
www.elsevier.com/locate/jphysparis

Journal of Physiology - Paris 98 (2004) 296–314
Inhibitory synchrony as a mechanism for attentional gain modulation q

Paul H. Tiesinga a,*, Jean-Marc Fellous b,c,1, Emilio Salinas d, Jorge V. José e,
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Abstract

Recordings from area V4 of monkeys have revealed that when the focus of attention is on a visual stimulus within the receptive field of
a cortical neuron, two distinct changes can occur: The firing rate of the neuron can change and there can be an increase in the coherence
between spikes and the local field potential (LFP) in the gamma-frequency range (30–50 Hz). The hypothesis explored here is that these
observed effects of attention could be a consequence of changes in the synchrony of local interneuron networks. We performed computer
simulations of a Hodgkin-Huxley type neuron driven by a constant depolarizing current, I, representing visual stimulation and a mod-
ulatory inhibitory input representing the effects of attention via local interneuron networks. We observed that the neuron�s firing rate and
the coherence of its output spike train with the synaptic inputs was modulated by the degree of synchrony of the inhibitory inputs. When
inhibitory synchrony increased, the coherence of spiking model neurons with the synaptic input increased, but the firing rate either
increased or remained the same. The mean number of synchronous inhibitory inputs was a key determinant of the shape of the firing
rate versus current (f–I) curves. For a large number of inhibitory inputs (�50), the f–I curve saturated for large I and an increase in input
synchrony resulted in a shift of sensitivity—the model neuron responded to weaker inputs I. For a small number (�10), the f–I curves
were non-saturating and an increase in input synchrony led to an increase in the gain of the response—the firing rate in response to the
same input was multiplied by an approximately constant factor. The firing rate modulation with inhibitory synchrony was highest when
the input network oscillated in the gamma frequency range. Thus, the observed changes in firing rate and coherence of neurons in the
visual cortex could be controlled by top-down inputs that regulated the coherence in the activity of a local inhibitory network discharging
at gamma frequencies.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Only a small part of the information in natural visual
scenes is consciously accessible following a brief presenta-
tion [61,69]. The information that is retained depends on
what is attended [34]. The neural correlates of selective
attention have been studied in monkeys using recordings
from single neurons [16,17,29,44,48,49,53,63,64,82]. A key
finding is that attention modulates both the mean firing
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rate of a neuron in response to a stimulus [49,63,64] and the
coherence of spikes with other neurons responsive to the
stimulus [29,70]. The increase of coherence with attention
is strongest in the gamma frequency range [25].

There are many different types of inhibitory interneurons
in the cortex, each with different patterns of input and out-
put. For example, the basket cells project almost exclusively
onto the somas and proximal dendrites of pyramidal neu-
rons. In addition to their function in suppressing cortical
activity, inhibitory cells may also be responsible for shaping
the temporal pattern of spiking activity in the cortical net-
work. In particular, the synapses from baskets cells near
the spike initiating zone are effective in gating the occurrence
of spikes [15,45], and since a single basket cell has multiple
inhibitory contacts on several thousand pyramidal cells, it
could synchronize a subset of active cortical neurons.

Local cortical interneurons are not isolated from
each other but form networks connected by fast GABAergic
inhibitory synapses and electrical gap junctions [6,31–33,35].
Networks of inhibitory interneurons have been implicated in
the generation of synchronous gamma-frequency-range
oscillations in the hippocampus [28,39,81,88] and the cortex
[21], and could entrain a large number of principal cells
[12,33,43,71] as well as modulate their firing rates [3]. Hence,
interneuron networks could mediate the effects of attention
observed in cortical neurons.

We recently proposed a mechanism, synchrony by compe-

tition, for rapid synchrony modulation in interneuron net-
works [79] (see Section 4), that could explain how attention
modulates the synchrony of interneuron networks. The
focus of this study is on the impact of synchronous inhibitory
input onto the principal output neurons of the cortex.

The degree of synchrony of inhibitory inputs can be
characterized by their temporal dispersion, referred to here
as jitter. A lower value of jitter corresponds to more syn-
chrony and means that inhibitory inputs tend to arrive at
the same time. We explore how the response of the output
neuron—the firing rate and coherence with inhibitory oscil-
lation—is modulated by jitter. Our main results are: (1)
The mean number of inhibitory inputs determines whether
variations in synchrony lead to changes in the neuron�s sen-
sitivity or whether they modulate the gain of the response
(Sections 3.2, 3.3). (2) The response modulation by syn-
chrony is most potent at gamma frequencies (Section
3.4). (3) Modulation of the single neuron response proper-
ties by inhibitory synchrony is consistent with the effects of
attention observed in vivo [29,49] (Section 3.5). See Appen-
dix A for a review of previous experimental results. Earlier
reports of these results have appeared as abstracts [40,41].
2. Methods

2.1. Modeling synchronous inhibitory inputs

In a previously studied model of inhibitory interneurons
connected by chemical synapses, the network produced
oscillatory activity that consisted of a sequence of synchro-
nized spike volleys [23,75]. First, we describe the statistics
of the output of the interneuron network. Each spike volley
was characterized by the number of spikes in the volley aiIV
(with i the volley index, a the activity and IV indicating
inhibitory volley), their mean spike time tiIV and their
spike-time dispersion ri

IV. There was variability in the
volleys:

• The number of spikes varied across cycles. We used
Poisson statistics, hence, the mean of aiIV across cycles
was aIV and its standard deviation was

ffiffiffiffiffiffiffi
aIV

p
.

• The network oscillations were not perfectly regular.
There was a stochastic drift in the interval between the
arrival of consecutive volleys. The interval, P i � tiþ1

IV �
tiIV, was approximately normally distributed with mean
(the period) P and a coefficient of variation equal to
CVT (we use CVT rather than CVP to avoid confusion
with a previously introduced synchrony measure [79]).
The oscillation frequency was fosc = 1/P.

• The mean of ri
IV across cycles was rIV.

The spike-time dispersion, rIV, is inversely related to the
synchrony of the network oscillation. A synchronized net-
work has rIV = 1 ms (1 ms is the order of magnitude of the
jitter caused by intrinsic noise in cortical slices [46]),
whereas, for gamma oscillations, rIV = 10 ms corresponds
to an asynchronous network [75]. Hence, in the simulations
of the model, rIV was varied between 1 and 10 ms. The
mean number of spikes per volley, aIV, is determined by
the fraction of network neurons that is active on a given
cycle, the size of the network, and the cortical GABAergic
presynaptic release probability [42]. The network of inter-
neurons was not explicitly simulated; rather the above sta-
tistics were used to model input spike trains representing
the synchronous inhibitory input, as described below.
These input spike trains will be referred to as �network
activity� throughout.

The method used to obtain synchronous volleys is illus-
trated in Fig. 1. First, a set of volley times tiIV was generated
(with mean intervolley interval P and a coefficient of vari-
ation CVT). Next, a binned spike-time probability (STP)
was obtained by convolving the volley times with a Gauss-
ian filter with standard deviation rIV and area aIVDt (the
bin width Dt = 0.01 ms was equal to the integration time-
step used in the simulations). The Gaussian filter was
40 ms long in order to accommodate at least 2 standard
deviations for the maximum rIV used in the simulations.
The peak of the Gaussian was located at the center of
the filter at 20 ms. As a result, the effect of changing rIV
during the simulation acts with a delay of 20 ms. Input
spike times were generated as a Poisson process from the
STP, as in [74]. Each input spike produced an exponentially
decaying conductance pulse, Dginhexp(�t/sinh) in the post-
synaptic cell (inh = inhibitory), yielding a current Isyn =
Dginhexp(�t/sinh)(V � EGABA). In this expression t is the
time since the last presynaptic spike, sinh is a decay time
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Fig. 1. Model for generating synchronous spike volleys in a simulated
population of interneurons. (A) Spike volleys arrived at a rate of fosc
volleys per second (the mean time separation between volleys was the
period P = 1/fosc). (B) Spike-time probability was generated by convolving
spike volley times with a Gaussian filter; its width was rIV and its area
(sum of the bins) was aIVDt. (C) Spike times were generated as a Poisson
process from the spike time probability. (D) Each input spike caused an
exponentially decaying inhibitory conductance pulse with a unitary
conductance Dginh and a decay constant sinh. (E) Concomitant voltage
fluctuations in the postsynaptic neuron.
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constant, Dginh is the unitary synaptic conductance, V is the
postsynaptic membrane potential, and EGABA = �75 mV,
is the reversal potential. The values of these parameters
were varied and their specific values are given in each figure
caption (see Appendix A). A similar procedure was used
for synchronous excitatory inputs. The same notation
holds with EV (excitatory volleys) replacing IV and exc

(excitatory) replacing inh.
The resulting train of conductance pulses drove a single

compartment neuron with Hodgkin-Huxley voltage-gated
sodium and potassium channels, a passive leak current,
synaptic currents as described above and a white noise cur-
rent with mean I and variance 2D. Full model equations
are given in Appendix A [75]. They were integrated using
a noise-adapted 2nd-order Runge–Kutta method [36], with
time step dt = 0.01 ms. The accuracy of this integration
method was checked for the dynamical equations without
noise (D = 0) by varying dt and comparing the result to
the one obtained with the standard 4th-order Runge–Kutta
method [59] with a time-step dt of 0.05 ms.

