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Abstract
Cortical interneurons connected by gap junctions can provide a synchronized
inhibitory drive that can entrain pyramidal cells. This was studied in a
single-compartment Hodgkin–Huxley-type model neuron that was entrained
by periodic inhibitory inputs with low jitter in the input spike times (i.e. high
precision), and a variable but large number of presynaptic spikes on each cycle.
During entrainment the Shannon entropy of the output spike times was reduced
sharply compared with its value outside entrainment. Surprisingly, however,
the information transfer as measured by the mutual information between the
number of inhibitory inputs in a cycle and the phase lag of the subsequent output
spike was significantly increased during entrainment. This increase was due
to the reduced contribution of the internal correlations to the output variability.
These theoretical predictions were supported by experimental recordings from
the rat neocortex and hippocampus in vitro.

1. Introduction

The spike trains from neurons recorded from the cerebral cortex in vivo are highly variable
(see Shadlen and Newsome 1998). Similar spike trains can be studied in vitro by injecting a
fluctuating current at the soma or by stimulating afferent synaptic inputs (Stevens and Zador
1998, Harsch and Robinson 2000, Salinas and Sejnowski 2000). Despite high variability,
neurons can fire with high temporal precision and reliability (Berry et al 1997, Warland et al
1997, Reich et al 1997, Berry and Meister 1998, Buracas et al 1998, Bair 1999). Precision is
defined as the inverse of the temporal jitter in the spike times and reliability is a measure for
the reproducibility of spikes across trials. Precision and reliability are highest in vitro when
neurons are driven by an input containing high-frequency components (Mainen and Sejnowski
1995, Nowak et al 1997, Tang et al 1997, Warzecha et al 1998, Cecchi et al 2000) or in
response to a sinusoidal input current at ‘resonant’ frequencies (Hunter et al 1998, Fellous
et al 2001).
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Recent information-theoretical analyses of the neuronal spike trains in the fly (de Ruyter
van Steveninck et al 1997, Warzecha and Egelhaaf 1999) and in the cat lateral geniculate
nucleus (Reinagel et al 1999, Reinagel and Reid 2000) indicate that the precise spike times
contain more information about the input than the firing rate alone. The question of how the
information encoded by these precise spike times could be used in cortex is an open problem
(Shadlen and Newsome 1994, Softky 1995, Gur and Snodderly 1997, Shadlen and Newsome
1998, Oram et al 1999, Wiener and Richmond 1999).

A number of studies have examined how a periodic excitatory synaptic drive affects the
spikes of integrate-and-fire (IAF) model neurons (Gerstner et al 1996, Kempter et al 1998,
Burkitt and Clark 1999, 2000). The precision of IAF neurons driven by excitatory postsynaptic
potentials decreases with increasing input jitter and increases with the number of correlated
inputs (Burkitt and Clark 2000). In modelling studies (Lytton and Sejnowski 1991, Kistler
and van Hemmen 1999, Tiesinga and José 2000, Tiesinga and Sejnowski 2001) and a number
of experiments (Cobb et al 1995, Koos and Tepper 1999, Jaeger and Bower 1999, Gauck and
Jaeger 2000, Tamas et al 2000) inhibitory inputs were highly effective in controlling the precise
spike times of postsynaptic neurons. For example, the reliability and precision of cerebellar
neurons increased with the amount of correlation (or synchronization) and precision of the
inhibitory inputs (Gauck and Jaeger 2000).

Local cortical interneurons of the same type are connected by gap junctions (Galarreta and
Hestrin 1999, Gibson et al 1999, Beierlein et al 2000). As a result local interneuron networks
readily synchronize (Deans et al 2001, Hormuzdi et al 2001) and project synchronous inhibition
to principal cells and other interneurons. The putative function of synchronized inhibition is
an open question (Galarreta and Hestrin 2001a, 2001b, José et al 2001).

We investigate here how a varying inhibitory synaptic drive affects the information trans-
duction by a neuron. A biophysical model neuron with Hodgkin–Huxley-type currents is
used to study how information could be transmitted by the spiking activity of a synchronized
network of interneurons. Entrainment reduces the information capacity of the spike times, but
as we show here, it enhances the transmitted information as measured by the mutual informa-
tion between the input and the output spike times. The results of this theoretical analysis are
supported by recordings from neocortical and hippocampal neurons studied in vitro. Some of
these results were reported earlier in abstract form (Tiesinga et al 2001b).

2. Methods

2.1. Biophysical model

The model system consisted of a synchronized network of interneurons projecting via fast
GABAergic synapses to a single postsynaptic neuron (figure 1(a)). The postsynaptic neuron
could be either another interneuron or a regular or fast spiking neocortical pyramidal neuron.
The postsynaptic neuron was sufficiently depolarized to spike periodically in the absence of
synaptic inputs. The presynaptic network produced a periodic population discharge with
temporal jitter σin, although individual presynaptic neurons need not fire on each cycle
(figure 1(b)). The firing rate histogram (FRH) of the simulated interneuron network input
consisted of a periodic sequence (period T = 25 ms) of Gaussian probability density functions
with variance σ 2

in, mean (m + 1
2 )T , with m = 0, 1, . . . , and presynaptic firing rate fpre equal

to the FRH (bin width dt = 0.01 ms) summed over one second. A spike was generated when
a random number drawn from a uniform distribution between zero and unity at each time step
was smaller than or equal to the value of the FRH. In principle, a random number should be
generated each time step for each presynaptic neuron. Here we generated only five random
numbers each time step. This was a good approximation for the fpre values used here.
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Figure 1. Information encoding in neuronal spike trains. (a) Postsynaptic neuron (PN) receives
inputs from a synchronized network of inhibitory neurons (INT). A depolarizing drive to the
neurons simulates the effects of neuromodulators. (b) Individual presynaptic neurons (INT) fire at
a fixed average phase with temporal jitter σin and sometimes skip cycles. The postsynaptic neuron
produces a spike on each cycle when it is 1:1 entrained. (c) The number ni of active neurons in
cycle i is mapped onto the output spike phase φi in the next cycle. The mutual information between
the phases and the number of active input neurons is a measure of the information encoded in the
spike timing.

Samples of spike trains are shown in figure 1(b). The number ni of presynaptic pulses in
cycle i was variable and represented the signal to be transmitted. Its average value was npre =
fpre/(40 Hz) and when FRH � 1 the variance, σ 2

n , was also equal to npre. Each spike produced
an exponentially decaying conductance pulse in the postsynaptic cell, yielding a current
Isyn = gi exp(−t/ti)(V −EGABA). In this expression t is the time since the presynaptic pulse
arrival, ti = 10 ms is a decay constant, gi the unitary synaptic conductance, V the postsynaptic
membrane potential andEGABA = −75 mV is the reversal potential. In the simulationsfpregi =
5 mS cm−2 Hz and fpre was varied between 2.5 and 20 kHz (npre = 62.5–500), corresponding
to the activity of 100–1000 presynaptic neurons. The maximum total conductance per cycle
was between 0.1 and 0.5 mS cm−2, similar to values used previously (Wang and Buzsáki 1996).

