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A UTOMATIC SPEECH RECOGNITION SYSTEMS 
rely almost exclusively on the acoustic speech signal and, con- 
sequently, these systems often perform poorly in noisy envi- 
ronments [ I ] .  Attempts to clean up the acoustic input have had 
limited success [2]. Another approach is to use other sources of 
speech information, such as visual speech signals. The percep- 
tion of acoustic speech by humans can be affected by the visi- 
ble speech signals [3-51. Specifically, when the acoustic signal 
is degraded by noise, the visual signal can provide supplemen- 
tal speech information that improves speech perception [6-81. 
When no acoustic signal is available, as for the profoundly 
deaf, the visual signal alone can provide speech information 
through lip reading [9- 1 I ] .  Here we answer two questions: Can 
the speech information conveyed by visual speech signals be 
extracted automatically? How can this information be com- 
bined with information from the acoustic signal to improve au- 
tomat ic speech recognition? 

For a limited vocabulary, Petajan 
demonstrated that visual speech signals 
can be used to significantly improve 
automatic speech recognition 
compared to acoustic recognition 
alone. 

The only speech recognition system that has extensively 
used visual speech signals was developed by Eric Petajan [ 121 
[ 131. For a limited vocabulary, Petajan demonstrated that vis- 
ual speech signals can be used to significantly improve auto- 
matic speech recognition compared to acoustic recognition 
alone. The system relied upon a codebook of images that were 
used to translate incoming images into corresponding symbols. 
These symbol strings were then compared to stored sequences 
representing different words in the vocabulary. This process is 
computationally intensive and requires efficient image encod- 
ing to perform a reasonable number of comparisons. The early 
encoding and categorization of continuous speech signals re- 
sulted in the loss of relevant speech information. The overall 
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performance of the system was degraded by this eqrly encod- 
ing. 

The need for early categorization of speech signals can be 
traced to the computational limitations of currently available 
hardware. On a digital computer, the inherently analog visual 
speech signals must first be converted to digital format. Next, a 
significant amount of preprocessing and encoding must be per- 
formed before these signals can be compared to a stored set of 
patterns. Finally. the symbolic descriptions of the segmented 
visual signal stream are combined with the auditory symbol 
stream, using rules that require a significant amount of pro- 
gramming. The von Neumann architecture requires that all of 
these steps be performed sequentially. We propose an alterna- 
tive method for processing visual speech signals, based on ana- 
log computation in a distributed network architecture. By 
using many interconnected processors working in parallel, 
large amounts ofdata can be handled concurrently. In addition 
to speeding up the computation, this approach does not re- 
quire segmentation in the early stages of processing; rather, an- 
alog signals from the visual and auditory pathways would flow 
through networks in real time and would be combined directly 
in the final analog Very Large-scale Integration (VLSI) imple- 
mentation. 

Results are presented from a series of experiments that use 
neural networks to process the visual speech signals of a male 
talker. In these preliminary cxperiments, the results are limited 
to static images of vowels. We demonstrate that these networks 
are able to extract speech information from the visual images, 
and that this information can be used to improve automatic 
vowel recognition. The first section of this article reviews the 
structure of speech, and its corresponding acoustic and visual 
signals. The next section describes the specific data that was 
used in our experiments along with the network architectures 
and algorithms. In the final section, we present the results of in- 
tegrating the visual and auditory signals for vowel recognition 
in the presence of acoustic noise. 

The Visual and Acoustic Signals 
of Speech 
Symbol Strings 

Continuous speech signals are traditionally treated as a se- 
quence of discrete components [ 141 [ 151. As such, the phoneme 
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is the shortest acoustically distinguishing unit of a given lan- 
guage. For example, boot and beat are distinguished by the 
phonemes /U/ and lil. which are abstractions corresponding to 
the “00” and “ea” sounds in those particular words. The 
sounds themselves are called phones and designated [U] and [i] 
to distinguish them from the abstract linguistic units /U/ and 
/i/. While the phonemes are functional and distinguish one 
word from another, phones are descriptive units and describe 
speech sounds. 

