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Abstract. Networks of compartmental model neurons were used to investigate the biophysical basis of the syn- 
chronization observed between sparsely-connected neurons in neocortex. A model of a single column in layer 5 
consisted of 100 model neurons: 80 pyramidal and 20 inhibitory. The pyramidal cells had conductances that caused 
intrinsic repetitive bursting at different frequencies when driven with the same input. When connected randomly 
with a connection density of lo%, a single model column displayed synchronous oscillatory action potentials in 
response to stationary, uncorrelated Poisson spike-train inputs. Synchrony required a high ratio of inhibitory to 
excitatory synaptic strength; the optimal ratio was 4 : 1, within the range observed in cortex. The synchrony was 
insensitive to variation in amplitudes of postsynaptic potentials and synaptic delay times, even when the mean 
synaptic delay times were varied over the range 1 to 7 ms. Synchrony was found to be sensitive to the strength of 
reciprocal inhibition between the inhibitory neurons in one column: Too weak or too strong reciprocal inhibition 
degraded intra-columnar synchrony. The only parameter that affected the oscillation frequency of the network was 
the strength of the external driving input which could shift the frequency between 35 to 60 Hz. The same results 
were obtained using a model column of 1000 neurons with a connection density of 5%, except that the oscillation 
became more regular. 

Synchronization between cortical columns was studied in a model consisting of two columns with 100 model 
neurons each. When connections were made with a density of 3% between the pyramidal cells of each column 
there was no inter-columnar synchrony and in some cases the columns oscillated 180” out of phase with each other. 
Only when connections from the pyramidal cells in each column to the inhibitory cells in the other column were 
added was synchrony between the columns observed. This synchrony was established within one or two cycles 
of the oscillation and there was on average less than 1 ms phase difference between the two columns. Unlike the 
intra-columnar synchronization, the inter-columnar synchronization was found to be sensitive to the synaptic delay: 
A mean delay of greater than 5 ms virtually abolished synchronization between columns. 
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Introduction 

*Current Address: Keck Center for Integrative Neuroscience, 
University of California, San Francisco, 513 Pamassus Avenue, Box 
0444, San Francisco, CA 94143-0444. 

Although the traditional role for inhibition has been 
to regulate the level of excitation, recent experimental 
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and modeling studies suggest an additional function 
for inhibition in cortex: Regulating the timing of ac- 
tion potential occurrence (Bush and Sejnowski, 1994; 
Gray et al., 1992; Lytton and Sejnowski, 1991). In this 
study, we explore the influence of inhibition on the tem- 
poral pattern of spike firing both within and between 
columns consisting of small networks of sparsely con- 
nected model neurons. 

Synchronous oscillatory firing of populations of cor- 
tical neurons at frequencies around 40 Hz has been ob- 
served within and between many different cortical ar- 
eas in primates and cats both awake and anaesthetized 
(for recent review see Singer (1993)). It has been pro- 
posed that this synchronous activity is used to group 
separated parts of single objects (Engel et al., 1991a; 
Sporns et al., 1991) and even signal visual awareness 
(Crick and Koch, 1990). Although there is still much 
debate as to the role and significance of synchrony, it 
is generally agreed that many cortical neurons can fire 
synchronously under some conditions. Therefore, it is 
worthwhile to discover exactly how cortical tissue gen- 
erates and sustains synchronized oscillatory firing of its 
component neurons, both within a single column and 
between columns that may be located in different hemi- 
spheres (Engel et al., 1991b). For simplicity, we have 
restricted our model to a single layer of cortex (layer 
5). Slice experiments have shown that isolated layer 5 
is capable of intrinsic generation of oscillatory activity, 
although at lower frequencies than those discussed here 
(Silva et al., 1991). It is possible that intrinsic bursting 
cells in vivo have significantly higher bursting frequen- 
cies than those in vitro, and it is also possible that there 
are other populations of intrinsic bursting cells with dif- 
ferent intrinsic frequencies (McCormick et al., 1993). 

A number of other studies have modeled synchro- 
nized oscillations in cortex at a simpler level of 
physiological realism, many of them focusing on how 
such activity might be useful, for example in percep- 
tual grouping (Koenig and Schillen, 1991; Sporns et al., 
1989). This study does not address the function of syn- 
chronization; instead we have constructed a physiolog- 
ically realistic network model based on ionic currents 
and conductances, with every parameter directly repre- 
senting a physiological variable. We intended to deter- 
mine whether the presently available data on the phys- 
iology and microanatomy of cortex are sufficient to 
explain how synchronized oscillatory firing occurs and 
how certain physiological variables affect this activity. 
We found both intra- and inter-columnar synchroniza- 
tion to be robust to changes in parameters known to 

have a wide degree of variation in cortex. Some pa- 
rameters did affect synchronization, such as the degree 
of connectivity and the involvement and interaction of 
inhibitory interneurons. 

A previous pilot study (Bush and Douglas, 1991), 
using a simplified biophysical model of a cortical col- 
umn, established a basic mechanism for cortical syn- 
chronization to arise. This model included a number of 
simplifications: It consisted of only 11 fully connected 
cells and each synapse had to be spread out in time as 
well as increased in amplitude to compensate. One of 
the simplifications led to an artifactual phenomenon ex- 
plained in the Discussion. The present model is a more 
faithful simulation of a piece of cortical tissue, incorpo- 
rating a more realistic model reduced cell, many more 
cells, sparse connectivity and connections between as 
well as within columns. This more accurate model 
not only produced results that were better fits to the 
experimental data, but also allowed us to determine 
systematically how and in what way each physiolog- 
ical variable affected synchronization, which was not 
possible with the simpler model. 