The resulting train of conductance pulses drove a single-compartment neuron with
Hodgkin–Huxley-type voltage-gated sodium and potassium channels, a passive leak current,
the synaptic currents described above; an intrinsic noise source with variance 2D and an applied
current I0 representing the membrane depolarization caused by neuromodulators, such as, for
instance, acetylcholine (figure 1(a)). The intrinsic noise includes internal variability from
channel noise and other synaptic inputs uncorrelated with the inhibitory drive. A detailed
description of the model neuron is in the appendix and its implementation in the Fortran
programming language was given in Tiesinga and José (2000). This formulation accurately
represents the spike generation in fast and regular spiking cortical pyramidal cells (McCormick
et al 1985) and hippocampal interneurons (Wang and Buzsáki 1996). In the following gmax

and gi have units mS cm−2; I0 is in µA cm−2; fpre is in Hz; φi , σout, σin and T are in ms; ni ,
npre and σn are dimensionless.

2.2. Experimental details

Protocols for these experiments were approved by the Salk Institute Animal Care and Use
Committee and they conform to USDA regulations and NIH guidelines for humane care and
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use of laboratory animals. Coronal slices of rat pre-limbic and infra-limbic areas of prefrontal
cortex as well as transversal slices of hippocampus, were obtained from 2 to 4 weeks old
Sprague-Dawley rats. Rats were anaesthetized with metofane (Methoxyflurane, Mallinckrodt),
and decapitated. Their brains were removed and cut into 350 µm thick slices on a Vibratome
1000. Slices were then placed in a submerged chamber containing artificial cerebrospinal
fluid (ACSF, mM: NaCl, 125; NaH2CO3, 25; D-glucose, 10; KCl, 2.5; CaCl2, 2; MgCl2, 1.3;
NaH2PO4, 1.25) saturated with 95% O2/5% CO2, at room temperature. Whole-cell patch-
clamp recordings were achieved using glass electrodes containing 4–10 M�, mM: KMeSO4,
140; Hepes, 10; NaCl, 4; EGTA, 0.1; Mg-ATP, 4; Mg-GTP, 0.3; phosphocreatine, 14. Patch-
clamp was performed under visual control at 30–32 ◦C. In most experiments Lucifer Yellow
(RBI, 0.4%) or Biocytin (Sigma, 0.5%) was added to the internal solution in order to visualize
neurons after the recording session. In all experiments, NMDA synapses were blocked
by D-2-amino-5-phosphonovaleric acid (D-APV, 50 µM), AMPA synapses were blocked
by 6,7-dinitroquinoxaline-2,3-dione (DNQX, 10 µM), and GABAA synapses were blocked
by Biccuculine methiodide (Bicc, 20 µM). Bicc also partially blocked calcium-dependent
potassium channels. All drugs were obtained from RBI or Sigma, freshly prepared in ACSF
and bath applied. Data were acquired with Labview 5.0 and a PCI-16-E1 data acquisition board
(National Instrument), and analysed with MATLAB (The Mathworks) and Excel (Microsoft).
We used regularly spiking layer 5 pyramidal cells. Interneurons were recorded from cortical
layer 5/6 and stratum radiatum of hippocampus and were characterized by high firing rates,
no adaptation and prominent fast spike re-polarization. Both pyramidal cells and interneurons
were identified morphologically.

Current was injected into the neuron to mimic the effect of a synaptic drive. Each trial
lasted between 2000 and 4000 ms. The presynaptic spike train was generated as in the model
simulations. Each presynaptic spike generated an exponentially decaying hyperpolarizing
current pulse with amplitude A/npre that simulated the effect of an inhibitory postsynaptic
potential. We varied A between 0.1 and 0.2 nA and npre between 5 and 200. A depolarizing
constant current was added to make the neuron spike in the presence of the hyperpolarizing
pulses. The average injected current, a, was constant (a typical value was between 0.05 and
and 0.12 nA) for the different values of npre used during the recording session. The injected
current was calculated off line and supplied to Labview as a computer file with a sampling rate
of 10 kHz. A gain factor G was adjusted on line to make the neuron spike once on each cycle,
that is 1:1 entrainment. In some cases 1:1 entrainment could not be reached with the neuron
still generating action potentials that exceeded 20 mV. The gain G was between 1 and 4.5.

2.3. Information-theoretical analysis

The neuron maps a particular value of ni into a spike phase φi (figure 1(c)). The spike phase
φ is the spike time modulo T . We calculated the entropy Sn of the input distribution Pn (the
bin width was 1) and the entropy Sφ of the phase histogram Pφ (with a bin width of 1 ms),

Sn =
∑
i

Pn(i) log2 Pn(i), (1)

Sφ =
∑
j

Pφ(φ̂j ) log2 Pφ(φ̂j ), (2)

where φ̂j = j + 1
2 is the centre of the j th bin, and j = 0, 1, . . . , 24.

The mutual information per spike was (Shannon and Weaver 1949, Cover and Thomas
1991)

Mnφ = Sn +
∑
j

[
Pφ(φ̂j )

∑
n

Pnφ(n|φ̂j ) log2 Pnφ(n|φ̂j )
]
,
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and measured, on average, how much the uncertainty in the input was reduced by knowing
the output (Buracas and Albright 1999, Borst and Theunissen 1999). The joint probability
distribution Pnφ was obtained by counting the data points (φi, ni), i = 1, 2, . . . , in a two-
dimensional set of bins (bin size was 1 ms by 1). The sampling error in Mnφ was estimated
as the mutual information between n and φ, when drawn independently from their respective
marginal distributions, Pn and Pφ , using the same number of data points as for Mnφ itself.
Other authors have used a reconstruction method to estimate Mnφ (Rieke et al 1997, Wessel
et al 1996). Their method yields a lower bound for Mnφ , whereas the expression used here is,
in principle, exact. The transmitted information for a given set of parameters, I0, σin, fpre and
D, cannot exceed the minimum, Smin, of Sφ and Sn. Hence, when either Sn or Sφ is zero at
the specified bin width, the signal is not transmitted by the neuron. This happened when the
output jitter was much smaller than the bin width so that all spike phases fell in one bin. The
bin width of 1 ms used here is consistent with previous results on typical spike-time precisions
(Mainen and Sejnowski 1995, Reinagel and Reid 2000). The maximum of Smin averaged over
all input distributions Pn is an upper bound of the channel capacity. The output jitter σout was
defined as the standard deviation of the phase distribution and the firing rate was the inverse
of the average interspike interval.

A similar information-theoretical analysis was applied to the experimental recordings. The
output spike phase φi and the number ni of input spikes were pooled together across different
trials after discarding a transient. The length of the transient, between 200 and 1000 ms,
was determined by visual inspection of the intracellular voltage recordings and the rastergram
(defined below). In some cases the length of the transient was varied to assay the robustness
of the measured statistics. The bin width for the phase distribution was between 1 and 4 ms so
that the sampling error did not exceed 50% of Mnφ . The bin width was 1 ms (as in the model
simulations) whenever possible. When the number of different values of ni observed during a
run was less than ten, each different value was assigned to a different bin. Otherwise the range
between the minimum and maximum value of ni was divided into ten bins of equal size. To
gain qualitative insight in the mutual information we also plotted the conditional average 〈n〉
and its standard deviation for a fixed output phase.

The firing rate was calculated as the number of spikes per trial, excluding the transient,
divided by the remaining length of the trial. Each spike was plotted as a small tick in the
rastergram, the x-ordinate was the spike time and the y-ordinate the trial number. The FRH
was determined with a bin width equal to the cycle length. Its value was the number of trials
in which a spike was obtained during that cycle. The FRH, averaged over all cycles, yielded
an estimate of the spike-time reliability.