The visual correlative of the phoneme is the viseme, which 
is the smallest visibly distinguishing unit of a given language 
[ 161. The mapping between the phonemes and visemes is gen- 
erally many to one: for example, the phonemes lpl, lbl, and Iml 
are usually visibly indistinguishable and treated as a single 
viseme. 

Su b-Symbolic Structure 
The acoustic speech signal that is emitted from the mouth 

can be modeled as the response of the vocal tract filter to a 
sound source [ 171 [ 181. The configuration of the articulators 
define the shape of the vocal tract and the corresponding reso- 
nance characteristics of the filter [ 191 [20]. The resonances of 
the vocal tract are called formants [ 2  I] and they often appear as 
peaks in the short-time power spectrum. The formants are used 
to help identify the individual vowels [22-241, while the com- 
plete amplitude ofthe short-time spectra ofthe acoustic speech 
wave contains much of the information necessary for speech 
perception [25]. intelligibility [2], and automatic recognition 
[26]. 

While some of the articulators are visible on the face of the 
speaker (e.g.. the lips. the teeth, and sometimes the tip of the 
tongue). others are not. The contribution ofthe visible articula- 
tors to the acoustic signal result in speech sounds that are much 
more susceptible to acoustic noise distortion than are the con- 
tributions from the hidden articulators [ 131, and therefore, the 
visual speech signal tends to complement the acoustic signal. 
The most visibly distinct speech sounds. such as Ibl and l k l ,  are 
among the first pairs to be confused when presented acoustical- 
ly in the presence of noise. Similarly, those phonetic segments 
that are visibly indistinguishable, such as l p / ,  lbl, and lm/, are 
among the most resistant to confusion when presented acousti- 
cally [37] [28]. Because of this complementarity, the percep- 
tion of speech in noise is greatly improved when both speech 
signals are present. 

Automatic Interpretation 
Speech recognition systems generally have a “front-end’’ 

signal processor. followed by categorization and symbolic 
computation [ I ]  [29] [30]. In these systems. continuous acous- 
tic signals are often segmented into discrete units that will 
hopefully correspond to phonemes. Even if the segmentation is 
correct. the identification process is complicated by the varia- 
bility with which a phoneme can be spoken. The description of 
the speech wave is significantly reduced when the continuous 
signal is converted to a symbolic representation. At every suc- 
cessive level of encoding. additional information about the 
original speech signal is lost. Constraints from low-level speech 
production models. phonotactic rules, morpheme order, syn- 
tax. grammar. and semantics can compensate for these losses. 
but the overall performance of the system depends upon the 
correctness of the early encoding of the signals. 

The most successful speech recognition systems have avoid- 
ed low-level phonemic identification [31] [32] and have at- 
tempted to define units based more closely on the actual signal 
structure. Recent work with hidden Markov models indicates 
that the most improvement in speech recognition is obtained 
by extracting more information from the input signals [32], 
rather than depending upon higher-level constraints. These 
findings suggest that enhancing the information in the earliest 

stages of processing can improve the overall performance of a 
speech recognition system. 

The visual speech signal is a secondary source of speech in- 
formation. Can the information in the visual speech be fused 
with the acoustic signal at an early stage in the recognition 
process? In previous approaches, the information from the vis- 
ual signal has been incorporated into the recognition system at 
levels beyond the categorization stage [ 131. In our approach. 
visual signals will be used to resolve ambiguities in the acoustic 
signal before either is categorized. By combining these two 
sources of information at an early stage of processing, it is pos- 
sible to reduce the number of erroneous decisions made and in- 
crease the amount of information passed to later stages of pro- 
cessing [ IO]. The additional information provided by the 
visual signal can serve to constrain the possible interpretations 
of an ambiguous acoustic signal. or it can serve as an alterna- 
tive source of speech information when the acoustical signal is 
heavily noise-corrupted. In either case, a massive amount of 
computation must be performed on the raw data. New mas- 
sively parallel architectures based on neural networks and new 
training procedures may make this approach feasible, even 
when scaled up to the full phonetic set. 