We have also modeled the interactions that occur be- 
tween columns. When long-range horizontal connec- 
tions between columns were first discovered in neocor- 
tex they seemed to imply a paradox: These connections 
extended far beyond the receptive fields of single cells, 
yet stimulating the surrounding area outside the recep- 
tive fields of undriven cells was not effective in driving 
them (Gilbert et al., 1990). This suggested that perhaps 
these connections were relatively weak, and indeed the 
density of synaptic connectivity is much higher within 
a column than between columns (Kisvarday and Eysel, 
1992; Martin, 1988). Although excitatory postsynaptic 
potentials (EPSPs) can be generated in neurons when 
long range horizontal afferents are stimulated, it is not 
possible to generate action potentials by stimulating 
these fibers alone (Hirsch and Gilbert, 1991). This 
suggests that these connections might have more of a 
modulatory role. We have used our model to simulate 
inter-columnar connectivity to explore this possibility. 

Methods 

Model Neurons 

Simulations were performed using standard techniques 
for compartmental models of branching dendritic trees 
(Rall, 1964). The primary neuron used in our networks 
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was a layer 5 pyramidal neuron modeled by 9 com- 
partments. This model neuron was reduced from a 400 
compartment model of a reconstructed cat visual cortex 
pyramidal cell (Koch et al., 1990) using a method that 
preserves essential electrotonic parameters (Bush and 
Sejnowski, 1993). The reduced model pyramidal cell 
had a specific membrane resistance R, = 7042 Qcm2 
and a specific capacitance C,,, = 2.84 ,uF/cm2 which 
produced an input resistance Ri, = 45 MQ and a mem- 
brane time constant rm = 20 ms. Since approximately 
20% of neocortical cells are inhibitory (Douglas and 
Martin, 1990) 20% of our cells were 7 compartment in- 
hibitory (basket) neurons (not based on a reconstructed 
cell) with C,,, =2.21 pF/cm2 and Rm =6800 ficm2 
giving an Ri, = 164 MS2 and r,,, = 15 ms. The values 
of C,,, and Rm for the reduced cells are respectively 
larger and smaller than for the full cells to compen- 
sate for the reduction in surface area (Bush and Se- 
jnowski, 1993). For all model cells the axial resistivity 
was 200 Qcm and the resting membrane potential was 
-55 mV (‘resting’ assumes background synaptic activ- 
ity producing a steady depolarization). The values cho- 
sen for these passive parameters are within the typical 
range observed in neocortical cells in viva and are have 
been discussed elsewhere (Bush and Sejnowski, 1994). 

method produced a varying resting membrane potential 
similar to that seen in viva due to background synap- 
tic inputs, without changing Ri, and r,,,. This back- 
ground noise made synchronization more difficult and 
produced a background resting firing rate of a few Hz. 

Synaptic Connectivity 

Each model neuron had Hodgkin-Huxley-type active 
conductances at the soma only. These conductances 
were implemented exactly as described in Bush and 
Sejnowski (1994), using a kinetic scheme developed 
by Borg-Graham (1987). The pyramidal cells had fast 
sodium and potassium conductances (gNa + gKd) to 
produce action potentials, a fast high-threshold calcium 
conductance (gCa) to introduce calcium into the cell 
during each spike, and a calcium-dependent potassium 
conductance (gKca) to produce hyperpolarizations that 
terminated bursts of spikes. Intracellular calcium ac- 
cumulated in the soma compartment and decayed ex- 
ponentially to its resting value with a time constant that 
was different for each cell, between lo-50 ms. The dif- 
ferent calcium decay rates gave each pyramidal cell a 
different intrinsic bursting frequency. The basket cells 
had only fast sodium and potassium conductances and 
fired continuous trains of high-frequency spikes to con- 
stant current input. Figure 1 shows the intrinsic firing 
properties of the model pyramidal and baskets cells. 

Synaptic conductances were modeled using an alpha 
function conductance change (1 ms to peak) activated 
on the postsynaptic dendrite with some delay after the 
presynaptic spike (Bernander et al., 1991). Peak am- 
plitudes and synaptic delays for each connection were 
randomly assigned according to a Gaussian distribu- 
tion with a standard deviation equal to half the mean. 
This reproduced the large range of delays and post- 
synaptic potential (PSP) amplitudes observed experi- 
mentally. The mean synaptic delay time was 1.2 ms 
with a fixed minimum of 0.5 ms (Mason et al., 1991; 
Nicoll and Blakemore, 1990). Mean peak postsynaptic 
conductance amplitudes were varied but were typically 
l-2 nS except for inhibitory synapses on pyramidal 
cells, which were typically 4-8 nS. This reflects the ob- 
servations of Komatsu et al. (1988) who found that sin- 
gle inhibitory conductance changes were significantly 
larger than single excitatory ones. This may reflect the 
fact that basket cells typically make multiple synaptic 
contacts on the proximal dendrites of a target pyrami- 
dal cell while pyramidal cells only make one or a few 
contacts per target (Somogyi et al., 1983; Gabbot et al., 
1987). The reversal potential for EPSPs was 0 mV and 
that for inhibitory postsynaptic potentials (IPSPs) was 
-65 mV (10 mV below the resting potential) (Connors 
et al., 1988). 

Excitatory synapses on model pyramidal cells were 
made on the terminal basal and oblique dendritic com- 
partments, whereas inhibitory synapses were made 
onto the soma and proximal dendrites. Excitatory and 
inhibitory synapses were made onto all compartments 
of the basket cells (Douglas and Martin, 1990). Pyra- 
midal cells received external driving input from uncor- 
related Poisson spike trains. Typically each cell re- 
ceived four 20 nS excitatory synapses active at a mean 
rate of 200 Hz. This is equivalent to a larger number 
of inputs active at a lower rate. 