3. Results

3.1. Dynamics of a neuron driven by noisy periodic spike trains

A neuron driven by a periodic force can become entrained. Consider, for instance, a neuron
driven by a sinusoidal current, Isin(t) = I0 + If cos 2πfdt , with If = 1.0 µA cm−2 and
fd = 40 Hz. The firing rate f versus current, I0, curve was characterized by steps on which f
was constant and equal to p

q
fd for a range of I0 values (figure 2(a)i). The neuron produced p

spikes per q periods and the output spike train repeated itself after q cycles. In this study the
neuron was driven by noisy presynaptic inhibitory spike trains. Noise is in general detrimental
to phase locking. For the values of σin and fpre used here, only the 1:1 and higher order integer
steps (q = 1) remained (figure 2(a)ii). Here the 1:1 steps were used to explore information
transduction.
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Figure 2. Entrainment of the model neuron as the amplitude I0 of the current injection is varied.
(a) Comparison between i, a sinusoidal current with amplitude If = 1.0 µA cm−2 and frequency
fd = 40 Hz; and ii, noisy synaptic drive with npre = 62.5, σin = 1 and gi = 0.002. Averages are
over 4000 cycles, after discarding a transient of 40 cycles. (b) Dynamics of a 1:1 entrained neuron
driven by noisy presynaptic spike trains. i, σout; ii, Sφ ; iii, Mnφ , and iv, Mφφ versus current I0.
Parameters: T = 25, σin = 1 (indicated by the dot–dashed line in i), and (solid curves) npre = 250
and gi = 0.0005, (dashed curves) npre = 62.5 and gi = 0.002. Averages are over 2 × 104 cycles,
after discarding a transient of 20 cycles. Arrows are discussed in the text.

3.2. Improved information transduction on the entrainment step

For the synaptic strength used here the output jitter σout was smaller than the input jitter σin

only on entrainment steps. An example is shown in figure 2(b) for σin = 1 and npre = 250. At
I0 = 1.1, σout was still above 5 ms (solid curve in figure 2(b)i). Increasing the current drove
the neuron into entrainment, and σout dropped to below σin = 1 ms (σin is the dot–dashed
curve in figure 2(b)i). The output entropy, Sφ , is closely related to the width of the spike-
phase distribution, and it dropped from 4.2 bits to less than 1.5 bits per spike (solid curve
in figure 2(b)ii). The mutual information Mnφ , however, went from a value close to zero, to
approximately one bit per spike (figure 2(b)iii). The coding fraction Cnφ = Mnφ/Sφ went
from close to zero to about 60% (data not shown). To investigate this further, the map of the
output spike phase, φ, versus the number of inputs per cycle, n, when the neuron was entrained
was compared to the map for currents off the entrainment step (figure 3).

Because a given φ was reached from a large range of n values off the entrainment step
(figure 3(a)), a particular φ value revealed little about the input that produced it and the
mutual information was low (open arrow in figure 2(b)iii). During entrainment the input n
was mapped onto a small range of φ values (figure 3(b)) leading to higher precision (filled
arrow in figure 2(b)i). Furthermore, the observed value of φ varied linearly with the input n
(figure 3(b)). When φ is observed, the uncertainty about the input is reduced and the mutual
information is increased (filled arrow in figure 2(b)iii).

The mutual informationMφφ between the phase φi in the present cycle and φi+1 in the next
cycle quantifies the reduction in the uncertainty about the next phase given the present phase.
The return map, φi → φi+1, is shown in figures 3(c) and (d). During entrainment the observed
phases were approximately independent and the mutual information was close to zero (filled
arrow in figure 2(b)iv). The spike phase fluctuated around a well defined average and the
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Figure 3. Comparison between neuronal spike
timing in entrained (b), (d) and non-entrained
(a), (c) states. The map φi → ni (a), (b), and
the return map φi → φi+1 (c), (d) are shown.
Here (a), (c) I0 = 1.075, and (b), (d) I0 = 1.195.
npre = 500, gi = 2.5 × 10−4 and σin = 1.

return map was a compact cluster of points (figure 3(d)). In contrast, without entrainment the
points in the return map were spread out over all possible values of the phase (figure 3(c)). A
given value of φi mapped onto a distribution of φi+1 values that was different from the total
distribution (and also had a different mean). The mutual information of this distribution could
be higher than one bit per spike (open arrow, figure 2(b)iv).

Simulations were also performed for a smaller number of presynaptic inputs, npre = 62.5.
The unitary strength of the inhibitory conductance was increased by a factor of four so that
the total injected conductance remained the same. The output jitter was again reduced during
entrainment compared with outside entrainment (dashed curve in figure 2(b)i). However,
it remained larger than the input jitter σin = 1 ms. The output entropy, Sφ , transmitted
information, Mnφ , and mutual information Mφφ during entrainment were increased compared
with their values for npre = 250 (dashed and solid curves in figures 2(b)ii–iv, respectively).
The behaviour of the transmitted information as a function of npre is studied in the next section.
Note that outside entrainment Mφφ was reduced compared with its value for npre = 250.

3.3. Information transduction depends on σin and npre

We have varied the average number of input pulses per cycle, npre, such that the average total
synaptic conductance, proportional to npregi , stayed constant: when npre was increased, gi
decreased as 1/npre. For large values of npre, Pn had approximately a Gaussian probability
distribution with variance npre and entropy Sn proportional to log2 npre (Shannon and Weaver
1949). The relative variations σn/npre in the number of presynaptic pulses per cycle decreased
as 1/

√
npre and consequently σout and Sφ decreased with increasing npre (figure 4(a)). The

mutual information Mnφ had an optimum as a function of npre (figure 4(b)).
The decrease of Mnφ at large npre occurs because the biophysical size of the signal the—

conductance change—is reduced for higher npre, while the strength of input jitter stays the
same. It becomes more difficult to distinguish the signal-induced jitter from the noise-induced
output jitter at the resolution set by the bin width.

Smallnpre values yielded large relative fluctuations#ni/npre in the input (#ni = ni−npre),
leading to a large value of σout. The resulting nonlinear phase dynamics tended to reduceMnφ .
For even larger positive #ni/npre, the neuron might not spike on the next cycle or could spike
twice in the same cycle for large negative #ni/npre. It took a number of cycles for φi to
converge back to its stationary value, leading to long-time correlations between the phases,
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Figure 4. Dependence of information transfer of a model neuron on input spike train parameters.
(a), (d), (g) Output entropy Sφ ; (b), (e), (h) mutual informationMnφ and (c), (f ), (i) coding fraction
Cnφ as a function of (a)–(c) the number of input spikes npre; (d)–(f ) input jitter σin and (g)–(i)
intrinsic noise strength D. Parameters were (a)–(c) I0 = 1.2, σin = 1, and D = 0; (d)–(f )
npre = 62.5, I0 = 1.35, andD = 0; (g)–(i) npre = 62.5, I0 = 1.25, and σin = 1. In (d)–(f ) dashed
curves are results for synaptic saturation at gmax = 0.1; solid curves are results without synaptic
saturation effects (the default). In (b), (e) the sampling errors are smaller than the symbol size;
in (h) they are indicated by the error bars. Averages are over 40 × 103 cycles after discarding a
transient of 40 cycles.

hence Mnφ was reduced even further. This accounts for the increase in Mnφ when npre is
increased for small values of npre (figure 4(b)).