The description of the speech wave is 
significantly reduced when the 
continuous signal is converted to a 
symbolic representation. 

Neural Network Architecture 
Layered feed-forward networks were used in this study. The 

image was presented in the bottom layer of units, which then 
passed the signals to a layer of hidden units. which in turn pro- 
jected to an output layer. As a signal traveled from unit i to unit 
. j , i t  was multiplied by the weight, it,,/. associated with that con- 
nection. These weights have continuous values that can be pos- 
itive (excitatory), negative (inhibitory). or zero. The internal 
activation of the ith unit was then obtained by summing all of 
its inputs 

which included the weighted sum of the outputs of all units 
feeding into it, and any additional input from outside the net- 
work. I,.  Note that thejth unit’s output is a function of its acti- 
vation. where the function,fcan be any continuous linear or 
nonlinear transformation. The nonlinear logistic function was 
used: 

The networks were simulated on an MIPS MI120 RlSC 
computer and on an ANALOGIC AP5000 array processor. 
These simulations would run much faster on parallel hard- 
ware. 

,A network is programmed to solve a problem by specifying 
the pattern of connectivity and the connection strengths or 
weights [33] [34]. Learning algorithms have been developed 
that iteratively adjust these weights given a set of examples 
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[35-371. The ability of these networks to solve problems has 
been demonstrated in speech recognition [ 381, sonar target 
identification [39], and text-to-speech [40] [41]. The back- 
propagation procedure used here is an efficient optimization 
procedure that allows error gradients to be computed with 
O(N) complexity, where N is the number of adjustable weights 

We used the back-propagation technique to compute the 
error gradients for the weights [42]. The steepest descent algo- 
rithm for updating the weights with fixed step size was unfortu- 
nately unable to learn the high-dimensional mappings needed 
in this study, as is typical of scale-up problems. However, with 
a line search minimization and a conjugate gradient con- 
straint. the networks were able to find the necessary weights to 
solve the problems in this article [43]. 

~361. 

The Speech Data 
The speech signals used in these experiments were obtained 

from a male speaker who was videotaped while seated facing 
the camera, under well-lit conditions. The visual and acoustic 
signals were then transferred and stored on laser disc [44], 
which allowed the access of individual video frames and the 
corresponding sound track. 

Selecting the Images 
The NTSC video standard is based upon 30 framesls and 

each video frame corresponds to 33 ms of the acoustic speech 
signal. In this format, individual words are preserved as a se- 
ries of frames on the laser disc. A data set was constructed of 12 
examples of nine different vowels, for a total of 108 images per 
talker. The phonemes represented in this sample are: 

i, I ,  e, E, ie. a, A, 0, U 

While stressed vowels can last up to 132 ms or four frames, 
an unstressed vowel in continuous speech can often be shorter 
than the 33 ms of a single frame. The vowels were selected from 
a list of words read from the modified rhyme test, where the 
vowels are usually stressed. A preliminary list of candidate 
words was identified from a transcription of the video-disc cor- 
pus for each vowel. Each word was then played acoustically to 
confirm the suspected pronunciation. The vowel within each 
word was surrounded by two consonants. The individual con- 
sonants were removed by alternately dropping the end frames 
and then listening to those remaining. After the vowel was iso- 
lated, the acoustic signal was digitized and examined to be sure 
that i t  was stationary. Frames were rejected if the periodic 
wave appeared to be increasing or decreasing in amplitude. 