2.2. Statistical analysis

Simulations were run multiple times with different seeds
for the random number generator, yielding different trials.
Spike times tji (ith spike time during the jth trial) of the tar-
get neuron were calculated as the time that the membrane
potential crossed 0 mV from below. The mean interspike
interval, s, was calculated as the mean of all intervals dur-
ing a given trial and then averaged across all trials. The
mean firing rate f was 1000/s (s is in ms, f in Hz). The coef-
ficient of variation (CV) was the standard deviation of the
interspike intervals across one trial divided by their mean.
The CV was then averaged across all trials. Errors in these
statistics were estimated as the standard deviation across 10
equal-sized subsets of the data. The Fano factor (FF) was
the variance of the spike count in a given time interval
divided by the mean spike count.

For neurons receiving a synchronous inhibitory input,
the firing rate versus current (f–I) curves were obtained
by systematically varying the depolarizing input current I
and calculating the firing rate as described above. f–I
curves were fitted to a sigmoidal function, f ðIÞ ¼ A

2
ð1þ

tanhðkIðI � DIÞÞÞ. We also attempted to make the curves
for different values of rIV overlap with a reference curve
using the following three procedures: (1) A shift of I over
DI; (2) A multiplication of I by kI; (3) A multiplication of
f by kf. The fitting procedures involved the MATLAB
routine nonlinfit. Confidence intervals at 95% for
the fitting parameters were obtained using the routine
nlparci. Four different fits were used to minimize the dif-
ference between the fitted curve and the reference curve: (1)
Shift of I; (2) Shift and scaling of I; (3) Shift of I and scaling
of f; (4) Shift of I and scaling of I and f. In most cases fit (3)
yielded the best results or yielded results that were close to
the best three-parameter fit (4). For the purpose of compar-
ison we show only the results of fit (3).

The coherence of the output spike times with the under-
lying oscillations was determined using the spike-triggered
average (STA) and the vector strength (VS). The local field
potential (LFP) was estimated as the membrane potential
of a model neuron receiving coherent synaptic inputs while
being hyperpolarized to prevent action potentials. Spike
times were obtained from another neuron receiving the
same synaptic inputs. The STA was then calculated by tak-
ing the membrane potential from the first (hyperpolarized)
neuron centered on the spike times of the second (depolar-
ized) neuron [20]. The STA power spectrum was calculated
using the MATLAB routine psd with standard windowing
using a 2048 point fast Fourier transform (sampled at
0.2 ms). The spike-field coherence (SFC) was computed
as the STA power spectrum divided by the power spectrum
of the LFP, as was done in the analysis of the experimental
data [29].

The spike-phase coherence was determined from the
variance and mean value of the phase of the spike time t
with respect to the oscillations. The phase was defined as
/ ¼ ðt � tiIVÞ=ðtiþ1

IV � tiIVÞ [55]. Here tiIV is the last volley time
before t and tiþ1

IV is the first volley time after t. We deter-
mined the standard deviation r/ of / and the VS [47],

VS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcosð2p/Þi2 þ hsinð2p/Þi2

q
. ð1Þ

Here h Æ i is the average over all phases in a given trial and
across all trials. VS is zero when / is uniformly distributed
between zero and one, and is one when the phase is
constant.
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3. Results

3.1. Inhibitory input synchrony modulates output firing rate

and coherence

The goal is to reproduce the effects of attention on cor-
tical neurons in the visual cortex. In the model neuron that
we simulated (Fig. 2) the stimulus-induced activation was
represented by injecting an excitatory input current. In this
baseline state, the object in the receptive field is not being
attended. We explore the hypothesis that when attention
is directed to an object in the neuron�s receptive field, the
discharge of the neuron is modulated through inhibitory
inputs.

Fig. 2A shows the voltage response of a model neuron
driven by an inhibitory input oscillating at approximately
40 Hz. On each cycle of the oscillatory drive it received a
volley with an average of aIV = 25 pulses, each with a uni-
tary peak conductance of Dginh = 0.044 mS/cm2. The time-
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Fig. 2. Inhibitory input synchrony gated neural activity. (A) The
membrane potential, (B) the local field potential (LFP), and (C) the firing
rate as a function of time. (D) Rastergram of the first ten trials. During the
time interval between t = 300 and 700 ms (indicated by the bar in (D)), rIV
was reduced to 2 ms from 8 ms. The full parameter set is given in
Appendix A.

Table 1
Spiking statistics for Figs. 2 and 3

rIV f (Hz) CV FF r/

Fig. 2

8 ms 4.40 (0.67) 0.961 (0.137) 1.204 (0.189) 0.189 (0
2 ms 18.26 (0.43) 0.825 (0.031) 0.666 (0.086) 0.096 (0

Fig. 3

4 ms 22.33 (0.44) 0.985 (0.038) 1.054 (0.327) 0.181 (0
2 ms 34.65 (0.49) 0.781 (0.022) 0.646 (0.158) 0.148 (0

The firing rate f, coefficient of variation CV, Fano factor FF, phase standard de
range (34–44 Hz) were calculated as described in Methods. Errors are given b
average of the inhibitory conductance was 0.44 mS/cm2,
which was about four times larger than the leak conduc-
tance gL = 0.1 mS/cm2. The neuron was not spontaneously
active in the absence of synaptic inputs; hence, in order to
make it spike in the presence of inhibition, a constant depo-
larizing current I = 4.0 lA/cm2 was also injected. The tem-
poral dispersion of the input spike times was on average
rIV. In the baseline state, rIV = 8 ms, the inhibitory input
was asynchronous, but during the time interval t = 300
ms and 700 ms the input was made synchronous by
decreasing rIV to 2 ms. During the baseline state the neu-
ron fired at a low average rate (f = 4.4 ± 0.7 Hz obtained
over a longer segment, 1000 ms, than shown in the figure).
The spiking statistics for this case and the figures below are
summarized in Table 1.

When the inhibitory input was synchronous, the firing
rate increased by a factor of four to f = 18.3 ± 0.4 Hz. This
increase was robust across trials as indicated by the spike
time histogram across 500 trials (Fig. 2C) and the raster-
gram for the first ten trials (Fig. 2D). Note that the time-
averaged inhibitory conductance remained constant during
the entire trial, even during the episode of enhanced input
synchrony. Thus, the increase in firing rate was due solely
to the change in coherence.

In Fig. 2, a neuron was activated by a suitable stimulus
that is ignored: initially, the neuron did not respond and
the presence of the stimulus was not transmitted to down-
stream cortical areas, but during the time interval of
increased input synchrony, the presence of the stimulus
was signaled to downstream areas. The synchrony of the
inhibitory input acted as gate. For the parameters of
Fig. 2, when the stimulus was presented for a short interval,
400 ms, the neuron did not produce a spike on most trials
during the baseline state, but it did produce a couple of
spikes during the period of increased input synchrony.
The next three Sections focus on the statistical properties
of the neuron�s output spike train—how the firing rate
and the coherence with the synaptic inputs varied with
the parameters of the inhibitory input, specifically, aIV,
rIV and the oscillation frequency fosc.

The spike trains of cortical neurons recorded in vivo are
highly variable in time and across trials [67]. The spike
trains obtained on different trials (see the rastergram in
Fig. 2D) were significantly different from each other and
VS SFC (h) SFC (c)

.029) 0.710 (0.045) 0.30 (0.58) 0.14 (0.14)

.007) 0.878 (0.006) 0.005 (0.002) 0.026 (0.010)

.009) 0.685 (0.012) 0.006 (0.001) 0.025 (0.015)

.007) 0.744 (0.004) 0.002 (0.001) 0.038 (0.022)

viation r/, vector strength VS, SFC in theta range (4.5–15 Hz) and gamma
etween parentheses and are the standard deviation across 10 sets.
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Fig. 3. The inhibitory input synchrony modulated the output firing rate.
(A) The membrane potential, (B) the local field potential (LFP), and (C)
the firing rate as a function of time. (D) Rastergram of the first ten trials.
During the time interval between t = 1000 and 2000 ms (indicated by the
bar in (D)), rIV was reduced to 2 ms from 4 ms. The full parameter set is
given in Appendix A.
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the interspike intervals ranged from 5 ms to the 100s of ms.
The irregularity of spike trains in time was quantified by
the coefficient of variation (CV): the standard deviation
of the interspike intervals in time, divided by their mean.
CV values between 0.5 and 1.0 are typical for in vivo
recordings [67]. The values obtained for Fig. 2 were in this
range, CV = 0.96 ± 0.14 during the baseline state and
CV = 0.83 ± 0.03 during the interval with increased input
synchrony. We used longer segments than shown in
Fig. 2—1000 ms across 500 trials—to obtain more robust
estimates for the CV values. In Fig. 2A the spike train
looked quite regular during the period with high input syn-
chrony because it was entrained to the input oscillation.
Although the interspike intervals were variable they were
approximate multiples of the oscillation period. Hence,
the high CV value was a consequence of the multimodality
of the interspike interval distribution.