As the input spike-time jitter, σin, was increased, the transduced information, Mnφ and
Cnφ , was reduced, even though Sφ increased (solid curves in figures 4(d)–(f )). For large values
of σin the neuron missed spikes during some cycles, or spiked twice on other cycles, further
reducing Mnφ , as discussed before. When intrinsic noise—noise unrelated to the synaptic
input—was added to the neuron, Mnφ and Cnφ decreased, while Sφ increased, with increasing
noise strength D (figures 4(g)–(i)).

Limited synaptic resources might affect information transduction. We have modelled the
effect of whole-cell synaptic saturation by imposing a maximum synaptic conductance gmax.
Additional presynaptic spikes were ignored when the synaptic conductance exceeded gmax.
For gmax = 0.1 this happened when more than 50 spikes arrived simultaneously. Hence, for
npre = 62.5, the mutual information was reduced for small presynaptic input jitter (dashed
curve in figure 4(e)). This led to an optimum value for Mnφ at σin = 3 and for Cnφ at
σin = 2.25 (dashed curves in figures 4(e) and (f )). Noise in the form of presynaptic input jitter
can therefore improve signal transduction.
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Figure 5. Linear map predicts the phase dynamics of a 1:1 entrained model neuron. (a) Observed
phase deviation #φi+1 (solid circles) and predicted value, #φi/τ + α#ni (open squares), as a
function of cycle index i. (b) Histogram of the difference ηi between observed and predicted value.
(c) The autocorrelation of ηi as a function of time-lag#i. Model data as in figure 3(b), α = 0.0177,
τ = 3.70, σn = 19 and ση = 0.036.

3.4. Information transmission in the linear-map approximation

The dynamics of the phase on the entrainment step (see figure 3(b)) could be approximated by
a linear map:

#φi+1 = 1

τ
#φi + α#ni + ηi. (3)

Here #φi = φi − 〈φ〉, #ni = ni − npre, α and τ are dimensionless constants. τ represents
the correlation between consecutive spike phases. Stronger correlations mean a smaller value
of τ . ηi is the difference due to input jitter and intrinsic noise between the observed phase
#φi+1 and the predicted value #φi/τ + α#ni . In the linear-map approximation it is replaced
by a phenomenological noise source with variance σ 2

η .
The phenomenological constants α and τ were estimated using the procedure given in

the appendix. For the map shown in figure 3(b), α = 0.0177, τ = 3.70, σn = 19 and
ση = 0.036. Note that in terms of the parameters of the model simulations, the variance α2σ 2

n

varied as 1
npre

and the variance σ 2
η of ηi increased with both D and σin. The map describes

how a given deviation of #φi is driven back to the ‘fixed point’, #φ = 0, in the absence of
input fluctuations, #ni = 0. The observed spike phase #φi+1 was close to the predicted value
(figure 5(a); solid circles are the simulation results, squares are the linear-map approximation
with ηi = 0). The difference ηi between the predicted and observed value was approximately
normally distributed (figure 5(b)) and approximately uncorrelated between different cycles
(figure 5(c)).
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Figure 6. Information transmission in the linear-map approximation. The standard deviations σ ,
entropies S and coding fractions C are plotted as a function of (a) τ , (b) α and (c) ση . In each
panel, i, σout (solid curves), σnφ (dashed curves) and σφφ (dot–dashed curves); ii, Sφ (solid curves),
Mnφ (dashed curves) and Mφφ (dot–dashed curves); iii, Cnφ (dashed curves) and Cφφ (dot–dashed
curves), were plotted. The map parameters were σn = 20,# = 0.1, (a)α = 0.0177 and ση = 0.03;
(b) τ = 3.70 and ση = 0.03; (c) α = 0.0177 and τ = 3.70.

The analytical predictions for the mutual information based on the linear map are derived
in the appendix. The entropy Sφ (equation (10)), transmitted information Mnφ (equation (12))
and mutual informationMφφ (equation (13)) were expressed in terms of σout (the output jitter),
σnφ (the jitter in #φi+1 conditional on ni) and σφφ (the jitter in #φi+1 conditional on #φi).
The coding fractions Cnφ = Mnφ/Sφ and Cφφ = Mφφ/Sφ were also determined. The above
quantities were studied as a function of the linear-map parameters α, ση and τ . The results are
shown in figure 6 and are summarized below.

The effect of correlations, τ . The variances σ 2
out and σ 2

nφ decreased with increasing τ , whereas
σ 2
φφ was constant (figure 6(a)i). The output entropy Sφ and mutual information Mφφ also

decreased with increasing τ (figure 6(a)ii). Since σnφ decreased faster with τ than σout, the
transmitted information Mnφ increased with increasing τ (figure 6(a)ii). By the same token
the coding fraction Cnφ increased, whereas Cφφ decreased with increasing τ (figure 6(a)iii).
Consecutive phases are less correlated for higher τ values. Therefore, in the linear-map
approximation information transmission increased when phase correlations decreased.

Signal size α. The variances σ 2
out, σ

2
nφ and σ 2

φφ all increased with increasing α when σn was
kept constant (figure 6(b)i). The output entropy Sφ and transmitted information Mnφ also in-
creased with increasingα, whereasMφφ remained constant (figure 6(b)ii). The coding fractions
Cnφ and Cφφ both decreased with increasing α (figure 6(b)iii). As mentioned before, ασn ∼
1/

√
npre. Increasing the biophysical size of the signal, α, increased the absolute amount of

transmitted information, but not necessarily the efficiency as measured by the coding fraction.
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The effect of noise, ση. The variances σ 2
out, σ

2
nφ and σ 2

φφ all increased with increasing ση
(figure 6(c)i). As a result the output entropy Sφ increased, the transmitted information Mnφ

decreased and Mφφ remained constant with increasing noise strength ση (figure 6(c)ii). The
coding fractionsCnφ andCφφ both decreased with increasingση (figure 6(c)iii). Noise therefore
decreased the amount of transmitted information, as expected.

3.5. Experimental results

The information-theoretical analysis was applied to experimental data from rat prefrontal cortex
and hippocampal neurons recorded in vitro. A current waveform was injected in the soma to
mimic the synaptic inputs generated by a synchronized network of interneurons (figure 1(b)
and methods). Briefly, presynaptic spike times were generated as in the model simulation.
Each presynaptic spike induced a hyperpolarizing current pulse. The injected current was
the sum of all hyperpolarizing pulses plus a depolarizing offset current to give the neuron
maintained activity.

A representative intracellular voltage recording and the corresponding injected synaptic
current for 〈ni〉 = npre = 5 are shown in figure 7(a)i and ii. For this input the relative
fluctuations in ni were large, approximately 44%. The neuron often skipped a cycle. However,
when a neuron spiked it did so reliably in all 11 trials; it also reliably skipped the same cycles
across different trials (figures 7(a)iii and iv). The precision was low, σout = 4 ms, and the phase
histogram Pφ was broad (figure 7(a)v). The conditional average 〈n〉 of the number of input
pulses increased monotonically with φ, since the larger the inhibition, the later the neuron fired
(figure 7(a)vi). The mutual information was Mnφ ≈ 1.27 ± 0.23 bits. There were correlations
between consecutive spike phases observed in the φi+1 versus φi scatter plot (figure 7(a)vii)
and Mφφ = 0.64 ± 0.48 bits.