Preprocessing the Images 
A reduced area-of-interest in the image was automatically 

defined and centered around the mouth (see Figure I ) ,  and the 
resulting sub-image was sampled to produce a topographically 
accurate image of 20 x 25 pixels. This particular encoding was 
chosen to reduce the amount of data while trying to approxi- 
mate what one might obtain by observing an image through an 
array of sensors. It is definitely not the most efficient encoding 
one could use; however, it is faithful to the parallel approach to 
computa t ion  advoca ted  here .  More  sophis t icated 
preprocessing would be required to operate over a wide range 
of lighting conditions and parallel implementation would be 
needed to achieve real-time performance. 

Preprocessing the Acoustic Data 
.4 vowel is identified primarily by the shape of its acoustic 

spectrum. In particular, the perception of vowels by humans is 

Fig. 1. Ttpical itnapes presented to the network. 

largely determined by the location of the peaks in the spectral 
envelope [22-241. The spectral shape can be calculated from 
the short-term power spectrum of the acoustic signal. Each 
video frame on the laser disc has associated with it 33 ms of 
acoustic speech. Low-pass filtering the acoustic signal to 5 kHz 
provides sufficient bandwidth for speech intelligibility, and in 
particular vowel identification [45], while allowing us to sam- 
ple the signal at 10 kHz. After applying a Hamming window 
[46], the short-term power spectrum was calculated. The 
cepstrum of the resulting power spectrum was computed and 
values above 3.2 ms were zeroed [47] [48]. The inverse Fourier 
transform of the remaining data produced a smooth envelope 
of the original power spectrum that could be sampled at 32 fre- 
quencies. 

Integrating Visual and Auditory 
Speech Signals 

Estimating acoustic structure from the visual speech signals 
alone is an ill-posed problem. The visual signals provide only a 
partial description of the vocal tract transfer function-and 
that description is usually ambiguous. For a given visual signal, 
there are many possible configurations of the full vocal tract, 
and consequently many possible corresponding acoustic sig- 
nals. The goal is to define a good estimate of that acoustic sig- 
nal from the visual signal and then use that estimate in con- 
junction with any residual acoustic information. Combined, 
these two sources of speech information result in better auto- 
matic recognition rates than were obtained from either source 
alone. 

We chose to map the visual signal into an acoustic represen- 
tation closely related to the vocal tract’s transfer function [49]. 
Given such a mapping, the visual signal could be converted 
and then integrated with the acoustic signal prior to any sym- 
bolic encoding. The first step was to obtain this acoustic repre- 
sentation directly from the visual signal. 

Training the Network 
A feed-forward neural network was trained to estimate the 

Short-Time Spectral Amplitude Envelope (STSAE) of the 
acoustic signal from the corresponding visual signals emitted 
from around the mouth ofthe talker. The visual signal was pre- 
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sented as input to the network (see Figure 2) and the network 
was trained to produce the amplitude envelope of the 256- 
point short-time power spectrum of the corresponding acous- 
tic signal. The error gradients were computed using the back- 
propagation algorithm, as described in the previous section on 
neural networks. 

For a given visual signal, there are 
many possible configurations of the full 
vocal tract, and consequently many 
possible corresponding acoustic signals. 

As with any estimation technique, the pumber of free pa- 
rameters in the network is a trade-off between desired accura- 
cy, computational efficiency, and the potential problem of 
over-fitting the data. The number of hidden units chosen for 
the network restricts the bandwidth between the input and out- 
put patterns. If this bandwidth is not wide enough, then the 
network is unable to pass the relevant information in the imag- 
es to the output units and the network performs poorly. But if 
the bandwidth is too wide, the network begins to memorize the 
idiosyncratic details of the training set, and may fail to develop 
general rules that apply to images in the test set. Preliminary 
parametric experiments found that networks with five hidden 
units provide the necessary bandwidth while minimizing the 
effects of over-learning. 