During network simulations, noise was injected into Connectivity within a single column, at the scale of 
the soma of every model neuron in the form of a current 100-200 pm, appears to be random in the sense that 
that changed every time step to a random number uni- axons make contacts on all potential targets within their 
formly distributed between positive and negative I nA zone of arborization (White, 1989). Thus, there was no 
for pyramidal cells and 0.3 nA for basket cells. This spatial topography within our model columns: Every 
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Figure 1. Intrinsic firing properties of isolated model neurons. A) Bursting response of a pyramidal cell when injected with constant 0.2 nA 
depolarizing current at the soma. B) Higher frequency response to a 1 nA current. The stronger input also produces more spikes per burst 
C) Postsynaptic response of a second pyramidal cell connected with a 0.5 nS synapse to the cell shown in (A). Top trace is the dendritic potential, 
bottom trace is the somatic potential. D) Spike tram from a basket cell injected with 0.05 nA depolarizing current and +/-0.3 nA noise (see 
Methods). 

cell had an equal chance of contacting every other cell 
(but no self-connections were allowed). The density 
of connectivity within a column has been estimated 
by dual intracellular impalement and spike-triggered 
averaging to be 5-15% (Komatsu et al., 1988; Mason 
et al., 1991; Thomson et al., 1988), although it may 
be lower in the deeper layers (Nicoll and Blakemore, 
1990, 1993; Thomson et al., 1993). We explored a 
range of different connection densities: For the 100 
neuron columns presented here we used a connectivity 
of 10%. Thus each model cell received input from 
exactly 8 pyramidal cells and 2 baskets cells, randomly 
chosen. Since each neuron received input from only 10 
other neurons in the column, it was necessary to add 
a scaling factor to the peak synaptic strengths. For a 
100 neuron column with 10% connectivity all synaptic 

strengths were multiplied by 10. For a 1000 neuron 
column with 10% connectivity no scaling factor was 
necessary. 

In order to view rapidly and easily the average activ- 
ity of the whole network, an analog of the local field po- 
tential (LFP) was calculated for each simulation, called 
the local averaged potential (LAP). This was a running 
average of all the membrane potentials of all the pyra- 
midal cell somas. The presence of oscillations in this 
LFP analog was an indicator of synchronized activ- 
ity in the pyramidal cell population. Our LAP is not 
directly equivalent to a real LFP, which is a sum of 
all the local currents, both voltage- and ligand-gated, 
weighted by the distance of the sources from the elec- 
trode. However, our LAP is a direct measure of the 
average neuronal activity and for the task of showing 
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synchronous oscillations it is actually better suited than 
the real LFP. 

A quantitative measure of the degree of synchroniza- 
tion between two columns is provided by the correla- 
tion amplitude (CA), ranging from - 1 to +l, which 
is the height of the peak closest to zero in the cross- 
correlation of the two networkLAPs (Gray et al., 1992). 
The phase shift of this peak from zero provides a mea- 
sure of the tightness of the synchronization. For single 
columns the CA is measured for the first peak away 
from zero in the auto-correlation of the LAP. This num- 
ber reflects the regularity and amplitude of the oscilla- 
tory discharges of the synchronized column. The phase 
shift of this peak gives the period of the oscillation. 

For some data the power and phase spectra were 
calculated using the software package ACE/gr (Paul 
Turner, Oregon Graduate Institute of Science and Tech- 
nology) which calculates the spectrum by 

Power(w) = 4x2(w) + y2(w) 

where x(w) and y(w) are the real and imaginary fre- 
quency coefficients computed by the FFT. The phase 
was calculated by 

Phase(w) = tan-’ 

Simulations 

All simulations were carried out on a MIPS Magnum 
3000/33 using a modified version of CABLE (Hines, 
1989). We used a time step of 0.1 ms with 2nd or- 
der correct numerical integration. A simulation with 
100 neurons and 10% connectivity took 9 minutes of 
computer time to simulate 500 ms of real time. 

Results 

Synchronization within a Single Column 

Figure 2 shows a simulation of a 100 neuron column 
(80 pyramidal cells, 20 basket cells) without synap- 
tic connections. The pyramidal cells were all driven 
by uncorrelated Poisson spike train inputs at a mean 
frequency of 200 Hz, but they had different intrinsic 
bursting frequencies because of different internal cal- 
cium elimination rates (see Methods). The bursting 
was less regular than in Fig. 1 due to the injection of 

noise into each pyramidal cell soma. The basket cells 
received no driving input and only fired a few sponta- 
neous spikes due to background noise. Because there 
were no synaptic connections, there were no correla- 
tions between the neurons and the LAP was flat after 
the initial transient burst. 

Figure 3 shows the output of the same network when 
the neurons were randomly connected at a density of 
10%. Oscillations were visible in the LAP indicating 
synchronized firing of the pyramidal cells (CA = 0.56 
and the period of oscillation was 22.2 ms, giving a fre- 
quency of 45 Hz). The basket cells showed evidence for 
bursting at the same frequency as the pyramidal cells 
even thought they have no intrinsic oscillatory proper- 
ties; they are directly driven by the pyramidal cells, so 
the fact that they fired in bursts is further evidence of 
synchronized population discharge. The mechanism 
of synchronization is detailed in the Discussion. 

As observed in experimental recordings in vivo 
(Gray et al., 1992), the synchronization sometimes 
spontaneously ceased (in this case at 100 and 350 ms) 
and then reappeared. The basket cell bursts in the 
model became less clumped at these times. Since the 
driving input to the network was stationary throughout, 
these changes were not due to changes in the nature 
of the external input. The synchronization was a sta- 
tistical phenomenon’as -observed in the experimental 
recordings; it was often difficult to see a regular oscil- 
lation in the spike train of a single cell, especially if 
it did not fire many spikes, and of course it was im- 
possible to see synchronization. When examining all 
7 single-cell traces, one observes moments when the 
spikes all lined up, but even in these cases there was 
significant jitter in individual spike times. Comparing 
two traces spike by spike, such as the top two pyrami- 
dal cell traces in Fig. 3, we often found few instances 
of simultaneous firing, although on average both cells 
were locked to the underlying oscillation of the popu- 
lation (shown by the LAP). In other cases (such as the 
3rd and 4th trace) the synchronization of spike firing 
was clearer. It is important to have an averaged mea- 
sure of the activity of the whole population (such as the 
LAP shown here) to determine if the component cells 
are collectively oscillating in synchrony. 