For a higher average presynaptic input frequency, npre = 50, the injected synaptic current
and the intracellular voltage recording were more regular (figures 7(b)i and ii). The neuron
rarely skipped cycles: only three out of 76 cycles (figure 7(b)i). The spiking was reliable
(figures 7(b)iii and iv) and precise (figure 7(b)v). The output jitter, σout, was approximately
equal to the input jitter, σin = 1 ms. The conditional average 〈n〉 increased linearly with φ
(figure 7(b)vi). The consecutive spike phases were less correlated compared with npre = 5,
with Mφφ = 0.16 ± 0.06 bits, and the scatterplot (figure 7(b)vii) had one compact cluster of
data points.

The firing rate increased with npre towards the 1:1 entrained value of f = 40 Hz
(figure 8(a)), while at the same time the output jitter was reduced to about 1 ms (figure 8(b)).
The mutual information decreased with increasing npre, confirming the model prediction in
figure 4(b). As the neuron became more entrained the correlations between consecutive spike
phases were reduced, consistent with the results in figure 2(b)iv.

Based on figure 4(b), it was expected that Mnφ would increase with increasing npre, for
small npre. In figure 8(c), there is a plateau for npre between 4 and 20, but no clear sign of an
optimum value.

The above results were obtained by repeatedly injecting one time series corresponding to
the presynaptic drive for a given npre value. The variance in f , σout, Mnφ and Mφφ across five
different time series (figure 9) was determined using three different neurons. The firing rate
was approximately the same for npre = 10 and npre = 50, though its value varied between
different neurons (figure 9(a)). However, as before, σout, Mnφ and Mφφ decreased with npre

(figures 9(b)–(d)). The standard deviation due to different time series was smaller than the
estimated sampling error in two out of three neurons, but was larger in neuron 1 in figure 9.
Thus, the results for one time series for the synaptic drive should be representative for the
ensemble of possible time series within the sampling error.
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Figure 7. Regular spiking of a rat hippocampal interneuron driven by a simulated synaptic drive
from a network of inhibitory interneurons firing at 40 Hz with input jitter σin = 1 ms, with (a)
npre = 5 and (b) npre = 50. In each panel, i, intracellular voltage; ii, injected synaptic current
divided by gain G; iii, rastergram; iv, firing rate histogram (FRH) versus time; v, phase histogram
Pφ ; vi, conditional average 〈n〉 versus phase φ, and vii, scatterplot of φi+1 versus φi . Gain G = 3,
current amplitude A = 0.2 nA, average current a = 0.05 nA (see methods).



Information transfer in entrained cortical neurons 53

1 10 100
npre

0

1

 M
φφ

 (
bi

ts
)

0

1

 M
nφ

 (
bi

ts
)

0

2

4

σ ou
t (

m
s)

28

33

38
f 

 (
H

z)

(a) (b)

(c) (d )

npre

1 10 1001 10 100

Figure 8. Summary statistics of the data from the hippocampal neuron shown in figure 7 over a
wider range of npre values. (a) firing rate f , (b) output jitter σout and mutual information (c) Mnφ

and (d) Mφφ as a function of the average number of pulses per cycle, npre. The error bars in (a)
and (b) are the standard deviation across different trials; those in (c) and (d) represent the estimate
of the sampling error. A transient of 200 ms was discarded before analysis; the bin width for the
phase histogram was 1 ms.

10 50 10 50 10 50
npre

0

0.8

 M
φφ

 (
bi

ts
)

0

0.8

 M
nφ

 (
bi

ts
)

1

4

σ ou
t (

m
s)

10

25

f 
 (

H
z)

1

2
3

(a) (b)

(c) (d )

npre

10 50 10 50 10 50

Figure 9. Variance in the measured quantities due to different patterns of current injection: (a)
firing rate f , (b) output jitter σout and mutual information (c) Mnφ and (d) Mφφ for npre = 10 and
50. The error bars are the standard deviation over five different time series for the input synaptic
drive. Results from three different neurons, labelled 1–3. A transient of 500 ms was discarded and
the phase bin width was 2 ms. The gain G, amplitude A and average a of the current drive were
1, (G, A, a) = (4.5, 0.10 nA, 0.05 nA), 2, (2.0, 0.10 nA, 0.07 nA), 3, (1.5, 0.10 nA, 0.07 nA).

Interneurons could also be 1:1 entrained to a 20 Hz synaptic drive (figure 10). The neuron
fired at 20 Hz fornpre values between 5 and 200. There was a pronounced afterhyperpolarization
following each action potential (figure 10(a)). The transmitted information was small, Mnφ

was between 0.2 and 0.4 bits with an estimated sampling error of 0.2 bits, and the correlation
between consecutive phases was large, Mφφ was between 1 bit and 1.5 bits with an estimated
sampling error of 0.8 bits. The variation of the conditional average 〈n〉 versus φ was small
compared with its standard deviation (shown as error bars in figure 10(f )). The φi versus φi+1

plot (figure 10(g)) had an elongated shape compared with the compact cluster in figure 7(b)vii.
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Figure 10. Dynamics of a hippocampal interneuron 1:1 entrained to a 20 Hz input current injection
with gain G = 3.0, amplitude A = 0.10 nA, average a = 0.07 nA and npre = 200. The quantities
plotted are as described in the caption to figure 7.

The time constant of the GABAergic inhibition, ti = 10 ms, was too small compared with
the interspike interval to determine the spike times with high precision. As a result the phase
could precess from cycle to cycle, which yielded an increased output jitter that overwhelmed
the signal-induced jitter. Similar results were obtained for two other neurons driven by a 10 Hz
synaptic drive (not shown).

Interneurons could be entrained to a 40 Hz synaptic drive at ratios different from 1:1
(figure 11). The intracellular voltage recordings for npre = 200 were approximately periodic
for t > 1000 ms; the neuron then produced two spikes per three cycles (figure 11(a)i). The
conditional average 〈n〉 did not vary with φ within the standard deviation (figure 11(a)vi). The
φi+1 versus φi scatterplot consisted of two separate clusters (figure 11(a)vii); this deterministic
structure yielded a non-zero value of Mφφ (figure 11(b)iv). The large correlations between
consecutive spike phases were due to 2:3 entrainment and led to a large non-signal-related
variance in the spike phase, which resulted in a low value of Mnφ (figure 11(b)iii). This is
consistent with the model result outside 1:1 entrainment in figure 3(c). The output jitter was
close to 2 ms for npre values between 5 and 200, while the firing rate increased from 26 to
about 29 Hz (figure 11(b)i and ii). For these npre-values the transmitted information was small,
Mnφ ≈ 0.1 bits, but Mφφ took values close to 0.5 bits per spike (figures 11(b)iii and iv).

Synaptic drives with an input jitter σin varying between 1 and 5 ms were injected into
four different hippocampal interneurons and one in prefrontal cortex. 1:1, 1:2 and 2:3
entrainment was observed. Three out of five neurons had a pronounced depolarizing sag after
a hyperpolarizing current pulse (possibly due to an h current) and therefore a transient of up to
1000 ms was discarded before analysis. During the transient neurons could be 1:1 entrained.
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Figure 11. Dynamics of a hippocampal interneuron approximately 2:3 entrained to a 40 Hz input
current injection with gainG = 2.5,A = 0.10 nA and a = 0.07 nA. (a) Results for npre = 200; the
quantities plotted are as described in the caption to figure 7. (b) i, Firing rate f , ii, output jitter σout ,
and mutual information iii, Mnφ , and iv, Mφφ , were plotted as a function of the average number of
pulses per cycle, npre. The error bars in i and ii were the standard deviation across different trials,
those in iii and iv represented the estimated sampling error. A transient of 500 ms was discarded
before analysis and the phase bin width was 1 ms.
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Figure 12. The input jitter decreases the firing rate and increases the output jitter in a prefrontal
cortex interneuron. i, Firing rate f , ii, output jitter σout , and mutual information iii, Mnφ , and iv,
Mφφ , as a function of the input jitter σin for (a) npre = 10 and (b) npre = 20. The error bars in i
and ii were the standard deviation across the 17 trials; those in iii and iv represented the estimated
sampling error. The transient was 200 ms, phase bin width was 3 ms, drive frequency was 40 Hz,
the gain G = 1.2, amplitude A = 0.1 nA and average a = 0.1 nA.