Acoustic Spectral Envelope 
Acrbss 32 Output Units 

Input Image of 20 x 25 pixels 

Various network architectures were trained to estimate the 
spectral envelope of the acoustic signal from the image. These 
networks were tested on a second set of data to estimate the 
ability of the networks to generalize to new images. During the 
training, the error on the training set decreased asymptotically 
with the number of iterations. At the same time, the error on 
the test data would decrease at first but would then begin to in- 
crease. When the error begins to increase on the test set, the 
network is said to be over-learning the training data. The spe- 
cific location of the upturn depended upon many factors, in- 
cluding the number of training patterns and hidden units, and 
the transfer function ,flu). Over-learning can be minimized by 
increasing the amount of training data or by reducing the num- 
ber of hidden units. 

The point at which over-learning began was identified by 
the following procedure. First, the test set was divided into two 
subsets, one of which was used to track the error during train- 
ing. Training was terminated when the error of the tracking set 
started to increase; this was defined as the best performance of 
the network. The quality of the estimates obtained from the 
networks compared favorably to those obtained using other es- 
timation techniques. 

Influence of Noise on Speech Recognition 
Judging the quality of a spectral estimate is significantly 

more difficult than judging the accuracy of a categorization, 
largely because intelligibility is not a simple function of the 
spectrum. To assay the spectral estimates, a vowel recognizer 
was constructed using a feed-forward network. The network 
was trained to correctly categorize the STSAE from six exam- 
ples each of nine different vowels. With no noise present, the 
trained network could correctly categorize 100% of the train- 
ing set. The network vowel recognizer was then presented with 
STSAE through two channels, as shown in Figure 3. The path 

Recognizer 

Weighted 
Average 
of Both 

Envelopes 

I I  fl 
I1 

Network @e Noise 

Acoustic Speech 
Signal 

Visual Speech 
Sional 

Fig. 2. Net work architecture.for esfirna f ing acousfic speclral shape.fiorn 
lip itnages. Fig. 3. Sirnple w r v d  recognizer operation 
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on the right in Figure 3 represents the information obtained 
from the acoustic signal, while the path on the left provides in- 
formation obtained from the corresponding visual speech sig- 
nal. 

To  assess the performance of the recognizer in noise, clean 
spectral envelopes were systematically degraded by noise and 
then presented to the recognizer. In this particular condition, 
no visual input was given to the network. The noise was intro- 
duced by averaging the STSAE with a normalized random vec- 
tor. Noise-corrupted vectors were produced at 3-dB intervals 
from - 12 dB to 24 dB. At each step, six different vectors were 
produced, and the performance reported was the average. The 
lower curve of figure 4 shows the recognition rates as a function 
of the Speech-to-Noise ratio (S/N). At an SIN of - 12 dB, the 
recognizer was operating at an 1 1 . 1 %  error rate, expected of to- 
tally random performance. 

Next, a network trained to estimate the spectral envelopes 
from images was used to provide an independent STSAE input 
into the recognizer (left side of Figure 3). This network was not 
trained on any of the data that was used in training the vowel 
recognizer. For fusing, the estimates obtained from visual sig- 
nals were averaged together with the noised degraded enve- 
lopes of the corresponding acoustic input and then passed on 
to the recognizer. At an S/N of - 12 dB, the recognizer was now 
performing at 35%, 

Averaging the two independent sources of information was 
less than optimal. Using the STSAE estimated from the visual 
signal alone, the recognizer was capable of 55.6%. However, 
when this estimate was combined with the noise-degraded 
acoustic signal, the recognizer was only capable of 35% at an 
S/N of - 12 dB. Similarly, at very high S/Ns, the combined 
input produced poorer results than the acoustic signal alone 
provided. To correct for this, the two inputs needed to be 
weighted according to the relative amount of information 
available from each source. A weighting factor was introduced, 
which was a function of speech-to-noise: 

100- 

80 - 

60 - 
s .  
P 
Z 40- 
0 

- 

20 - 

The optimal value for the parameter a was found empirically 
to vary linearly with the S/N in dB for the range from - 12-dB 
S/N to 24 dB: 

(4 1 
S 

a = .535 - ,022 - 
N 

The results based on using these values for a are shown in the 
top curve of Figure 4. 

