletal transport on
either actin or microtubules have similar mechanics, sug-
gesting the models proposed here may be appropriate.
Another intriguing result involves assuming the cytoskeletal
transport is modeled by a fractional Brownian process, as
suggested above. The Hurst exponent can be calculated
for the cytoskeletal transport data to be H ¼ 0.75 from the
definition a ¼ 2H. The Hurst exponent is a measure of
long-term correlations in a time series (55). Deng and
Barkai (56) found that the ergodic behavior of fBM is
dependent on the Hurst exponent, and that a nonsmooth
transition occurs as H / 0.75. Although it is not clear
exactly how this detail affects the physical process, it is
intriguing. Future experiments and theory may shed light
on whether this is important or merely a coincidence.

Understanding intracellular transport is essential to
understanding complicated cellular processes. Although
there remain many questions, we have shown strong evi-
dence that CTRW with power-law distributed temporal
increments is a good model for intracellular free diffusion,
and similarly fBM is a good model for cytoskeletal transport
along microtubules. The fact that these are statistically
distinct processes, as opposed to parametrically different
examples of a single process, is an interesting and powerful
result. Future studies exploring this result in vivo combined
with extensive modeling will continue to improve the char-
acterization of a variety of intracellular processes. These
results also offer an interesting perspective on cellular
processes that take place in the cytosol. Cells could be orga-
nized in a way that CTRW-like processes directly impact
reaction processes, where the locally anomalous diffusion
increases reaction rates by increasing the encounter rate.
This increase in encounter rate emerges from the long
waiting times that can occur in a CTRW process, keeping
a molecule in a given local space longer than would be ex-
pected for a BM process. Opposing this is an fBM-like
process that can act as a regulatory mechanism to transport
proteins away from local traps and separate reaction
partners as necessary. This idea is supported by the corre-
lated stepping seen in fBM that could lead to a rapid
removal of a molecule from a local space. The interplay
of these processes would allow fine control over cellular
processes without relying on organelles or membranes for
segregation. Proving this interaction will require clever
experiments to tease out the details, but the work presented
here suggests the appropriate mechanisms exist.
APPENDIX A: MICROSCOPE CONTROL DETAILS

Initial designs of our microscope used a software solution to communicate

with the DDS using the common USB protocol. This allowed simple scan-

ning, but was limiting due to USB packet timing constraints and the inherent

asynchrony in USB. To reach the physical limits of our scanner, for this

study a custom FPGA firmware is developed to drive the DDS. An FPGA

provides an affordable and powerful method to implement a hardware solu-

tion, which is excellent for time-sensitive tasks where hardware will greatly

outperform software. The main problem this avoids is the intrinsic USB

interpacket delays, therefore guaranteeing excellent timing control. Further-

more, limits on USB packets require repeated volume scans to be broken

into smaller chunks, which creates obvious problems due to interpacket

delays, but also creates synchronization issues due to limits on the number

of sync signals that an oscilloscope will recognize in a single acquisition.

By ensuring that timing is fully controlled by the FPGAwith the only control

coming from a single external start signal, we greatly improve our scan

capabilities, given the limitations of the hardware.

Standard operation proceeds as follows. A description of the volume to

acquire is sent over USB using a metalanguage in hexadecimal characters,

and saved into memory. At that point, either a Start signal can be included

in the original signal, or the FPGAwill stand ready waiting for a new signal,

in both cases containing the number of repeats and instructions to begin

scanning. At the start of a scan, the metalanguage is converted into a series

of commands that are delivered to the DDS, which will perform the

required series of frequency sweeps to produce the desired scan pattern.

The Start signal will also pulse a synchronization to the oscilloscope,

triggering the acquisition of the incoming photomultiplier output. Finally,

the acquired data is computationally reconstructed into a final stack of

images for each time point.
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