In networks with 100 neurons we could not ob- 
tain good synchrony with connection densities of less 
than lo%, but lower connection densities were effec- 
tive when simulating networks with more neurons. In 
Fig. 4, 1000 neurons were connected at a density of 
5%, with a synaptic strength scaling factor of 2 (see 
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Figure 2. Activity in models of 100 isolated layer 5 cortical neurons. The top 2 traces show the somatic membrane potential of 2 basket 
cells from a population of 20 making up one column. Since the driving input to the network goes only to the pyramidal cells the basket cells 
do not fire many spikes. The next trace is an analog of the local field potential, called the local averaged potential (LAP), to show the global 
synchronization of the whole column (see Methods). The flat trace shown here indicates that the neurons were not firing synchronously. The 
bottom 7 traces show the somatic membrane potential of 7 sample pyramidal cells from the total population of 80. In this example the intrinsic 
bursting frequency of the cells increases towards the bottom 

Methods). We obtained the same results with a con- 
nectivity of 10% and no scaling factor; i.e., the synapses 
had same strengths as in real cortex. The oscillation 
and synchronization in a network of 1000 neurons was 
highly regular, as a consequence of the law of large 
numbers, although there was still a significant amount 
of jitter in spike times at the level of single cell traces 
(CA = 0.58 and the period was 19.8 ms, giving a fre- 
quency of 50.5 Hz, slightly higher than the 100 cell 
network). Even though in terms of numbers this simu- 
lation may be more realistic than the 100 neuron simu- 
lations, the output of the smaller network appears more 
realistic (less regular). This is considered further in the 
Discussion. 

The membrane potential trace of the 4th pyramidal 
cell in Fig. 4 is shown at a higher temporal resolution 

in Fig. 5. The large compound EPSP present on each 
cycle of the population oscillation is clearly visible. 
Spikes only arise from the top of these compound EP- 
SPs, but not every compound EPSP causes a spike. 
This figure can be compared to Fig. 6, an intracellular 
recording from a cat visual cortex neuron firing os- 
cillatory bursts during optimal stimulation. There is 
a rhythmic series of large compound EPSPs, some of 
which cause spiking. There are no spikes at other times 
in the phase of the oscillation. 

Sensitivity to Parameters 

The distributions of synaptic conductances and time 
delays in all of our simulations had large standard 
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Figure 3. Intracolumnar synchronization in a model network of neurons connected with a probability of 10%. The oscillations in the LAP 
shown here indicate that the neurons in the column fired synchronously. This is confirmed by the firing of the basket cells, which have no 
intrinsic bursting dynamics and only fire bursts in response to synchronized input from the pyramidal cells. There is considerable ‘jitter’ in an 
individual pyramidal cell’s output; the network oscillation is a statistical property of the population and not at all ‘clock-like’. The synchrony 
spontaneously disappears and reappears at 100 and 350 ms. This rapid shift has been seen in real experimental data. 

deviations, so that synaptic connections with an overall 
mean of 1 nS often had values as small as 0 nS and as 
large as 3 nS and time delays with a mean of 1.2 ms 
had values from 0.5 ms up to as high as 4 ms. The syn- 
chronized firing of the network was not affected by this 
variability, and was in general a robust phenomenon: 
We repeated all of our simulations with a noise level 4 
times higher than that shown here (peak current 4 nA 
for pyramids, 1.2 nA for basket cells-see Methods) 
and with a resting membrane potential of -65 mV in- 
stead of -55 mV, but synchronized oscillation was still 
present. With some sets of parameters (such as higher 
connectivity, stronger inhibitory synapses and lower 
resting membrane potentials) we were able to obtain 
even stronger synchronization, but the values of param- 
eters used for the simulations presented in this paper 
are probably closer to those in the real cortex. 

We found that increasing the mean synaptic delay 
within a column did not disrupt synchronization, even 
when the mean delay was as large as 7.2 ms rather 
than 1.2 ms (not shown). In this case, the oscillation 
became more regular, with every cell firing on every 
cycle and the cells with the highest intrinsic bursting 
frequency always leading the others. The frequency of 
oscillation of the network was also decreased due to 
the long duration of each burst. The only other way 
we found to alter the frequency of oscillation of the 
network was to vary the strength of the external driving 
input. By changing this parameter it was possible to 
vary the oscillation frequency of the network in the 
range 35-60 Hz. 

Network synchronization was generally resistant to 
variations in synaptic strengths. However, inhibitory 
synapses had to be stronger than excitatory ones. We 
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Figure 4. Synchronization of a 1000 neuron network connected at a density of 5%. The oscillation in this network, apparent in the LAP and 
rhythmic bursting of the basket cells, is much more regular than that of the 100 neuron network shown in Pig. 3, although there is still significant 
‘jitter’ in the individual pyramidal spike trains 

found that a ratio of approximately 4 : 1, the value ini- 
tially chosen on the basis of physiological results (see 
Methods), was optimal for realistic synchronization. 
In networks without inhibition, simulating the effect of 
bicuculine, excitatory feedback operates unconstrained 
producing large paroxysmal burst discharges, with the 
membrane potentials of the highest intrinsic frequency 
cells latching up past spike threshold (not shown). The 
only inhibitorylhyperpolarizing force in these networks 
was the intrinsic potassium conductance of the pyrami- 
dal cells, which was not strong enough to control the 
excitatory feedback. 