The irregularity of spike trains across trials is commonly
expressed as the Fano factor (FF): the variance of the spike
counts during a time interval divided by the mean. For a
1000 ms interval, FF = 1.2 ± 0.2 (baseline) and FF =
0.67 ± 0.09 (increased input synchrony). In comparison, a
homogeneous Poisson process has CV = 1 and FF = 1.
The value of the Fano factor is a direct consequence of
our choice of model parameters: there is variability across
trials in the arrival time of the inhibitory volley, CVT, var-
iability in the number and the timing of the inputs in the
volley, and intrinsic noise. Consistent with this expectation,
much smaller Fano factors were obtained when one or
more of these sources of variability were absent.

The spike-field coherence (SFC) has been used to quan-
tify the degree of coherence of spike trains with the local
field potential (LFP). The LFP is measured using an extra-
cellular electrode and is assumed to reflect the synaptic
inputs to neurons close to the electrode and their resulting
activity [30]. It is not known in general how many neurons
contribute to the LFP and whether it is dominated by the
activity of local neurons or whether it more closely reflects
the synaptic activity due to presynaptic neurons. We calcu-
lated the LFP as the membrane potential fluctuations in a
neuron that was hyperpolarized to prevent action poten-
tials. The SFC in the gamma frequency range (34–44 Hz)
decreased from 0.14 ± 0.14 in the baseline state to
0.026 ± 0.010 during the period of increased inhibitory
input synchrony. This counterintuitive result underscores
the fact that in modeling studies the SFC so defined may
not be the best way of calculating the coherence; hence,
the vector strength (VS) will be used here instead, although
for comparison with experiments in Section 3.5 the SFC
will be used. The relation between the SFC and the VS is
explained in Appendix A. During the state of increased
inhibitory input synchrony, the VS increased to
0.878 ± 0.006 from 0.710 ± 0.045 in the baseline state.
The key constraint is that one needs enough spikes to accu-
rately estimate the SFC. The SFC for the baseline state was
recalculated, but with the injected current increased from
4.0 lA/cm2 to 6.0 lA/cm2 in order to make the neuron�s
firing rate similar to that for synchronous inputs. The
SFC was 0.008 ± 0.007 in the gamma range and 0.016 ±
0.012 in the theta range.

Fig. 3 shows another example of firing rate modulation
with input synchrony. The model neuron was again driven
by a synchronous inhibitory drive, but part of the depolar-
ization was provided by a homogeneous excitatory Poisson
process. During the time interval between t = 1000 and
2000 ms, rIV was decreased from 4 ms to 2 ms. For t <
1000 ms, the firing rate was 22.3 Hz and VS = 0.685 ±
0.012 (other statistics are listed in Table 1). When the input
synchrony was increased the firing rate increased to 34.6
Hz and VS = 0.744 ± 0.004. In contrast to Fig. 2, the
spike trains looked more like the ones found in vivo. The
degree of synchrony also modulated the firing rate at
higher values (Fig. 3), rather than just acting as a gate
(Fig. 2).

In both examples the model predicts that synchrony-
induced increases in firing rate are associated with a
decrease in firing variability and an increase in coherence.

3.2. Modulation of f–I curves with input synchrony

The firing rate was plotted as a function of the depolar-
izing current I and the jitter rIV in (Fig. 4A). The firing rate
ranged from 0 to 80 Hz for 1 ms 6 rIV 6 6 ms and 2 lA/
cm2

6 I 6 7.5 lA/cm2. An increase in rIV usually led to a
reduction in firing rate (dashed arrow in Fig. 4A). The f–I
curve for constant rIV had a knee for small values of rIV
(arrow in Fig. 4A). At this point in the neuron�s operating
range, decreasing rIV (increasing input synchrony) did not
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lead to an increase in firing rate, but the coherence did
increase (see below). Neither did an increase in driving cur-
rent result in a higher firing rate. Because of the stochastic
nature of the dynamics the firing rate could be arbitrarily
low. For practical purposes the onset of firing was defined
as the point where the firing rate exceeded 1 Hz. This means
that on average more than one spike should be observed on
1 s long trials. The current value at which this happened
increased steadily with increasing rIV (Fig. 4A).

To determine how the variability and the coherence were
related to the firing rate f, CV-f and VS-f plots were made
at constant rIV values (Fig. 4B,C). Each data point repre-
sented a point on the f versus I and rIV surface. The CV
was 1 for small firing rates, but decreased with f until
f � 40 Hz, at which point the CV increased with f again.
The minimum CV value reached at f � 40 Hz was
CV � 0.1 for rIV = 1 ms and increased with rIV. The rela-
tionship between the knee in the f–I curve and the dip in
the CV-f curve can be understood in terms of phase locking
to the synchronous inhibitory synaptic drive. When the
neuron is phase-locked it fires one spike on each cycle
and the firing rate is 40 Hz. The interspike interval is
approximately equal to duration of an oscillation cycle,
but there is some variability due to jitter of the spike time
within each cycle. The CV is small for this situation. For
smaller driving currents, the phase locking becomes less
stable and the firing rate falls below 40 Hz. The neuron will
then skip cycles leading to a bimodal distribution of inters-
pike intervals: the intervals are either approximately equal
to one cycle or two cycles. As a result the CV increases
sharply. For larger driving currents phase locking also
becomes unstable, but now the firing rate exceeds 40 Hz.
On some cycles there are more than one spike, yielding a
bimodal interspike interval distribution. The CV also
increases sharply for this situation. A more detailed
description of phase locking to a periodic inhibitory drive
can be found in Ref. [74].

The most regular spike trains were obtained near the
knee in the firing rate surface. The VS had its highest value
for small firing rates and decreased very slowly with firing
rate up to f � 40 Hz. For f > 40 Hz, there was a precipitous
drop in VS with firing rate. This occurred because for
f < 40 Hz the neuron produced at most one spike per cycle
at approximately the same phase with respect to the oscil-
lation—hence the VS was high, but for f > 40 Hz, there
could be two spikes on a given cycle, at two different
phases, and hence the VS was lower. The behavior of the
FF was similar to that of the CV (Fig. 4D).
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We performed the same analysis on a model neuron
with the parameters used to generate the spike trains in
Fig. 3. The firing rate surface is shown in Fig. 5A. There
was no �knee�; instead, the firing rate always decreased with
increasing rIV and always increased with I. The variability
of the spike trains (Fig. 5B) was highest for low firing rates
and the CV took values ranging between CV = 0.9 and 1.3.
The CV remained constant for the highest rIV = 7 ms to
10 ms values studied, but decreased with firing rate for
lower rIV values. There was no evidence for a minimum
at f � 40 Hz, in contrast to the preceding case. The VS
decreased linearly as a function of firing rate (Fig. 5C)
and decreased in all cases with rIV. The behavior of the
FF was similar to that of the CV (Fig. 5D).

The simulations for which part of the depolarizing drive
is provided by excitatory synaptic inputs are more realistic.
However, when the rate of the excitatory inputs is varied,
both the mean as well as the variance of the current fluctu-
ations are altered (see, for instance, Ref. [76]). This makes
it harder to distinguish changes due to the mean driving
current from those due to the variance in the driving cur-
rent. For this reason, the following analysis is only per-
formed on neurons driven by a depolarizing current.

The shape of the f–I curves varied with rIV for aIV = 10
and aIV = 50 (Fig. 6A, B). For aIV = 10, the f–I curves were
non-saturating (Fig. 6A), but could not be fitted by a
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power law relationship between f and I. In previous studies
it was found that the sensitivity and the gain of f–I curves
were modulated by the statistics of the synaptic input
[26,52]. Therefore we tried to collapse the f–I curves for dif-
ferent rIV onto a reference curve, here taken to be rIV =
1 ms, by rescaling the firing rate (gain change: f! f/kf)
and changing the sensitivity (shift in I, I ! I � DI). The fit-
ting parameters, kf and DI, were plotted as a function of rIV
in Fig. 6C (for rIV = 1 ms, by definition, kf = 1 and
DI = 0). For aIV = 50, the f–I curves saturated at approxi-
mately 40 Hz (Fig. 6B), which corresponded to the knee in
Fig. 4. It was not possible to scale the curves by kf in order
to make them collapse since that would alter the saturation
value. For rIV 6 4 ms, the f–I curves were well fitted by a
sigmoid function, f = A/2(1 + tanh(kI(I � DI))). The fitting
parameter DI corresponded again to a shift in sensitivity, kI
corresponded to the slope of the sigmoid and A was the
saturation value of the firing rate. The higher the value
of kI the smaller the range of current values over which
the firing rate went from firing rates near zero to f � A.
For firing rates f � A/2, this can be interpreted as a change
in gain, with the gain proportional to kI. We performed the
fitting procedure with A as a free parameter, but this did
not result in a better fit compared with the fit obtained
by setting A equal to fosc. The fitting parameters DI and
kI are plotted versus rIV in Fig. 6D. Increasing rIV led to
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a shift to the right (DI > 0), decreasing sensitivity and
stretching the sigmoid (kI decreased), yielding a larger
dynamical range.