Figure 12 shows the results for an 1:1 entrained interneuron in prefrontal cortex. The
effective amplitude of the injected synaptic drive—the difference between maximum and
minimum input current—decreased with increasing σin, but the tonic hyperpolarizing current
increased. As a result, the firing rate decreased (figures 12(a)i and (b)i), whereas the output
jitter increased (figures 12(a)ii and (b)ii) with σin. Similar results were found for the model
(not shown). The transmitted information was small, Mnφ < 0.3 bits, and Mφφ was between
0.6 and 1.0 bits. For npre = 10, Mnφ increased marginally with σin (figure 12(a)iii), whereas
for npre = 20 it remained approximately constant (figure 12(b)iii). In both casesMφφ remained
constant, but the sampling error in Mφφ increased with σin.

4. Discussion

The goal of this study was to determine how well an entrained neuron can convey the number of
inhibitory postsynaptic potentials in a cycle in the phase of the output spike. The output entropy
is not a good indicator of the transmitted information. Indeed, outside 1:1 entrainment the out-
put entropy is high and the mutual information is low, whereas during entrainment the output
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entropy is small, but the mutual information has increased. The mutual information limits the
maximum amount of information any postsynaptic neuron can infer about the presynaptic input
to the emitting neuron. Off the entrainment step, the neuron has a high information capacity,
but relatively little of it is about the emitting neuron’s input. During entrainment, the emitting
neuron produces a small amount of information, but most of it is ‘useful’. The neuron can thus
be in two states: one in which the phase variation from cycle to cycle reflects the variation in the
input, and one in which the variation mostly reflects the internal correlations. Decreasing or in-
creasing the current drive can switch the neuron from the entrained state to a non-entrained state.

During entrainment on the 1:1 step a neuron produces one spike per cycle of the input
(Longtin and Chialvo 1998, Coombes and Bressloff 1999, Tiesinga and Sejnowski 2001) and
the output jitter is reduced (Hunter et al 1998). If the goal is to transmit the period of the
signal with high fidelity, then the output jitter, which represents the distortion of the signal,
can be further reduced by reducing σin and increasing npre, leading to perfect transmission
at σin = 0 and npre → ∞. Therefore, for transmitting periodicity, entrainment and optimal
signal transmission are equivalent. Here, however, the goal was to transmit information about
the state of the inhibitory network driving the neuron. The periodicity of the presynaptic drive
is the carrier wave and the signal is the presynaptic activity ni . The output jitter contains the
transmitted information and is not merely output noise. The mutual information between n
and φ attains an optimal value at a finite value of npre. Increasing npre to large values would
ultimately lead to zero information transmission (figure 4(b)). Mnφ also attains its optimum
for non-zero σin when there are synaptic saturation effects. Therefore, optimal information
transmission is not simply equivalent to being entrained, in contrast to the aforementioned task.

The model predictions were supported by in vitro experiments in cortex and hippocampus.
First, neurons could be 1:1 entrained to a periodic synaptic input and could spike with
higher precision compared with their input. Second, information transmission decreased
with decreased input signal amplitude. Third, internal correlations and input spike-time jitter
reduced information transmission.

There were also some differences between the model simulations and experiments. For
zero intrinsic noise, the transmitted information increased in model simulations when the
mutual information Mφφ decreased (figures 2(b)iii and iv). This relation was observed in
experiment in figures 10 and 11, but not in figures 8 and 9. Two factors could potentially
account for these differences. First, noise reduced the value of Mφφ (data not shown) and
also reduced Mnφ (figure 4(h)). Hence, Mnφ and Mφφ depended on both correlations as well
as noise levels. In model simulations and the linear-map approximation these two factors
could be varied independently in order to delineate their effects. This was not possible in
experiments since intrinsic noise could covary with changes in the injected current. Second,
sampling errors were more difficult to control due to the small number of trials in experiment.
This made comparison of the behaviour of Mnφ and Mφφ difficult.

The model neuron was driven by inhibitory conductance pulses, whereas in experiment
the neuron was driven by an injected current that did not depend on the neuron’s voltage.
In preliminary experiments where periodic inhibitory conductance pulse trains were injected
using dynamic clamp (Sharp et al 1993), neurons became entrained to the drive and transmitted
information in their phase (data not shown). We did not make a detailed quantitative comparison
between experiments with current injection and conductance injection to see whether this could
account for some of the differences seen between experiment and model. Cortical neurons
in vivo receive a barrage of excitatory and inhibitory synaptic inputs. Model simulations
(Tiesinga et al 2000) and experiments using dynamic clamp (Destexhe et al 2001) indicate
that the in vivo dynamics of the neuron is very different from that under in vitro conditions.
Most of the experimental results reported here were for interneurons because it was easier
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to 1:1 entrain them to a 40 Hz drive. This is consistent with recent results on the frequency
preferences of interneurons compared with pyramidal cells (Fellous et al 2001, Protopapas and
Bower 2001). Under in vivo conditions the membrane time constant of neurons is reduced.
It is therefore possible that under these conditions pyramidal cells could become entrained to
40 Hz inhibition. However, it remains an open question how the reported effects on information
transmission carry over to in vivo conditions.

Interneuron networks synchronize in the gamma frequency range between 30–80 Hz
(Traub et al 1996a, Wang and Buzsáki 1996). We studied information transmission in the
presence of synchronized inhibition at 40 Hz, but our results were robust against small changes
in frequency (not shown). A key requisite in our study was that neurons could become entrained
to the inhibitory drive. This occurred when the following three conditions were satisfied. First,
the neuron should be depolarized enough in order to fire at approximately 40 Hz in the presence
of inhibition. Second, the input frequency should be close to the inverse of the synaptic decay
time constant (White et al 1998, Wang and Buzsáki 1996). Third, the noise strength should
be small enough. Noise consisted of the input jitter σin, the variance σ 2

n in the number of
presynaptic pulses (the signal in our analysis), and intrinsic noise with strengthD. In the model
the driving current was important in determining whether a neuron would be entrained. The
difference in entrainment behaviour between pyramidal cells and interneurons in experiment
indicates that the membrane time constant and duration of the afterhyperpolarization may
also be important factors. These issues are presently being addressed using more detailed
biophysical models (Houweling et al 2001).

The model and experimental results presented here are related to earlier experimental
results where a synchronized inhibitory synaptic drive was injected in cerebellar neurons using
dynamic current clamp (Gauck and Jaeger 2000). However, in their case the synaptic strength
was stronger than in our model. For stronger synapses in the model, we also reproduced their
finding that increasing input jitter could reduce the firing rate (José et al 2001).