The network was also somewhat sensitive to the 
strength of reciprocal inhibition between the basket 
cells. Although it is known from anatomical studies that 
local inhibitory interneurons make synaptic connec- 
tions on each other (Douglas and Martin, 1990), very 
little is known about the function of these connections 
beyond the vague concept of ‘disinhibition’ . Figure 7B 

shows the same network LAP as in Fig. 3 (CA = 0.56) 
and one of the basket cell traces. Figure 7A is the LAP 
from the same network with inhibitory contacts be- 
tween basket cells removed. Synchrony was slightly 
weaker (CA = 0.50) because the basket cell bursts 
were no longer terminated by inhibitory feedback and 
as a result became less discrete, sometimes continu- 
ing into the next cycle. This produced a lower fre- 
quency of oscillation (38 Hz compared to 45 Hz in 
Fig. 7B). This higher level of inhibitory activity also 
resulted in less activity in the pyramidal cell popula- 
tion (not shown). When synapses between baskets cells 
were made very strong (Fig. 7C) synchronization was 
severely disrupted (CA = 0.04). In this case basket 
cells were inhibited before they could provide effec- 
tive inhibition to the pyramidal cell population so the 
pyramidal cells began to fire continuously instead of 
in synchronous bursts. Thus, mutual inhibition be- 
tween inhibitory interneurons within a single column 
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Figure 5. Higher resolution plot of the membrane potential of the 4th pyramidal cell from Fig. 4. There are a series of rhythmic compound 
EPSPs, some of which have spikes arising from them. Spikes do not occur at other times (in the ‘troughs’) because the membrane resistance is 
substantially reduced by a combination of inhibitory feedback and intrinsic potassium currents. 

is important for producing synchronized population os- 
cillations, but the strength of this inhibition should not 
be as great as that between inhibitory cells and their 
pyramidal targets. 

Synchronization between Columns 

Since synchronization has been observed between dif- 
ferent cortical columns and even different cortical areas 
(E&horn et al., 1988; Engel et al., 1991b; Gray et al., 
1989; Koenig et al., 1995; Kreiter and Singer, 1992) 
we performed simulations to examine how synchro- 
nization arises between two columns, both internally 
synchronized. Two columns of 100 neurons each were 
simulated, each column connected as in Fig. 3. Con- 
nections between the columns were then added to see 
if synchronization between them could be established. 

Long-range connections in cortex are mediated by 
pyramidal ce11 axons, and these axons make most of 
their synapses on other pyramidal cells, although at a 
significantly lower density than within their own col- 
umn (Hirsch and Gilbert, 1991; Kisvarday and Eysel, 
1992; Martin, 1988). Therefore, we started by con- 
necting the pyramidal cells between the two columns 
with a density of 2.5% (each pyramidal cell received a 
synapse from 2 pyramidal cells in the other column). 
In this case and all other simulations using pyramidal- 
pyramidal connections only, we were not able to ob- 
tain good synchronization between the two columns 
(not shown). The internal synchrony of each column 
appeared to be degraded and the only clear tendency 
we noted was for the columns to sometimes oscillate 
180 degrees out-of-phase with each other. With some 
parameter choices this was a very strong effect, but in 
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Figure 6. The response of a simple cell recorded intracellularly in area 17 of the cat to a square wave grating (1 c/deg) presented to the 
left eye at the optimal orientation and velocity. The data in the lower trace at higher time resolution was taken from the epoch in the 
upper trace that is marked by a horizontal line. The cell was tightly tuned for orientation and showed a monocular preference for the left 
eye. V, = -80 mV, Ri, = 57 MS2. This trace shows a similar series of compound EPSPs sometimes topped by spikes as the trace in 
Fig. 5. It is not known whether this neuron was an intrinsically bursting cell as assumed in the model. Cell recorded by CM Gray and DA 
McCormick. 

no case did clear synchronization with zero phase lag 
develop between the columns. 

Long-range pyramidal cell axons make some of their 
synapses on dendritic shafts, many presumably belong- 
ing to inhibitory neurons (Douglas and Martin, 1990; 
White, 1989). Thus we added intercolumnar connec- 
tions from pyramidal cells to basket cells to see if 
this would synchronize the two columns. Figure 8 
shows the results of a simulation with two columns 
connected together at a density of 4% (each pyrami- 
dal cell received 3 synapses and each basket cell re- 
ceived 4 synapses from pyramidal cells in the other 
column). When the intercolumnar connections were 
turned on at 100 ms, the two columns immediately 
began to synchronize (CA = 0.61) and maintained 
near zero average phase difference (1.2 ms) for the 
duration of the simulation. When one column sponta- 
neously desynchronized (e.g., at 350 ms) the other did 
too, then both rapidly resynchronized. Intercolumnar 

synchronization could not be obtained by simply in- 
creasing the number of pyramidal-pyramidal connec- 
tions. Thus the pyramidal-basket intercolumnar con- 
nection, while numerically small, was vital for inter- 
columnar synchronization. 

Figure 9A shows the cross correlation of two LAPS 
from the simulation shown in Fig. 8. The central peak 
is at -2.6 ms indicating tight synchronization between 
the two populations. For comparison Fig. 9B shows the 
cross correlation between two LAPS from a simulation 
in which the two columns were not connected (CA = 
0.17). In this case there was a peak at some random 
non-zero position indicating that the two populations 
were not synchronized with each other. 

The simulation of the synchronization between the 
two columns in Fig. 8 was extended for 6.5 sec. 
Figure 10B shows the averaged power spectra of the 
two LAPS, with a clear peak at 44 Hz, the frequency 
of the population oscillation. There may be a smaller 
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Figure 7. Effect of increasing the strength of reciprocal inhibition between the basket cells in a 100 neuron network. Inhibition increases from 
top to bottom. Each trace shows the population LAP and a sample basket cell trace. A) No inhibition between basket cells. Synchronization 
can still occur, but is not optimal because the discharges of the basket cells on each cycle perseverate, sometimes running into the next cycle. 
B) Basket cells connected by 1 nS synapses. These traces are taken from Fig. 3. This is the optimal amount of mutual inhibition between basket 
cells in our model column. C) Basket cells connected by 2 nS synapses. Synchronization is degraded because the basket cells inhibit each other 
too strongly before they can fire a coherent burst and effectively terminate the burst of firing in the pyramidal cell population. 

peak near 22 Hz, a subharmonic of the main peak. Fig- 
ure IOA shows the difference between the phase spec- 
tra of the two LAPS over the same frequency range 
as the power spectra. This phase difference has large, 
random fluctuations at all frequencies except around 
the frequency of the population oscillation. In this re- 
gion the phase difference was consistently small, and 
at 44 Hz it was almost zero. This is evidence that the 
two populations were oscillating at 44 Hz in phase with 
each other. 