The shift in sensitivity going from rIV = 5 ms to rIV =
1 ms was much higher for aIV = 50 than for aIV = 10. In
contrast, for aIV = 10, the gain change was more pro-
nounced than for aIV = 50 and it also extended over a
larger range. The difference between aIV = 10 and
aIV = 50 persisted when part of the depolarizing current
was provided by excitatory synaptic inputs. We determined
the f–I curves for aIV = 10 (Fig. 7A) and aIV = 50 (Fig. 7B)
while the neuron was driven by varying amounts of excit-
atory synaptic inputs (rIV was kept fixed at 1 ms). There
was no knee in the f–I curve for aIV = 10. In contrast, there
was a knee for aIV = 50 that persisted for input rates up 700
EPSPs per second. The knee was accompanied by a dip in
the CV versus I curve (Fig. 7D). For aIV = 10 (Fig. 7C), the
dip was much less pronounced or absent.

In summary, for small aIV, changes in gain with input
synchrony dominated, whereas for large aIV, changes in
sensitivity dominated. The mean number of inputs on each
oscillation cycle, aIV, was an important characteristic of the
presynaptic network and could be modulated (see Section
4).

3.3. Shift in sensitivity versus change of gain

The responses of neurons driven by excitatory and
inhibitory synaptic inputs have been studied extensively
(see Section 4). A change in the mean conductance of the
synaptic inputs results in a shift of the f–I curve, whereas
a change in the variance of the conductance corresponds
to a change in gain [14,26]. Is it possible to understand
the results of the preceding section in terms of the �mean�
and the �variance�?

The mean and variance of the conductance can be calcu-
lated either by taking one long trial and performing a time
average or averaging an observation of the variable at one
specific time across many trials. For a stationary process,
for which the statistics do not change in time, these two
methods are equivalent. The time-averaged conductance
of the synchronous inhibitory input does not depend on
the jitter, rIV, but the neuron�s response does. Hence, one
would infer that the change in firing rate with rIV would
be due solely to the �variance�.

In Fig. 8Aa, dashed line, we show the inhibitory conduc-
tance as a function of time on a given trial. There was a
peak every 25 ms, but its amplitude was different on each
cycle because the number of inputs and their timing dif-
fered across cycles. However, the conductance waveform
averaged across trials (Fig. 8Aa, solid line) was the same
on each cycle. Furthermore, the conductance waveform
obtained on one cycle by averaging across all cycles in
one trial (Fig. 8Ab), was the same as the trial average.
The variability across trials was also the same as the
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variability across cycles and is visualized in Fig. 8Ab as the
mean plus or minus twice the standard deviation. In the
following we refer to either the mean or variability without
specifying whether it is across trials or cycles. We also kept
the time-averaged mean conductance constant while vary-
ing aIV by scaling the unitary conductance as 1/aIV. The
mean conductance waveform did not depend on aIV, but
the variability decreased with increasing aIV (Fig. 8Ba).
The mean conductance waveform as well as the variability
depended on rIV (Fig. 8Bb).

When a neuron is driven by a time-varying inhibitory
conductance and the injected current is in an appropriate
range, it can only spike when the inhibitory conductance
is small. There is a value for the inhibitory conductance
above which the neuron will not spike. This value plays a
role similar to the voltage threshold for an action potential
in the integrate-and-fire neuron. The minimum value
reached in the mean conductance waveform can thus be
identified with the �mean�, since it determines the distance
to threshold, and the variance in its value across cycles as
the �variance�. The maximum and minimum value of the
mean conductance waveform reached during an oscillation
cycle is plotted as a function of rIV in Fig. 8Ca. The min-
imum increased and the maximum decreased as a function
of rIV. The variance in the conductance at the time its mean
has a minimum increased with rIV (Fig. 8Cb). The rate of
increase with rIV was higher for smaller values of aIV. For
large aIV, the �variance� was small and an increase in rIV
would increase the �mean�. The corresponding effect was a
shift of the f–I curve. Another consequence of having a
small �variance� is that the neuron became entrained, lead-
ing to saturation of the firing rate. Increasing rIV, for small
aIV, both increased the �variance� and the �mean�, hence
there was both a shift as well as a change of gain in the
f–I curve. This analysis indicates that for time-varying con-
ductances the �variance� corresponds to the variability of
the conductance waveform across trials and that this vari-
ability could modulate the gain of the neuron�s response.

3.4. Attentional modulation of f–I curves is maximal for

gamma frequency oscillations

The strength of the modulation by synchrony was deter-
mined by the extent to which it could alter a neuron�s firing
rate. This change was quantified in terms of the ratio of the
firing rate for moderate synchrony (rIV = 4 ms) over the
firing rate for weak synchrony (rIV = 10 ms) because it
reflected the strength of multiplicative interactions. This
quantity had a peak at approximately 40 Hz (Fig. 9). The
resonance peak was mainly determined by the time con-
stant of inhibition, sinh. When sinh was increased the peak
shifted to the left, and when sinh was decreased, the peak
shifted to the right (data not shown). We studied how
robust the resonance was. When the driving current was
increased from 5 to 6 lA/cm2 or when the number of pulses
per cycle was increased from aIV = 25 to 250, the resonance
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Fig. 10. Modulation of inhibitory synchrony in model simulations repro-
duced attentional modulation of V4 neurons observed in experiment. (A)
Model of attentional modulation in McAdams and Maunsell [49]. The
neuron received synchronous inhibitory input. (a) Firing rate as a function
of stimulus orientation for two conditions: (solid lines, filled symbols)
attention was directed away from the receptive field, rIV = 8 ms and
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rIV = 7 ms. Inset: The two curves coalesced when the asymptotic firing
rate was subtracted and the residual of the solid line was rescaled by a
factor 1.2 along the y-axis. (b) Temporal dynamics of attentional
modulation of the firing rate. The bar indicates the presence of a driving
current representing the presence of a stimulus in the receptive field. (Solid
line) Attention directed away from receptive field, rIV = 3 ms and (dashed
line) into the receptive field, rIV = 2 ms. (B) Model of attentional
modulation reported in Fries et al. [29]. A neuron received synchronous
inhibitory input in the gamma-frequency range, and excitatory input in the
theta-frequency range. For the solid lines attention was directed away
from the receptive field, rIV = 5 ms, and for the dashed lines attention was
directed into the receptive field, rIV = 4 ms. (a–b, top) The local field
potential (LFP) and (bottom) a spike train from one neuron. (c) The
spike-triggered average (STA) of the LFP, the solid line was shifted by
+2 mV for clarity. (d) Power spectrum density (PSD) of the STA. (e) The
spike field coherence (SFC). The full set of parameter values is given in
Appendix A.
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disappeared. This indicates that for the resonance to occur
the neuron needs to be subthreshold and there should be
sufficient variability in the inhibitory inputs. The effect
was moderately robust against jitter in the spike volley
times: We obtained resonance peaks for CVT values up
to approximately 0.05.

3.5. Modeling the experimental data

Three key papers [29,49,64] reported experimental
results on attentional modulation of the firing rate and
the coherence of V4 neurons in macaques (see Appendix
A). In these papers, a stimulus was presented either inside
or outside the receptive field of a neuron, and the focus of
attention of the animal was either directed away from or
into the receptive field by appropriate cues. The neurons
that were recorded from were often orientation selective.
We show here that the effects of attention in these studies
can be explained by changes in the synchrony of local inter-
neuron networks. As mentioned before, the network activ-
ity was not explicitly simulated, but instead the effects of
modulating the synchrony on the principal neuron were
modeled by dynamically changing rIV during the trial.

The effects of attention were modeled by changing the
parameters that control the synchronous inhibitory drive.
In the attended state, input synchrony was increased by
reducing the value of rIV when compared with the non-
attended state. The receptive field and orientation selectiv-
ity were modeled as a constant depolarizing current I or by
an excitatory Poisson process. We made the cell orienta-
tion-selective [27,68] by changing the amount of current
injected into the neuron as a function of the stimulus orien-
tation w : IA ¼ IO þ AO expð�w2=2r2

wÞ, where IO is the base-
line current in the presence of a stimulus, AO is the strength
of orientation selectivity, and rw represents the degree of
selectivity.

Our aim was to show that modulating inhibitory syn-
chrony can account for the experimentally reported effects
of attention. Similar results were obtained for different sets
of parameters. The experimental results were from different
cortical areas and different conditions, and are not in com-
plete agreement, so one unique set of parameters is unlikely
to account for all experiments. The different regimes
needed to model the data from the different laboratories
may provide insight into the state of the cortex in the dif-
ferent conditions.

3.5.1. Computer Experiment I: Fig. 4 of McAdams and

Maunsell [49]

The effects of attention on the orientation-tuning curve
were modeled as a decrease in the spike-time dispersion
from rIV = 8 to 7 ms. The firing rate in the non-preferred
orientation increased minimally from 4.5 Hz to 5.5 Hz in
the attended state, whereas the firing rate in the preferred
orientation increased by 20% from 14.2 Hz to 17.1 Hz
(Fig. 10Aa), compatible with the experimental data. The
asymptote was subtracted from the orientation-tuning
curves, and the resulting curve in the non-attended state
was rescaled by a factor 1.2. After these manipulations,
the curves for the attended and non-attended states over-
lapped (Fig. 10Aa, inset), indicating, as observed experi-
mentally, that the mean and width of the Gaussian had
not changed. Similar results (data not shown) were
obtained by decreasing the spike-time dispersion from
rIV = 3 to 2 ms. The firing rate in the non-preferred
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orientation increased from 1.3 Hz to 4.2 Hz in the attended
state, whereas the firing rate in the preferred orientation
increased from 13.6 Hz to 24.7 Hz.