The temporal jitter in the discharge of LGN neurons can be as low as 0.6 ms (Reinagel
and Reid 2000). The mutual information between input and output increased with decreasing
temporal resolution up to 0.6 ms and could reach values as high as three to four bits per
spike with Cnφ ≈ 0.5 (Reinagel and Reid 2000). This is comparable to our values of one
to two bits per spike with Cnφ ∼ 0.6, for a bin width of 1 ms on the entrainment step. The
estimate for the transmitted information could increase by 25% when the mutual information
between the input and patterns consisting of multiple bins was calculated (Reinagel and Reid
2000; see also Brenner et al 2000, Eguia et al 2000, Tiesinga 2001, Chacron et al 2001).
In our model, entrainment enhances information transmission by making spike phases more
independent. Therefore, considering multiple consecutive phases instead of a single phase
would not increase the mutual information. During entrainment each spike phase yields within
one cycle an estimate for the input, and there is no need to wait for more cycles to complete
the estimate.

In the bee and locust olfactory systems, Laurent and co-workers have shown that different
odours activate overlapping ensembles of projection neurons (Laurent and Davidowitz 1994).
The 20 Hz periodic discharge of the ensembles is coherent on a cycle-by-cycle basis and
information about the odour is contained in the temporal firing pattern of projection neurons
(Wehr and Laurent 1996). Synchronization of the projection neurons can be abolished by
applying picrotoxin without changing the low-frequency temporal pattern (MacLeod and
Laurent 1996). This desynchronization was shown to impair the ability of bees to distinguish
two closely related odours (Stopfer et al 1997), and subsequently a population of neurons was
found that was sensitive to the synchronization of projection neurons (MacLeod and Laurent
1998). The ability of the population to distinguish between two similar odours, based on their
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spike trains, was reduced following desynchronization. A dynamical model of the antennal
lobe based on Hodgkin–Huxley-type neurons reproduced these observations and demonstrated
how synchronization can improve the odour discrimination of the network (Bazhenov et al
2001a, 2001b).

Tonic activation of local interneuron networks in hippocampal slices produces a
synchronous inhibitory synaptic drive to pyramidal cells in the gamma frequency range
(Whittington et al 1995, Wang and Buzsáki 1996, Traub et al 1996a, White et al 1998, Tiesinga
and José 2000, Tiesinga et al 2001a). These interneuron networks may also be responsible for
the long-range coherence of gamma oscillations (Traub et al 1996b). The same mechanism
can generate gamma oscillations in cortical networks (Bush and Sejnowski 1996). It has been
proposed that interneuron networks provide a clock signal to cortical principal cells, with the
information embedded in the temporal sequence of action potentials (Buzsáki and Chrobak
1995). During entrainment the output phase of the neuron is more sensitive to small changes
in the input. Here, we investigated the situation when both periodicity as well as the signal was
in the inhibitory drive. However, the same sensitivity of output phase is present in response
to small changes in excitatory inputs. Hence, the results reported here may be more widely
applicable. In particular, entrainment to periodic synchronized inhibition could also facilitate
information transmission between excitatory neurons.

Subcortical projections originating in the basal nucleus of the forebrain release the
neuromodulator acetylcholine (ACh) in cortex. This projection is active during wakefulness
and is reduced during slow-wave sleep. The ACh concentration thus varies between a high
level during waking, and a low level during sleep. The known physiological effects of
ACh include blockade of the slow afterhyperpolarization current (AHP), and an increased
excitability (Madison et al 1987). Application of cholinergic agonists can induce synchronized
gamma-frequency oscillations in hippocampal slices (Fisahn et al 1998, Fellous and Sejnowski
2000, Tiesinga et al 2001a). In our model neuron a higher ACh concentration corresponds
to a higher driving current, making the neuron more excitable, switching the model neuron
from a non-entrained to an entrained state. The information flow in cortex could therefore be
dynamically gated by neuromodulators released by ascending subcortical projections.

These results point toward a new view of cortical information processing. Without
entrainment a cortical neuron is a traditional integrator and transmits information through
changes in its firing rate; during entrainment, which is promoted by neuromodulators and
characterized by gamma band activity, a cortical neuron can transmit information about
its inputs more efficiently by the relative spike timing within the cycle, as suggested by
Hopfield (1995). In particular, the synchronized firing of cortical neurons in the 30–80 Hz
range could represent conditions similar to the one studied here where information in the
inhibitory pool can be efficiently encoded by the phases of pyramidal neurons. Experiments
in vivo need to be carried out to test this possibility.
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Appendix

Mutual information of linear map

We analysed the dynamics of the linear map in equation (3),

#φi+1 = 1

τ
#φi + α#ni + ηi. (4)

The parameters of this map were estimated by minimizing

σ 2
η =

〈(
#φi+1 − 1

τ
#φi − α#ni

)2
〉
,

using the data in figure 3(b) (the average 〈·〉 is over all cycles i). This yielded the following
expressions for α and τ :

α = C4C3 − C1C5

C2
3 − C1C2

τ = C1

C4 − C3α
,

where C1 = 〈#φ2
i 〉 = 〈#φ2

i+1〉, C2 = 〈#n2
i 〉, C3 = 〈#ni#φi〉, C4 = 〈#φi#φi+1〉,

C5 = 〈#ni#φi+1〉 and the bracket 〈·〉 denotes a sum over all cycles i.
The output jitter was determined using the approximation that#φi and#ni are continuous

variables that take values between −∞ and ∞ and that their dynamics is given by equation (4).
Furthermore, it was assumed that the inputs#ni and ηi are normally distributed with zero mean
and the variances are equal to σ 2

n and σ 2
η , respectively. The solution to equation (4) can be

obtained explicitly since it is linear and it is

#φm+1 =
(

1

τ

)m
#φ1 +

m∑
i=1

(
1

τ

)m−i
(α#ni + ηi). (5)

The first term goes to zero in the limit m → ∞. The second term is a sum of independent
Gaussian variables, hence the sum itself is given by a set of Gaussian variables and the output
jitter is

σ 2
out = 〈#φ2

∞〉 =
[ ∞∑
i=0

(
1

τ 2

)i]
(α2σ 2

n + σ 2
η ) =

(
1

1 − 1
τ 2

)
(α2σ 2

n + σ 2
η ). (6)

The same result is obtained starting from a distribution of initial values #φ0 and iterating
equation (4). The distribution of #φm will converge to a stationary distribution for large
enough m, hence

σ 2
out = 〈#φ2

m〉 = 〈#φ2
m+1〉, (7)

whereas from equation (4),

〈#φ2
m+1〉 = 〈#φ2

m〉/τ 2 + α2σ 2
n + σ 2

η , (8)

which again in the limit m → ∞ yields

σ 2
out = σ 2

η + α2σ 2
n

1 − 1
τ 2

. (9)

Here 〈·〉 denotes the average over initial condition #φ0, noise η and input #n. Equation (4)
was iterated numerically for 1000 different initial values that were randomly drawn from a
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normal distribution with unit variance, using the map parameters of figure 5. The ensemble
variance converged within ten iterations to the σout given by equation (9) (data not shown).