Figure lOC, D shows the same results for the two 
unconnected columns. Although there was significant 
power in both spectra around 40 Hz, a single peak was 
not as clear. The phase difference did not decrease 
around 40 Hz, indicating that the two columns were 
oscillating at random phase with respect to each other. 

Increasing synaptic time delays between neurons 
within a column did not disrupt synchronization. How- 
ever, increasing the synaptic delay of the intercolum- 
nar connections adversely affected the synchronization 
of the two columns. As the delay was increased to 
3-4 ms a phase shift of a few ms developed between 
the two populations. When the intercolumnar delay 
was greater than 5 ms synchronization was severely 
disrupted. Figure 11 shows two columns connected 
with a mean delay of 7.2 ms. The synchronization 
of the two columns was weak (CA = 0.39) because 
the internal synchrony of each column was weak and 
sporadic. We conclude that to maintain effective syn- 
chronization two columns must be connected with a 
delay of approximately 5 ms or less. The implications 
of this result will be considered in the Discussion. 
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Figure 8. Zero phase lag synchrony between two columns of 100 neurons connected with pyramidal to pyramidal and basket cell synapses at a 
probability of 4%. For each column a basket cell trace, 3 pyramidal cell traces and the LAP of all the pyramidal cells in that column are shown. 
Synchrony is rapidly established when the inter-columnar connections turn on at 100 ms and remains for the duration of the simulation. When 
the columns temporarily desynchronize and then resynchronize (e.g., at 375 ms), they do so together. 

Effectiveness of Long-Range Horizontal Axons 

The results of our model suggest that intercolumnar 
connections mediated by long-range horizontal axons 
are modulatory in function rather than directly exci- 
tatory, primarily because of inhibition directly evoked 
by long-range axonal stimulation. In order to test the 
validity of this result we have compared our model 
with an in vitro experiment directly testing the effects 
of long-range axonal stimulation. Figure 12 shows a 
simulation of an experiment performed in a cat cortical 
slice preparation (Fig. 7 of Hirsch and Gilbert (1991)). 
In the experiment, shocks of increasing strength were 
applied to lateral fibers in the upper layers, presumably 
stimulating horizontal pyramidal axons connecting dis- 
tant columns. Synaptic responses were recorded from 
target pyramidal and presumed inhibitory interneu- 
rons. Our simulation produced the same results as the 

experiment: At low stimulus strengths EPSPs were ob- 
served in both pyramidal and basket cells. Due to the 
lower threshold of the basket cells, spikes were some- 
times produced. As the stimulus strength increased the 
basket cells fired more spikes in response; in contrast, 
the pyramidal cells were inhibited by stronger shocks. 
This inhibition was a direct result of the response of the 
basket cells. Thus, due to the relatively low numbers 
of inter-columnar axons and the lower threshold of the 
target basket cells, the excitatory inter-columnar fibers 
do not necessarily have a strong excitatory effect on 
their target columns. 

Figure 13 shows the output of two connected 
columns, the bottom one driven normally by external 
input, the top receiving no external input until 350 ms. 
Although the top column received input from the bot- 
tom one that was sufficient to synchronize the two 
populations when they were both being driven (after 



Sparsely Connected Inhibition Neurons in Realistic Network Models 103 

-101 ~100.0 0.0 100.0 I3 1.0 r 

t 

-1.0 L 
-100.0 0.0 100.0 

Time (ms) 

Figure 9. Cross-correlations of the LAPS of two-column simulations. A) Results from network shown in Fig. 8. There is a large central peak 
centered on -2.6 ms which indicates that the two columns were oscillating in phase. B) Cross-correlation from two unconnected columns. The 
largest peak is at some random non-zero position indicating that these two columns were not oscillating in phase with each other. 

350 ms), this input was not strong enough to cause sig- 
nificant firing before 350 ms. The low firing rate in 
the top column was not significantly higher than the 
spontaneous rate due to noise. 

Discussion 

Synchronized oscillations have been demonstrated in a 
wide variety of models of interacting neurons ranging 

from models based on coupled intrinsic oscillators 
(Schuster and Wagner, 1990; Sompolinsky et al., 1990; 
Winfree, 1967; Williams, 1992) to more realistic mod- 
els incorporating the characteristics of real neurons 
(Bush and Douglas, 1991; Sporns et al., 1989; Wilson 
and Cowan, 1972; Wilson and Bower, 1991). The 
former allow analysis while the latter permit detailed 
comparisons with recordings from cortical neurons. In 
particular, our realistic model was highly constrained 
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Figure 10. Phase difference between LAPS from two-column simulations. A) Difference between the phase spectra of the LAPS over the 
same frequency range as in (8). The phase difference decreases to zero at 44 Hz, the oscillation frequency of the network, indicating zero-lag 
synchronization of the two columns. B) Averaged power spectra of the two LAPS of Fig. 8 (simulation continued for 6.5 sets). There is a large 
peak at 44 Hz. C) Phase difference between two LAPS from two unconnected columns. There is no decrease in the phase difference around the 
oscillation frequency of the two columns confirming that they are not synchronized together. D) Averaged power spectra of the two LAPS. 
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Figure Il. Synchrony between columns is severely degraded by increasing the inter-columnar time delay. These two columns were connected 
by synapses that had a mean delay of 7.2 ms and turned on at 100 ms. Not only was the synchrony between the columns degraded by long time 
delays, but the internal synchrony within each column was also disrupted. 

by the morphology and physiology of cortical neurons 
and the patterns of connectivity observed in primary 
sensory cortices. Parameters that were not fully con- 
strained were varied over a wide range to find values 
that led to a match with physiological recordings. Our 
main results concern the essential role of inhibitory 
neurons in synchronizing collective oscillations within 
and between sparsely connected columns of cortical 
neurons. 