3.5.2. Computer Experiment II: Fig. 8 of McAdams and

Maunsell [49]
Next, the temporal dynamics of attentional modulation

in this figure were obtained using rIV = 2 ms for the
attended state and rIV = 3 ms for the non-attended state
(Fig. 10Ab). The background firing rate was 3 Hz and
was not modulated by attention. There was an 8 Hz tempo-
ral modulation, with a peak firing rate at stimulus onset
equal to 34.4 Hz. The firing-rate ratio between attended
and non-attended state increased from 1 at stimulus onset
to approximately 1.5 later in the trial, compatible with the
experimental data.

3.5.3. Computer Experiment III: Fig. 1 of Fries et al. [29]

In the experiments of Fries et al. [29], the spikes from a
neuron on one electrode were used to calculate the spike-
triggered average (STA) of the LFP on another electrode.
In the model, the LFP was estimated from the subthreshold
membrane potential of a neuron that received theta-fre-
quency excitatory and a gamma-frequency inhibitory syn-
aptic inputs (Fig. 10B). The STA in the model was
calculated based on the spike train from another neuron
receiving the same synaptic inputs. The coherence of the
inhibition was varied between the attended and non-
attended state (rIV = 5 ms to 4 ms; aIV = 5 to 6). There
were no changes to the excitatory synaptic drive received
by the neuron. However, the mean level of depolarization
was varied to keep the mean firing rate constant (as
explained in Appendix A, this also helps in estimating the
SFC). We also analyzed two frequency bands, 5 < f <
15 Hz (theta) and 34 < f < 44 Hz (gamma). The SFC in
the theta range was 21% less in the attended compared to
the non-attended state, whereas the SFC in the gamma-
frequency range more than doubled (114% increase,
Fig. 10Be). Our model does not predict the exact dynamics
of the LFP. The mean, phase and amplitude of this model
LFP was different from the extracellularly recorded signals.
Specifically, the gamma oscillations visible during the
attended condition in Fig. 10Ba were much less pro-
nounced than in experiment (Fig. 1B of Ref. [29]). The
modeled STA looks different from measured STA for
the same reason. However, the SFC is a ratio between
the power spectrum of the STA and that of the LFP and
might therefore be less sensitive to the differences between
the modeled and experimental LFP. Indeed, the changes in
the model SFC with attention are qualitatively similar to
those reported in Ref. [29]. There were quantitative differ-
ences: the increase in SFC with attention was of the order
of 10% in experiment, whereas in the model it was an order
of magnitude larger. These differences could possibly be
resolved by a more detailed model that incorporates the
electrical behavior of the extracellular medium in order
to estimate the LFP more accurately.
4. Discussion

4.1. Summary

The firing rate and coherence of a neuron can be modu-
lated by the degree of synchrony of the inhibitory input. In
the model investigated here, the mean number of inputs on
each cycle, aIV, was a key parameter in determining how
the neuron�s response properties depended on synchrony.
The aIV is proportional to the number of neurons in the
presynaptic network that are activated and the synaptic
reliability (the probability that a presynaptic action poten-
tial results in a postsynaptic potential). The network
activation is controlled by neuromodulators, such as ace-
tylcholine, or by activation of metabotropic glutamate
receptors [78]. It depends also on the extent of the chemical
and gap-junction couplings within local networks [1] and,
possibly, on longer range connections between different
local networks [83,84]. So aIV may reflect a combination
of physiological parameters.

4.1.1. Input synchrony modulates firing rate
The firing rate increased when input synchrony was

increased by reducing rIV. When rIV was modulated
dynamically, the change in firing rate was immediate and
robust across trials. This implies that temporal dynamics
of firing rate modulation is determined by how fast a pre-
synaptic network can be activated, and how fast network
activation results in an increase in synchrony. Interneuron
networks can modulate their synchrony in a few oscillation
cycles—on the order of 100 ms for gamma-frequency range
activity [79]—and the firing rate response is able to follow
these rapid synchrony modulations. Rapid modulation of
the firing rate observed in the cortex can therefore be due
to the temporal dynamics of the stimulus as well as
synchrony. In addition to serving as a way to amplify the
significance of information represented in a neural popula-
tion, inhibitory synchrony provides an alternative pathway
for cortical information transmission that can operate in
parallel with changes in activity. Our investigation also
revealed that other statistical properties of the input,
besides rIV, such as the oscillation frequency and CVT,
could also dynamically modulate the output firing rate
(data not shown).

4.1.2. Input synchrony modulates the sensitivity and gain of
f–I curves

The f–I curves were characterized in terms of sensitivity,
the weakest inputs to which the neuron will respond, and
the gain, the rate of change of the firing rate with input
amplitude. By increasing input synchrony, the neuron
responded to weaker stimuli, and its gain increased so that
the same increase in stimulus strength would result in a
stronger increase of the firing rate. The relative size of
the shift in sensitivity compared with the change in gain
depended on aIV. For small aIV � 10, the change in gain
dominated, whereas for larger aIV � 50, the shift in sensi-
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tivity dominated. In the latter case, saturation was
observed: when the firing rate was approximately equal
to the oscillation frequency, it did not increase further
when either the input was made stronger or when the input
synchrony was increased. It should be noted that the uni-
tary strength of the inhibitory inputs was normalized such
that the mean (time-averaged) inhibitory conductance
remained constant when aIV was varied. This allowed us
to distinguish the effects of an increase in mean inhibitory
conductance with aIV from the effects of the reduced vari-
ability in the input with aIV.

4.1.3. Input synchrony modulates spike coherence with the

network oscillation
We measured the vector strength (VS) of the output

spike train with respect to the oscillatory activity of the
inhibitory input. Changes in the VS reflected the behavior
of the SFC in the gamma-frequency range, but VS was eas-
ier to calculate and more robust than the SFC. The VS
increased with input synchrony and it even did so when
the firing rate remained the same.

4.1.4. Input synchrony modulates the variability of spike

trains within and across trials

We determined the Fano factor (FF), representing the
variability of the spike count across trials and the coeffi-
cient of variation (CV)—the variability of interspike inter-
vals during a trial. Generally, FF and CV decreased with
increasing input synchrony. We found non-monotonic
behavior of FF and CV as a function of the firing rate
for aIV � 50. Furthermore, the FF was sensitive to the jitter
across trials in the phase of the oscillation at the start of the
trial (or stimulus onset), whereas the CV was not sensitive
to this phase.

4.1.5. Firing rate modulation with input synchrony was most

prominent for gamma-frequency oscillation

The increase in firing rate induced by changing rIV was
maximal for fosc = 40 Hz because of the time-constant of
the inhibitory synapses. Networks of interneurons synchro-
nize in the same frequency range [28,81], indicating that the
synchrony of their activity is well suited to modulate the fir-
ing rate of the pyramidal cells in cortex.

4.2. Can attention modulate the synchrony of interneuron

networks?

Although the synchronization dynamics of inhibitory
networks has been studied extensively using model simula-
tions [4,5,73,75,77,86–88], the focus has almost exclusively
been on the stationary state, rather than dynamic changes
in synchrony. We found two types of networks whose syn-
chrony can be changed by neuromodulators or excitatory
neurotransmitters [78]. These results will be presented else-
where; we summarize them here briefly. First, in a purely
inhibitory network, synchrony can be modulated by
increasing excitation to a part of the network. The acti-
vated neurons increase their firing rate and synchronize
and reduce the activity of the other group of interneurons
[79]. Hence, the mean activity of the network that projects
to a postsynaptic neuron, like the one studied here, remains
approximately constant. Synchrony can be modulated
using this mechanism on time scales as short as 100 ms.
Second, in a mixed excitatory and inhibitory network, syn-
chrony can be modulated by activating the interneuron net-
work when the inhibitory and excitatory neurons are
mode-locked to each other. In that case [8,9,73], synchro-
nized excitatory activity recruits inhibitory activity that
temporarily shuts down the excitatory activity. When the
inhibition decays the excitatory neurons become active
again and the cycle starts over. Activation of interneuron
networks by neuromodulators may increase their syn-
chrony, in turn increasing excitatory synchrony, but
without altering the mean firing rate of individual neurons
[78].

4.3. Gain modulation f–I curves

The statistics of the synaptic inputs determine the sensi-
tivity and gain of the f–I curve. Three mechanisms have
been proposed for how multiplicative gain changes can
be achieved [10,14,24,26,38,52,54,58,65,76,85]. We briefly
summarize them and discuss how they relate to gain mod-
ulation by inhibitory synchrony.

The response properties of neurons are different when
they are driven by a supra- or infra-threshold currents
[76]. In the former case neurons are tonically active and
fluctuations in the input will not alter the firing rate,
whereas in the latter case action potentials are induced by
fluctuations (referred to as a fluctuation-dominated state
[76]). The firing rates for neurons in the fluctuation-domi-
nated state can be increased by either reducing the distance
of the mean membrane potential to threshold, or by
increasing the amplitude of the voltage fluctuations. For
each of the mechanisms discussed below the neuron oper-
ates in the fluctuation regime, but the way that fluctuations
increase or decrease the distance to threshold is different.