Next, the mutual informations Mnφ and Mφφ were determined. The entropy of Pφ is
(Rieke et al 1997)

Sφ = 1

2
log2 2πe

σ 2
out

#2
= log2

σout

#̄
. (10)

Here # is the measurement scale. For jitter σout smaller than #̄ = #/
√

2πe the entropy is
zero because almost all measurements would fall into one bin. # is approximately given by
the minimal phase difference that can be biophysically resolved. Here # was equal to the bin
width of 1 ms. The mutual information is

Mnφ = −
∫

d#φi+1P(#φi+1) log2 P(#φi+1)

+
∫

d#niP (#ni)
∫

d#φi+1P(#φi+1|#ni) log2 P(#φi+1|#ni). (11)

For simplicity, the symbol P is used to denote probability distributions, and the particular
distribution is indicated by the argument: P(#ni) is the distribution of #ni , P(#φi+1) is the
distribution of #φi+1 and P(#φi+1|#ni) is the distribution of #φi+1 conditional on #ni . For
a fixed value of #ni , #φi+1 is equal to α#ni plus the sum of two Gaussian variables. The
variance σ 2

nφ of their sum is σ 2
out/τ

2 + σ 2
η . Thus the conditional distribution P(#φi+1|#ni) is

a Gaussian, and its entropy is independent of #ni , yielding

Mnφ = log2
σout

#̄
− log2

σnφ

#̄
= log2

σout

σnφ
= 1

2
log2

τ 2

1 +
(
1 − 1

τ 2

)(
1 + α2σ 2

n

σ 2
η

)−1 . (12)

For a fixed value of #φi , #φi+1 = 1
τ
#φi plus a sum of Gaussians with a total variance

σφφ equal to α2σ 2
n + σ 2

η . The mutual information is, as before,

Mφφ = log2
σout

σφφ
= −1

2
log2

(
1 − 1

τ 2

)
. (13)

The coding fractions are defined as Cnφ = Mnφ/Sφ and Cφφ = Mφφ/Sφ .
The above expressions for Mnφ and Mφφ are only valid when the entropy of P(#φi),

P(#φi+1|#ni) and P(#φi+1|#φi) is positive. This leads to the constraints σout > #̄, σnφ > #̄

and σφφ > #̄, yielding(
α2σ 2

n + σ 2
η

)/(
1 − 1

τ 2

)
� #̄2, (14)

σ 2
n

α2

τ 2 − 1
+ σ 2

η

τ 2

τ 2 − 1
� #̄2, (15)

α2σ 2
n + σ 2

η � #̄2. (16)

For small ασn and ση these inequalities may not hold and the following results are obtained.
Mnφ = 0 when σout < #̄ and σnφ < #̄, and Cnφ was defined as zero. When σout > #̄ and
σnφ < #̄, Mnφ = Sφ and Cnφ = 1. The behaviour of Mnφ and Cnφ is shown in figure A.1 as a
function of ση for values of the variance close to #̄. The mutual informationMnφ was zero for
ση � 0.2, then became non-zero, after which it decreased with increasing ση (figure A.1(b)).
Concomitantly, the coding fraction Cnφ jumped from zero to one, and then decreased with
increasing ση (figure A.1(c)). There is optimal information transfer near ση ≈ 0.2. The above
result shows how important it is to match the value of # to the relevant biophysical scale.
Otherwise, spurious resonances may be obtained.
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Figure A.1. The value of the bin width # can affect the measured
information transfer. (a) σout (solid curves), σnφ (dashed curves)
and σφφ (dot–dashed curves); (b) Sφ (solid curves), Mnφ (dashed
curves) andMφφ (dot–dashed curves); (c)Cnφ (dashed curves) andCφφ
(dot–dashed curves), were plotted as a function of the noise standard
deviation ση . The map parameters wereα = 0.0177, τ = 3.70, σn = 5
and # = 1.

Neuron model

The equation for the membrane potential of the neuron studied was

Cm
dV

dt
= −INa − IK − IL − Isyn + I0 + Cmξ, (17)

with the leak current IL = gL(V − EL), the sodium current INa = gNam
3
∞h(V − ENa),

the potassium current IK = gKn
4(V − EK) and the synaptic current Isyn as described in the

methods. The intrinsic noise ξ has zero mean and variance 2D, and I0 is the tonic drive. The
channel kinetics are given in terms ofm, n and h. They satisfy the following first-order kinetic
equations:

dx

dt
= ζ(αx(1 − x)− βxx). (18)

Here x labels the different kinetic variablesm, n and h, and ζ = 5 is a dimensionless timescale
that can be used to tune the temperature-dependent speed with which the channels open or
close. The rate constants are (Wang and Buzsáki 1996)

αm = −0.1(V + 35)

exp(−0.1(V + 35))− 1
,

βm = 4 exp(−(V + 60)/18),

αh = 0.07 exp(−(V + 58)/20),

βh = 1

exp(−0.1(V + 28)) + 1
,
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αn = −0.01(V + 34)

exp(−0.1(V + 34))− 1
,

βn = 0.125 exp(−(V + 44)/80).

We make the approximation that m takes the asymptotic value m∞(V (t)) = αm/(αm + βm)
instantaneously. The standard set of values for the conductances used in this paper are
gNa = 35, gK = 9 and gL = 0.1 (in mS cm−2), and we have taken ENa = 55 mV,
EK = −90 mV and EL = −65 mV. The membrane capacitance is Cm = 1 µF cm−2.

The resulting equations with noise are integrated using an adapted second-order Runge–
Kutta method (Greenside and Helfand 1981) implemented in a Fortran program, with time
step dt = 0.01 ms. The accuracy of this integration method was checked for the dynamical
equations without noise (D = 0) by varying dt and comparing the result with the one obtained
with the standard fourth-order Runge–Kutta method (Press et al 1992) with a time-step dt of
0.05 ms.

References

Bair W 1999 Spike timing in the mammalian visual system Curr. Opin. Neurobiol. 9 447–53
Bazhenov M, Stopfer M, Rabinovich M, Abarbanel H, Sejnowski T and Laurent G 2001a Model of cellular and

network mechanisms for odor-evoked temporal patterning in the locust antennal lobe Neuron 30 569–81
Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel H, Sejnowski T and Laurent G 2001b Model of transient

oscillatory synchronization in the locust antennal lobe Neuron 30 553–67
Beierlein M, Gibson J and Connors B 2000 A network of electrically coupled interneurons drives synchronized

inhibition in neocortex Nat. Neurosci. 3 904–10
Berry M and Meister M 1998 Refractoriness and neural precision J. Neurosci. 18 2200–11
Berry M, Warland D and Meister M 1997 The structure and precision of retinal spike trains Proc. Natl Acad. Sci. USA

94 5411–16
Borst A and Theunissen F 1999 Information theory and neural coding Nat. Neurosci. 2 947–57
Brenner N, Strong S, Koberle R, Bialek W and de Ruyter van Steveninck R 2000 Synergy in a neural code Neural.

Comput. 12 1531–52
Buracas G and Albright T 1999 Gauging sensory representations in the brain Trends Neurosci. 22 303–9
Buracas G, Zador A, DeWeese M and Albright T 1998 Efficient discrimination of temporal patterns by motion-sensitive

neurons in primate visual cortex Neuron 20 959–69
Burkitt A and Clark G 1999 Analysis of integrate-and-fire neurons: synchronization of synaptic input and spike output

Neural. Comput. 11 871–901
Burkitt A and Clark G 2000 Analysis of synchronization in the response of neurons to noisy synaptic input

Neurocomputing 32–33 67–75
Bush P and Sejnowski T 1996 Inhibition synchronizes sparsely connected cortical neurons within and between

columns in realistic network models J. Comput. Neurosci. 3 91–110
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