Synchronization in a Single Column 

The mechanism of synchronization is similar to that 
described previously (Bush and Douglas, 1991): Pyra- 
midal cell burst discharges rapidly excite other pyra- 
midal cells, producing a large compound EPSP in all 
cells in the network, including the inhibitory basket 
cells; the basket cells are driven to fire simultaneously, 

their feedback inhibition onto the pyramidal cells then 
terminates the population burst and, together with in- 
trinsic potassium conductances, produces a post-burst 
hyperpolarization. Since the input resistance of the 
pyramidal cells is greatly reduced during this hyper- 
polarization (Bush and Sejnowski, 1994), there is less 
chance of the cell spiking during this time (out of phase 
with the oscillation). Cells with intrinsic bursting fre- 
quencies that vary over an octave (15-30 Hz) can be 
made to synchronize together at one frequency (e.g., 
45 Hz) by this mechanism. Cells with lower intrin- 
sic frequencies tend to ‘miss’ cycles of the oscillation 
rather than fire out of phase and they tend to fire single 
spikes instead of bursts. 

This mechanism also produced synchronization in 
networks of regular firing pyramidal cells that do not 
fire in bursts (not shown). The population EPSPs were 
smaller and shorter in duration without bursting and 
of course the pyramidal cells fired less spikes; thus, 
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Figwe 12. Response of a sample basket cell and two representative pyramidal cells to stimulation of inter-columnar connections. Increasing 
from left to right, lo,50 or 80 pyramidal cells in one column were stimulated with 0.5 nA current for 8 ms. Postsynaptic responses were recorded 
in the other column. Synaptic scaling factor of intercolumnar connections was reduced from 10 to 3 to allow the simulation of stimulating a 
small number of fibers. Weak stimuli produce an EPSP in one of the pyramidal cells and a single spike in the basket cell. Stronger stimuli 
produce more spikes in the basket cells which cause IPSPs in the pyramidal cells, shutting off the excitatory response. 

bursting improves but is not necessary for synchro- 
nization. A combination of bursting and regular firing 
cells also produced synchronization (not shown). 

The synchronized oscillations demonstrated by the 
network shown in Fig. 3 display a number of features 
in common with experimental recordings (Engel et al., 
1990): The similarity of the form of single cell traces 
from simulation and experiment (Figs. 5 and 6) sug- 
gests that the model has captured some of the most 
basic characteristics of the biophysical mechanism of 
synchronous oscillatory firing in cortex. Intracellu- 
lar recordings from cat striate cortex demonstrate os- 
cillations that are stimulus dependent (absent during 
spontaneous activity) and increase in amplitude during 
stimulation while the cell is hyperpolarized (Bringuier 
et al., 1992; Jagadeesh et al., 1992). This suggests that 

the oscillations arose from rhythmic intracortical ex- 
citatory synaptic input. Of course other mechanisms 
may produce the same type of behavior (Llinas et al., 
1991; McCormick et al., 1993), and several mecha- 
nisms may be involved. Recent experimental work 
in hippocampal slices has shown that, under certain 
conditions, 40 Hz oscillations may be produced by 
networks of inhibitory neurons driven by the activa- 
tion of metabotropic glutamate receptors (Whittington 
et al., 1995). 

Another feature observed in the network simulations 
was the variability of synchronization. In the model, 
as in the experimental data (Gray et al., 1992), periods 
of synchrony generally lasted a few hundred ms, with 
rapid spontaneous transitions into and out of the syn- 
chronized state. In addition, the presence of synchrony 
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Figure 13. Inter-columnar connections have little effect on an undriven column. The two columns shown here are connected as in Fig. 8, 
with the inter-columnar connections turned on at zero ms. The upper column receives no external driving input until 350 ms (arrow). After this 
time the two columns are synchronized by the inter-columnar connections, but before this they have very little effect on the undriven column, 
producing a few subthreshold depolarizations but few spikes. The basket cells have a lower threshold and fire a few spikes, which helps to 
suppress the pyramidal cells (see-Fig. 12). 

varied from trial to trial (using a different seed for the 
random number generator for noise and Poisson input). 
Throughout each trial the external driving input was a 
stationary Poisson process; thus, this variability can- 
not be due to changes in the statistics of the input and 
the complex internal dynamics of the network must 
be responsible for the rapid switching between syn- 
chronous and asynchronous firing. In the 1000 neuron 
simulation, however, the variability in the LAP was 
reduced (although individual cell traces still showed 
marked variability) (Fig. 4). Therefore, one possibility 
is that synchronized oscillations in neocortex are medi- 
ated by cell groups composed of about a hundred neu- 
rons. Synaptic strengths would have to be very large 
in a 100 neuron network (scaling factor of 10, giving 
peak postsynaptic conductances of 10 nS-see Meth- 
ods). There is recent evidence that some single EPSPs 
could be this large, producing quanta1 depolarizations 

of a few mV instead of a few hundred PV (Thomson 
et al., 1993). 

Networks with 1000 neurons used synaptic strengths 
without a scaling factor, suggesting that oscillating neu- 
ronal groups could comprise of on the order of 1000 
neurons. This would fit better with a consideration 
of the number of cells involved: Given approximately 
100,000 neurons/mm3 and a column 100-200 mm in 
diameter there are on the order of 1000 neurons in one 
layer of one column. If this is the case, then the vari- 
ability described above must be due to some source not 
included in the model. There are many potential can- 
didates, including low probabilities of quanta1 release, 
use- and time-dependent potentiation and/or depres- 
sion of synaptic strengths, the action of neuromodu- 
lators or some extrinsic cortical or subcortical signal. 
In a few 1000 neuron simulations, the probability of 
an EPSPIIPSP given a presynaptic action potential was 
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reduced to 0.5 or lower (not shown): The amplitude 
and regularity of the LAP oscillation was significantly 
reduced. If this is not the case, and instead 100 neurons 
is the minimal size of an oscillating group, then a sin- 
gle layer in a single column could contain many such 
groups, which would seem unlikely in primary visual 
cortex, although association areas such as entorhinal 
cortex may support such smaller groups. 