4.3.1. Gain modulation by balanced synaptic inputs

Under in vivo conditions neurons receive a constant
barrage of excitatory and inhibitory inputs [67]. The synap-
tic inputs are called balanced when the effective reversal
potential of the sum of excitatory and inhibitory inputs is
equal to the neuron�s resting membrane potential (leak
reversal potential). By proportionally scaling the rates of
excitatory and inhibitory inputs the amplitude of the volt-
age fluctuations can be modulated while maintaining a con-
stant mean membrane potential. In the balanced mode the
neuron is driven by fluctuations: the larger the fluctuations,
the higher the firing rate. Chance et al. [14] found multipli-
cative gain modulation of the f–I curves of neurons
recorded in vitro experiments. Interestingly, an increase
in balanced activity decreased the gain [10,11,76]. The rea-
son for this somewhat counterintuitive result is that the
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increase in input conductance dominates the increase in
conductance variance, resulting in an amplitude reduction
of voltage fluctuations. The saturation of dendritic nonlin-
earities can further enhance the change in gain obtained
with balanced inputs [58]. In a modeling study in which
the excitatory and inhibitory fluctuations were indepen-
dently varied, varying the amplitude of the inhibitory con-
ductances was more effective than varying the amplitude of
the excitatory conductances [26].

4.3.2. Gain modulation by tonic inhibition and excitation

Tonic inhibition by itself did not lead to multiplicative
gain modulation [24,38]. However, when tonic inhibition
was applied in combination with either excitatory or inhib-
itory Poisson spike train inputs, changes in gain as well as
shifts in sensitivity were observed [52,85]. Recently Murphy
and Miller [54] showed that changes in tonic excitation and
inhibition can lead to approximate multiplicative gain
modulation of cortical responses when the nonlinearity of
the thalamic contrast response is taken into account.

4.3.3. Gain modulation by correlations
When a neuron is in a fluctuation-dominated state and

receives inputs from different neurons, it is sensitive to cor-
relations between these neurons. Stronger correlations lead
to an increase in the amplitude of voltage fluctuations,
hence to an increase in firing rate [65,66], because the mean
input conductance is not altered by correlations, as was the
case for balanced synaptic inputs.

4.3.4. Gain modulation by inhibitory synchrony

Changing input synchrony for small aIV values resulted
in a gain change of the f–I curve. This mechanism is com-
plementary to gain modulation by correlation. There are
two different aspects of synchrony, the degree of coinci-
dence—how many neurons fire at approximately the same
time, aIV, and the precision—the temporal dispersion of the
neurons that fire together, rIV. The number of neurons aIV
roughly corresponds to the degree of correlation. Changing
rIV resulted both in a change of the distance to threshold as
well as the amplitude of fluctuations. However, the �thresh-
old� here is a conductance threshold: The neuron spiked
when the inhibitory conductance became smaller than a
threshold value. The mean distance of the minimum inhib-
itory conductance from threshold and the fluctuations
about this value determined the firing rate change. We
are not aware of any mechanisms that have been proposed
to selectively change the level of balanced input or degree
of correlations in the network. In contrast, mechanisms
have been proposed to modulate the synchrony of the net-
work, the parameter rIV [79].

4.4. Relation between attention and modulation of

inhibitory synchrony

More than a decade ago Crick and Koch proposed a
link between oscillatory synchrony and attentional process-
ing [19]. This led to a model in which excitatory neurons
representing stimuli in the focus of attention produced cor-
related spike trains [56]. In their model, interneurons in
cortical area V4 were activated by correlated spike trains
and in turn suppressed V4 neurons responsive to stimuli
outside the focus of attention; hence, the synchronized
interneurons suppressed rather than enhanced activity. In
the mechanism explored here, interneurons are active irre-
spective of the attentional state, and their degree of syn-
chrony modulates the responsiveness of V4 output
neurons. The time-course of attentional modulation of
neural responses was also studied by Deco and coworkers
[18,22] but the synchrony of interneuron networks was
not taken into account.

Under the assumption that attention acts by increasing
the synchrony of interneuron networks, our model predicts
that: (1) attention increases the coherence of spike trains
with the local field potential; (2) the firing rate can increase
with attention or remain the same depending on the stimu-
lus strength; (3) attention can lead to a multiplicative gain
change of firing rate response curves or to a shift in the sen-
sitivity, depending on the extent of interneuron network
activation by attention and the stimulus. Thus, changes
in interneuron synchrony could potentially underlie a vari-
ety of seemingly unrelated observations. The size of the fir-
ing rate modulation predicted by this model agrees
quantitatively with experimental observations (Sections
3.5 and Appendix A). However, these results do not pro-
vide direct evidence that modulation of inhibitory syn-
chrony is, in fact, responsible for the observed attentional
effects. In the following we discuss specific predictions that
derive from this hypothesis.

McAdams and Maunsell [49] observed multiplicative
gain modulation of the orientation tuning curves of V4
neurons. We could reproduce these results quantitatively
by changing rIV. The values of rIV corresponding to the
attended and non-attended state were not unique and
we could obtain the same results with different combina-
tions. The only constraint was that rIV in the attended
state had to be lower than in the non-attended state. Mul-
tiplicative gain modulation of f–I curves could simply be
the consequence of a power law between f and I [37,51]
and account for the contrast independence of orientation
selectivity [2]. We could not fit our f–I curves with a
power-law and changing rIV both changed the gain and
shifted the sensitivity—the gain change was not purely
multiplicative. We could account for the results by McAd-
ams and Maunsell because the firing rate in response to a
non-preferred stimulus—the so-called asymptote—was
modulated by attention even though the background
activity—the firing rate without stimulus—was not
affected. Only the modulation of the firing rate tuning
curve above this asymptote was multiplicative. Hence,
both a shift in sensitivity and a change in gain were
required. The change in gain in the model only needed
to be multiplicative over a limited range of the input cur-
rent I.
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Recent experiments were performed to determine
whether attention would modulate the gain of the firing
rate response, or whether the response properties could
be interpreted as a shift in sensitivity [48,63,64]. The firing
rate elicited in response to a visual stimulus was measured
as a function of stimulus contrast. The firing rate versus
contrast had a sigmoidal shape and saturated. Gain modu-
lation would imply that the saturation rate was increased
by attention. This was not observed in the experiments
and the changes were more consistent with a shift in sensi-
tivity. Hence, depending on the specifics of the experimen-
tal protocol, attention can either increase sensitivity
[48,63,64] or gain [49,82]. Our model predicts that this
behavior is correlated with the connectivity and degree of
activation of the interneuron network.

McAdams and Maunsell also reported that the atten-
tional modulation of the firing rate reached its stationary
value 500 ms after the onset of the response to the stimulus
(Appendix A). We could reproduce this by assuming that
the rIV value changed gradually from its background value
(here equal to the rIV in the non-attended state) to its value
in the attended state. There was no change in rIV if there
was no stimulus. The model used here does not make pre-
dictions about the temporal dynamics of rIV since that is a
network property. However, if the change in firing rate is
the result of modulating the inhibitory synchrony it implies
that the stimulus needs to activate the interneuron network
either directly in a bottom up fashion or indirectly through
top down inputs.

Fries et al. [29] reported that attention induced an
increase in the gamma-frequency range coherence of the
neuron�s spike train with the LFP which was accompanied
by only small changes in its firing rate. We observed that a
decrease in rIV results in an increased coherence. This is
expected based on general arguments. The amplitude of
the inhibitory conductance waveform, defined as the dis-
tance between maximum and minimum value, increased
with input synchrony (decreasing rIV). The spike timing
precision of a neuron, which is directly related to the VS
and r/, increased with the amplitude of the periodic driv-
ing current [72]. The same holds for periodic and aperiodic
stimulus waveforms in vivo [7,60]. The small change in fir-
ing rate is indicative of saturation. We observed saturation
for large aIV � 50 when the neuron�s firing rate was close to
the oscillation frequency of the inhibitory drive. The satu-
ration of the firing rate was associated with a reduction in
response variability on a given trial (CV) and across trials
(FF).

There are other potential explanations for saturation. It
can be due to the activation of intrinsic currents or
increases in input conductance associated with synaptic
background activity. These saturation effects would, how-
ever, in general not cause the reduction of response vari-
ability predicted by our model. In those experiments
where attention did modulate the firing rate response, no
concomitant reduction of response variability was observed
in recordings of V4 neurons [50].
4.5. Open problems and future work

The attentional modulation of the firing rate of V4 neu-
rons has been studied with two stimuli [44,62], a preferred
stimulus that elicited a vigorous and robust response and a
non-preferred stimulus that elicited a weaker response.
When both stimuli were presented simultaneously in the
neuron�s receptive field, the firing rate was intermediate
between the responses to each of the stimuli presented sep-
arately, rather than the sum of the two responses as a linear
model would predict. This result was explained by a simple
model proposed by Reynolds et al. [62]. Each stimulus acti-
vated a presynaptic population of neurons (in V2 in this
case) that projected excitation and inhibition to the V4 neu-
ron. The inhibitory component of the projection for the
non-preferred stimulus was stronger and reduced the
response to the preferred stimulus when both stimuli were
presented simultaneously, consistent with the experimental
observation. Their hypothesis was that attention would
enhance synaptic efficacy of the presynaptic population
of neurons representing the stimulus in the focus of atten-
tion, without increasing the activity of the presynaptic pop-
ulation. In their model, attention shifts the response
toward the one that would be expected when the attended
stimulus was presented alone, as indeed is observed
experimentally.