Discussion 
The results shown in Figure 4 demonstrate that visual and 

acoustic speech information can be effectively fused at a 
subcategorical level. The low-level integration of the two 
speech signals was particularly useful in the range of S/Ns from 
3 dB to 15 dB, where the combined signals were recognized 
with a greater accuracy than either of the two component sig- 
nals alone. For the set of vowels studied, the results show that 
the two speech signals can complement each other to improve 
automatic recognition. An independent categorical decision 
on each channel would have required additional information 
in order to produce the same level of performance. 

The successful combination of the two speech signals re- 
quired the introduction of a weighting factor, a. This weight 
can be interpreted as an attentional parameter. When we are 
listening to a speaker in a noisy environment, we are more like- 

Weighted Combination of the 
Acoustic and Visual Channels 

Acoustic Channel P Only 

O !  I 1 I 

SIN (dB) 
-1 5 -5 5 15 25 

Fig. 4. Improved recognition due to visual augmentation of noise- 
degraded speech. 

ly to attend to the speaker’s mouth. However, if there is no per- 
ceptible noise interfering with the acoustic signal, we tend to 
rely on the acoustic signal. 

The particular values used for awere obtained by systemati- 
cally trying different values of a between 0 and 1, at the various 
S/N levels. A line was then fit to the best values for a a t  each of 
the S/N samples. We intend to explore the use of neural net- 
works to directly fuse the visually estimated and noise- 
degraded spectral envelopes without having to make a priori 
assumptions about how best to combine them. Additional im- 
provements may be possible through nonlinear interactions 
between the two streams of speech information. 

Conclusion 
Human beings are capable of combining information re- 

ceived through distinct sensory channels with great speed and 
ease. The use of visual speech signals together with acoustic 
speech signals is just one example of integrating information 
across modalities. Sumby and Pollack [6] have shown that the 
relative improvement provided by the visual signal varies with 
the signal-to-noise ratio of the acoustic signal. By combining 
the speech information available from the two speech signals 
before categorizing, we obtained performance comparable to 
that demonstrated by humans. 

Lip reading research has traditionally focused on the identi- 
fication and evaluation of visual features [SO-521. Reducing 
the original speech signals to a finite set of predefined parame- 
ters or to discrete symbols can waste a tremendous amount of 
information. For an automatic recognition system, that infor- 
mation may prove to be useful at a later stage of processing. In 
our approach, we have used the visual signal to obtain an esti- 
mate of the corresponding acoustic spectrum. This allowed us 
to access speech information in the visual signal without re- 
quiring discrete feature analysis or making categorical deci- 
sions. 

There are a number of improvements that would have to be 
made to our system in order to make it a practical one. First, all 
of our studies were performed on speech data off-line. The vis- 
ual processing needed to prepare the image for the network is 
computation-intensive on a sequential machine. One way to 
alleviate these problems would be to design special-purpose 
parallel hardware for performing the operations in real time. 
One particularly promising approach is to use analog VLSI. 
Mead [ 531 has already fabricated synthetic retinas and 
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cochleas that perform much of the preprocessing that we would 
need for a speech recognition system combining auditory and 
visual information at an early stage of processing. Further ad- 
vances would be needed to construct parallel hardware for the 
highly interconnected networks that perform the mapping be- 
tween sensory modalities. 

This line of research has consequences for other problems, 
such as target identification based on multiple sensors. The 
same problems arise in designing systems that combine radar 
and infrared data, for example, that do in combining visual 
and auditory speech information. Mapping into a common 
representation using neural network models could also be ap- 

The same problems arise in designing 
systems that combine radar and 
infrared data, for example, that do in 
combining visual and auditory speech 
in formation. 

plied to these problem domains. The key insight is to combine 
this information at a stage that is prior to categorization. Neur- 
al network learning procedures allow systems to be constructed 
for performing the mappings, as long as sufficient data are 
available to train the network, with the appropriate architec- 
ture and training algorithm. 
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