Experimental recordings also show a frequency vari- 
ability of synchronized activity within and between tri- 
als ranging from 40-60 Hz (Gray et al., 1992). The 
model of Bush and Douglas (1991) displayed fre- 
quency variability within a single trial, but this was 
an artifact of having only one inhibitory neuron in their 
model: A single extra spike from this neuron would sig- 
nificantly delay the onset of the next population burst. 
We could obtain different frequencies of oscillation in 
our more realistic simulations only by changing the 
strength of the external driving input. In this way, the 
frequency could be changed in the range 35-60 Hz. 
The external input was kept constant within a trial and 
a change in oscillation frequency was never observed. 
Therefore, we suggest that the frequency variability 
observed in experimental recordings is due to a con- 
comitant variability in the strength of the external in- 
put. External here means external to the synchronized 
group, arising from the thalamus or other areas of cor- 
tex. For a pyramidal cell in one of our simulations, 
approximately half of its excitatory input was external 
stationary Poisson spike trains and half was excitatory 
feedback from other pyramidal cells in the network, the 
sole source of synchronized inputs. 

There was no external input onto the basket cells in 
our model. If we included such input network syn- 
chrony was degraded. Thus, although external inputs 
to a cortical column do contact inhibitory cells as well 
as pyramidal cells (Douglas and Martin, 1990), our 
results suggest that the vast majority of input to the 
inhibitory interneurons in a synchronized oscillating 
cell group comes from excitatory (pyramidal) cells in 
that same group. Alternatively strong external inputs 
to inhibitory cells may be correlated, either from the 
thalamus or other cortical regions, as long as they are 
synchronized with that column. 

Synchronization between Columns 

Zero-phase lag synchrony between two populations 
was established within one or two cycles following ac- 
tivation of the intercolumnar connections (Figs. 8 and 

13). Often the oscillation in one column would con- 
tinue unperturbed while a cycle in the other would be 
suppressed or a new one prematurely initiated to get 
the two columns in phase. Connections from the pyra- 
midal cells in a column to both the pyramidal cells 
and the basket cells in the other column were required. 
The greater effectiveness of inhibitory input in produc- 
ing synchronization (Lytton and Sejnowski, 1991) may 
explain the need for pyramidal-basket intercolumnar 
connections. Reciprocal connections were not strictly 
necessary: Two columns could be synchronized with 
uni-directional connections from one to the other (not 
shown), although the synchrony obtained with this con- 
nectivity was not as strong as with reciprocal connec- 
tions between the columns. 

One parameter that did have a large effect on syn- 
chrony between columns was the delay time (Fig. 
11). Our model predicts that two cortical areas can- 
not be synchronized by direct connections if the de- 
lay in those connections is significantly greater than 
5 ms (-l/4 period), in agreement with previous mod- 
els based on coupled oscillators (Schuster and Wag- 
ner, 1989; Sompolinsky et al., 1990). Interestingly, in 
the cat this does not appear to exclude any areas of 
cortex directly connected to each other, even if they 
are in opposite hemispheres. Time delays between 
cells in the same column, separated by tens of pm, are 
l-2 ms due to conduction along thin, unmyelinated ax- 
ons (Mason et al., 1991; Thomson et al., 1988). Time 
delays between cells in opposite hemispheres, sepa- 
rated by several cm, have been recorded at or below 
5 ms due to conduction along thick, myelinated axons 
(McCourt et al., 1990). It would appear that the ax- 
ons are organized to put cortical cells functionally next 
to each other. Thus, cells coupled by synchronization 
throughout the extent of the visual system can work on 
the same task simultaneously. 

However, the same is not true for the cortex of the 
rabbit, where callosal conduction times are tens of ms 
(Swadlow, 1991), too long for synchronization to work 
by direct connections. Thus, for this animal either there 
is some other mechanism of synchronization, or it does 
without synchronized 40 Hz activity of its two hemi- 
spheres. 

Our proposed mechanism of long-range synchro- 
nization relies on direct connections between the syn- 
chronized columns. Therefore, a demonstration of 
long-range synchrony persisting between 2 areas af- 
ter their direct connections have been cut would sug- 
gest that instead synchrony is maintained through other 
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pathways, for example common input from some sub- 
cortical source. 

The results shown in Figs. 12 and 13 are consistent 
with the hypothesis that the horizontal connections in 
neocortex serve a modulatory role; in this case they 
serve to synchronize cortical columns. The strong ef- 
fect of surround stimulation on a neuron that is also re- 
ceiving direct stimulation of its receptive field (Gilbert 
and Wiesel, 1990) is also consistent with a modula- 
tory role for the long-range horizontal connections. It 
should be noted that recent work has suggested that 
these connections can be strengthened under some con- 
ditions (perhaps by sprouting of extra axon collaterals) 
to the point where they can indeed drive cells in the ab- 
sence of other input (Darian-Smith and Gilbert, 1994; 
Pettet and Gilbert, 1992). 

Conclusion 

Synchronization in model cortical networks is a robust 
phenomenon resistant to variation in parameters that 
are known to show a wide degree of variation in cortex. 
As long as time delays are short enough, which in the 
cat seems to hold even across hemispheres, cells in any 
number of directly connected cortical regions could 
fire in synchrony with each other regardless of where 
they are located physically. Our model is incomplete 
in some respects, but the central role of inhibition in 
promoting synchronous activity is likely to be robust; 
indeed, inhibition has been shown to be crucial for 
synchronization in other related models (Kopell and 
LeMasson, 1994; van Vreeswijk et al., 1994). 
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