In our model, the attentional enhancement in synaptic
efficacy corresponds to an increase in synchrony of the
inhibitory projection. This correctly predicts an increase
in firing rate when attention is directed toward the pre-
ferred stimulus compared with attention directed outside
the receptive field. However, when attention was directed
toward the non-preferred stimulus, our model would still
predict an increase in firing rate, albeit smaller, rather
than the decrease observed in experiment. The underly-
ing assumption was that attention operates bottom
up from V2 to V4. An alternative hypothesis is that
attentional modulation of synchrony is top down and
operates on interneuron networks in V4 itself. This would
predict that input synchrony increases when preferred
stimuli in the receptive field are attended, but that syn-
chrony decreases when the non-preferred stimuli are
attended.

Neurons in vivo receive massive amounts of excitatory
and inhibitory inputs [57]. Here we assumed that part
of the inhibitory input was temporally modulated and
observed that the firing rate could saturate when at the
inhibitory oscillation frequency. The saturation rates
observed during experiments may not correspond to those
predicted by the model. It is likely that part of the excita-
tion is also temporally modulated, allowing for the possi-
bility that the neuron could saturate at rates determined
by the time scale of temporal patterning of excitatory
inputs. These inputs do not need to be oscillatory. Further-
more, in our model neuron there were no adaptation
currents and there also was no synaptic coupling
between neurons. An important issue for future study is
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how temporally modulated excitatory and inhibitory
inputs derived from a network interact with intrinsic
time-scales of the neuron (such as adaptation currents) to
determine the saturation rate.
Appendix A
A.1. Review of in vivo experimental results

The roman numerals correspond to the subsections in
Section 3.5.

Experiment I: McAdams and Maunsell [49] recorded the
response of a V4 neuron to Gabor patches (a sinusoidal
grating multiplied by a 2-dimensional Gaussian density)
that were presented for 500 ms in its receptive field. The
spatial frequency, color and size of the Gabor patch were
chosen to elicit maximal responses. The contrast of the
patch varied sinusoidally with a frequency of 4 Hz. During
the experiment the orientation of the Gabor patch was var-
ied systematically. The responses of the neuron were
recorded when the animal had to focus attention into the
receptive field (‘‘attended’’) and when it had to focus onto
a different Gabor patch at equal eccentricity away from the
receptive field (‘‘non-attended’’).

The mean firing rate of about 75% of the cells that
responded to this stimulus, could be fitted by a Gaussian-
shaped orientation tuning curve in both the attended and
non-attended states. There were four fitting parameters,
the mean, width and amplitude of the Gaussian density
and the asymptote (the firing rate in response to the least
preferred stimulus orientation). We focused on Fig. 4 in
[49], which showed population-averaged orientation-tuning
curves. The asymptote was approximately 5 Hz in the non-
attended state and increased slightly in the attended state.
The amplitude of the Gaussian increased by 22%, going
to 15 Hz in the attended state from 12 Hz in the non-
attended state. The mean and width of the Gaussian did
not change significantly with attention.

Experiment II: Fig. 8 of [49] shows the temporal dynam-
ics of attentional modulation averaged across all respon-
sive neurons. The background firing rate, before and
after stimulus presentation, was 3.6 Hz. It did not vary sig-
nificantly with attention. There was an 8 Hz stimulus-
locked modulation in the firing rate with a peak firing rate
of 35 Hz at stimulus onset. The ratio of stimulus-induced
firing in the attended state to that in the unattended state
increased from unity at stimulus onset to about 1.5,
500 ms after stimulus onset. The time course of this ratio
was similar across different stimulus orientations.

Experiment III: A similar attentional paradigm was used
in the experiments by Fries et al. [29]. They presented a
pure luminance sinusoidal grating at 100% contrast and
optimal orientation in the receptive field of a V4 neuron
for a random interval that lasted between 500 ms and
5000 ms. They recorded neural activity using 4 electrodes
that were spaced 650 or 900 lm apart. Multi-unit activity
(elicited by the stimulus in the receptive field) was recorded
on one electrode and the local field potential was recorded
on a different electrode. The spike-triggered average (STA)
on the LFP was calculated during stimulus presentation
when the animal focused attention into the receptive field
and when attention was directed away from the receptive
field. The first 300 ms after stimulus onset were discarded
prior to their analysis. Changes of coherence with atten-
tional state were assessed using the power spectrum density
(PSD) of the STA, and the spike field coherence (SFC),
which is the PSD of the STA normalized by the PSD of
the LFP. The spectrum was divided into two frequency
bands: f < 10 Hz (low frequency or theta) and 35 < f < 60
Hz (high frequency or gamma). The SFC in the low fre-
quency range decreased by 23% going from the non-
attended to attended state, whereas the SFC in the gamma
frequency range increased by 19%. The mean spike rate in
the multi-unit recording did not change by more than 15%
with attentional state.

A.2. Neuron model

The equation for the membrane potential of the neuron
was

Cm
dV
dt

¼ �INa � IK � IL � I syn þ I þ Cmn; ð2Þ

with the leak current IL = gL(V � EL), the sodium current
INa ¼ gNam

3
1hðV � ENaÞ, the potassium current:

IK = gKn
4(V � EK), and the synaptic current Isyn as de-

scribed in Section 2. The intrinsic noise n had zero mean
and variance 2D, and I was the injected current. The chan-
nel kinetics were given in terms of m, n, and h. They satis-
fied the following first-order kinetic equations,

dx
dt

¼ fðaxð1� xÞ � bxxÞ. ð3Þ

Here x labels the different kinetic variables m, n, and h, and
f = 5 was a dimensionless time-scale that was used to tune
the temperature-dependent speed with which the channels
opened or closed. The rate constants were [86],

am ¼ �0:1ðV þ 35Þ
expð�0:1ðV þ 35ÞÞ � 1

;

bm ¼ 4 expð�ðV þ 60Þ=18Þ;
ah ¼ 0:07 expð�ðV þ 58Þ=20Þ;

bh ¼
1

expð�0:1ðV þ 28ÞÞ þ 1
;

an ¼
�0:01ðV þ 34Þ

expð�0:1ðV þ 34ÞÞ � 1
;

bn ¼ 0:125 expð�ðV þ 44Þ=80Þ.

We made the approximation that m took the asymptotic
value m1(V(t)) = am/(am + bm) instantaneously. The stan-
dard set of values for the conductances used in this paper
was gNa = 35, gK = 9, and gL = 0.1 (in mS/cm2), and we
took ENa = 55 mV, EK = �90 mV, and EL = �65 mV.
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Fig. 11. Calculation of the Spike Field Coherence (SFC) for the model
parameters used for Fig. 2. The model parameters are the same except that
for rIV = 8 ms we took I = 6.0 lA/cm2. (A) Spike triggered average (STA)
of the LFP for (a) rIV = 2 ms and (b) 8 ms. (B) The power spectrum (PSD)
of (a) the LFP and (b) the STA for (top) rIV = 2 ms and (bottom) 8 ms.
(C) SFC for (a) rIV = 2 ms and (b) 8 ms.
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The membrane capacitance was Cm = 1 lF/cm2. Dginh has
units mS/cm2; I is in lA/cm2; D is mV2/ms; fosc is in Hz; P
and rIV are in ms; and aIV is dimensionless.

A.3. Relation between the spike field coherence and the

vector strength

The spike-triggered average (STA) of the LFP is the
average LFP waveform around an output spike. The
SFC is the ratio of the power spectrum density (PSD) of
the STA and that of the LFP (see Methods). To obtain
some intuition of the meaning of the SFC consider a simple
example. Let the LFP be a 40 Hz cosine, the PSD then has
a single peak at 40 Hz. Suppose neuron 1 produces action
potentials on some cycles of the LFP at a fixed phase /.
The STA is a 40 Hz cosine but shifted over /, yielding a
PSD with a peak at 40 Hz (the PSD is not sensitive to
the phase of the cosine). The SFC at 40 Hz is one and zero
elsewhere. Suppose that the spike train of neuron 2 forms a
homogeneous Poisson process with the same mean firing
rate as neuron 1. The spikes are uncorrelated with the
LFP and uniformly distributed in time. The STA would
be equal to the mean of the LFP, zero in this case, and
the PSD at 40 Hz would be zero, yielding an SFC equal
to zero.

When there is jitter in the phase, with standard deviation
r/, the SFC is expð�4p2r2

/Þ. For this situation the SFC is
completely determined by the phase jitter. The arrival times
of the volleys of inhibitory inputs are known in the model
simulations, hence the phase of spike times with respect to
the oscillation are known. The phase is a cyclical variable,
which means that r/ is not a good measure of the phase
jitter (it depends on the mean phase and the jitter),
but the vector strength is, VS ¼ jhexpði2p/Þij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hcosð2p/Þi2 þ hsinð2p/Þi2
q

. For our example, we obtain

VS ¼ expð�4p2r2
/Þ ¼ SFC, such that VS = 1 for perfect

phase-locking (neuron 1) and VS is zero for a uniform
phase distribution such as would be the case for neuron
2. Our analysis yields a potentially important insight into
the experimental results of Fries et al. [29]. When the
amplitude of the LFP is increased, but the spike times stay
exactly the same, the amplitude of the STA increases pro-
portionally and the SFC stays the same. However, when
the phase jitter of the spike times decreases at the same
time, the SFC will increase. Previously we found that for
noisy neurons driven by sinusoidal current the jitter
decreases when the amplitude of the current increases
[80]. This follows because the spike-time jitter is propor-
tional to dV/dt at the action potential threshold [13], and
because dV/dt is proportional to the stimulus amplitude.
The LFP is in general not a cosine but contains other fre-
quency components, hence, the VS is not equal to the SFC
under general conditions, but changes in the VS faithfully
represent changes in the coherence in the gamma-frequency
range which is the subject of this study.
These theoretical results for the STA are based on aver-
ages over the full distribution of spike times. In computa-
tional experiments the STA is sampled using a finite
number of spike times. For r/ = 0, the STA obtained using
only one spike is equal to its theoretical value. However,
for neuron 2, the STA for one spike would be a cosine,
and the SFC would be one. The theoretical STA, equal
to zero, can only be obtained by adding many cosines with
random phases. This explains the counterintuitive results
for the SFC calculated based on Fig. 2: The firing rate
was so low, that the STA was not correctly sampled for
the given trial length. The calculation of the SFC is illus-
trated in Fig. 11.
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A.4. Parameter values for the figures

Fig. 2: The neuron was driven by a synchronous inhib-
itory input with aIV = 25, Dginh = 0.044 mS/cm2, sinh =
10 ms, P = 26.10 ms, fosc = 38.3 Hz, CVT = 0.095, I = 4.0
lA/cm2, D = 0.08 mV2/ms. For t < 300 and t > 700, the
spike time dispersion rIV was 8 ms, and, for 300 6

t 6 700, it was rIV = 2 ms. The subthreshold membrane
potential in (b) was obtained by reducing the injected cur-
rent to I = 1.0 lA/cm2 to prevent action potentials. The
firing rate histogram was calculated based on 500 trials.

Fig. 3: The neuron was driven by a synchronous inhib-
itory input with aIV = 10, Dginh = 0.11 mS/cm2, sinh =
10 ms, P = 26.10 ms, fosc = 38.3 Hz, CVT = 0.095, I = 2.4
lA/cm2, D = 0.04 mV2/ms. For t < 1000 and t > 2000,
the spike time dispersion rIV was 4 ms, and, for 1000 6
t 6 2000, it was rIV = 2 ms. There was also a temporally
homogeneous excitatory input with rate kexc = 1000 Hz,
Dgexc = 0.02 mS/cm2 and sexc = 2 ms. The subthreshold
membrane potential in (b) was obtained by reducing
current to I = �2.0 lA/cm2 to prevent action potentials.
The firing rate histogram was calculated based on 500
trials.

Fig. 4: The neuron was driven by a synchronous inhib-
itory input with aIV = 50, Dginh = 0.022 mS/cm2, sinh =
10 ms, P = 26.10 ms, fosc = 38.3 Hz, CVT = 0.0, D = 0.0
mV2/ms. Parameters were on a two-dimensional grid
defined by: I = 2.0 to I = 7.5 lA/cm2 in steps of 0.1 lA/
cm2 and rIV = 1 ms to rIV = 6 ms in steps of 0.5 ms. For
each parameter value, statistics were over 20 trials of
3000 ms length.

Fig. 5: The parameters of the inhibitory and excitatory
drive were the same for Fig. 3, except that rIV and I were
varied on a two-dimensional grid defined by: I = 0.0 to
I = 5.0 lA/cm2 in steps of 0.1 lA/cm2 and rIV = 1 ms to
rIV = 10 ms in steps of 1 ms. For each parameter value,
statistics were over 20 trials of 3000 ms length.

Fig. 6(A): Parameter values were P = 26.08 ms,
fosc = 38.35 Hz, CVT = 0, aIV = 10, ginh = 0.11 mS/cm2,
sinh = 10 ms, D = 0 mV2/ms. From left to right, rIV = 1, 2,
3, 4, and 5 ms. Inset, data for rIV = 2, 3, 4, and 5 ms was
rescaled according to f ! f/kf and I ! (I � DI) to coalesce
with the curve for rIV = 1 ms. (B) Parameter values were
P = 26.08 ms, fosc = 38.35 Hz, CVT = 0, aIV = 50, ginh =
0.022 mS/cm2, sinh = 10 ms, D = 0 mV2/ms. From left to
right, rIV = 1, 3 and 5 ms. A sigmoidal function,
f ðIÞ ¼ A

2
ð1þ tanhðkIðI � DIÞÞÞ, was fitted to the f–I curves.

In (A–B) a transient of 100 ms was discarded before ana-
lysis. The firing rate was then calculated over a 50 s time
interval.

Fig. 7: Parameter values were P = 26.08 ms, fosc =
38.35 Hz, CVT = 0, sinh = 10 ms, rIV = 1 ms, and D =
0 mV2/ms. In (A, C) aIV = 10, ginh = 0.11 mS/cm2 and
(B, D) aIV = 50, ginh = 0.022 mS/cm2. From left to right
(A, B) or as indicated by the direction of the arrow
(C, D), the input rate was 100, 300, 500, 700 and 900 EPSPs
per second. A transient of 50 ms was discarded before anal-
ysis. The firing rate was then calculated over 20 trials of 3 s
duration.

Fig. 9: Parameter values were P = 26.08 ms, fosc =
38.35 Hz, CVT = 0, aIV = 25, ginh = 0.044 mS/cm2, sinh =
10 ms, I = 5.0 lA/cm2, D = 0 mV2/ms. Mean firing rate
was calculated over 50 s after discarding a 100 ms transient.
The dynamical range was defined as the ratio of the firing
rate for rIV = 4 ms divided by that for rIV = 10 ms pro-
vided the latter is non-zero.

Fig. 10(Aa): Neurons received orientation-tuned input
current, I ¼ IO þ AO expð�w2=2r2

wÞ with IO = 5.5 lA/cm2,
AO = 1.3 lA/cm2, rw = 30�. w took values between �90�
and +90� with discretization step Dw = 9/4�. The firing rate
was obtained from pre-calculated f–I curves using interpola-
tion. Parameters were: rIV = 8 ms for attention directed
away and rIV = 7 ms for attention directed into the receptive
field; P = 26.08 ms, fosc = 38.35 Hz, CVT = 0, ainh = 25,
Dginh = 0.044 mS/cm2, sinh = 10 ms, D = 0 mV2/ms. To
mimic neuronal variability, normally distributed noise with
a standard deviation equal to 5% of the firing rate was added
to the firing rate. Solid curves are a 4-point running average,
only every fourth point is shown in the graph.

(Ab) Neurons received a time-dependent driving current
I(t) and an inhibitory synchronous drive with time-varying
parameters aIV(t). In the non-attended state rIV = 3 ms and
it was rIV = 2 ms in the attended state. For t < 500, the
current was I(t) = 0; for 500 6 t < 1000, it was I(t) =
0.8 + 0.56[sin(2pt/250)]2 + 2.4 min[(t � 500)/350, 1]; for
1000 6 t < 1100, it was I(t) = 3.2[1 � (t � 1000)/100]; and
for t P 1100, the current was zero. For t < 500, the inhib-
itory activity was aIV = 5; for 500 6 t < 850, aIV = 5 +
20[(t � 500)/350]; for 850 6 t < 1000, it was aIV = 25; for
1000 6 t < 1100, it was aIV = 25 � 20[(t � 1000)/1000];
and for t P 1100, it was aIV = 5. I was in lA/cm2, t and
rIV in ms. Other parameters were P = 26.39 ms, fosc =
37.90 Hz, CVT = 0.11, D = 0.4 mV2/ms.

(B) The neuron received synchronous inhibitory and
excitatory drives. Parameters for the excitatory drive were
P = 116 ms, fosc = 8.62 Hz, CVT = 0, aEV = 25, rEV =
30 ms. For the inhibitory drive they were P = 26.08 ms,
fosc = 38.35 Hz, CVT = 0, with, for the non-attended state,
(Ba) rIV = 5 ms, aIV = 5, I = 1.6 lA/cm2; and for the
attended state, (Bb) rIV = 4 ms, aIV = 6, I = 1.8 lA/cm2.
In both cases, D = 0 mV2/ms. The local field potential
was calculated by hyperpolarizing the neuron (the injected
current was reduced to I = 0.0 lA/cm2). (Bc) Spike trig-
gered average was calculated based on a 10 second long
LFP waveform of which the first 200 ms was discarded as
a transient. Sampling rate was 5 kHz (temporal resolution
was 0.2 ms). (Bd) Power spectrum density was calculated
based on the STA sampled at 4096 points at a temporal res-
olution of 0.2 ms, there were nfft = 2048 points in the Fou-
rier transform.
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