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ABSTRACT 

Single-trials in event-related potential (ERP) experi- 
ments consists of electroencephalographic (EEG) record- 
ings of brain activity time-locked to experimental events. 
These are usually averaged across a set of similar or 
identical events to increase their signal/noise ratio rel- 
ative to non-phase locked EEG activity and non-brain 
artifacts, regardless of the fact that response activity 
may vary widely across trials in time course and scalp 
distribution. Averaging thus may not be suitable for 
investigating neuron brain dynamics involving transi- 
tory and intermittent subject cognitive states. Anal- 
ysis of single ERP epochs, on the other hand, while 
ideal, suffers from confusions caused by significant EEG 
artifacts associated with blinks, eye-movements, and 
muscle noise, by large non-phase locked background 
EEG activities, and by the wide variability in laten- 
cies and amplitudes of ERP waveforms from trial to 
trial. This study introduces a new visualization tool, 
the 'ERP image', for investigating variability in laten- 
cies and amplitudes of event-evoked responses in spon- 
taneous EEG or MEG records. Second, we apply a 
new linear decomposition tool, Independent Compo- 
nent Analysis (ICA) [I], to multichannel single-trial 
EEG records to derive spatial filters that decompose 
single-trial EEG epochs into a sum of temporally in- 
dependent and spatially fixed components arising from 
distinct or overlapping brain or extra-brain networks. 
We demonstrate the power of the proposed analysis and 
visualization tools for single-trial ERP analysis through 
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analysis of sample data sets from one normal and one 
autistic subject. 

1. INTRODUCTION 

Scalp-recorded event-related potentials (ERPs) are volt- 
age changes in the ongoing electroencephalogram (EEG) 
that are both time- and phase-locked to a class of ex- 
perimental events. These field potential records are 
usually averaged to increase their signallnoise ratio 
relative to artifacts and non-phase locked EEG activ- 
ity. However, this averaging method disregards the 
fact that in different epochs response activity may vary 
widely in time course and/or scalp distribution, pos- 
sibly, reflecting differences in subject expectation, at- 
tention, arousal, and task strategy 12, 31. Analysis of 
single trials may potentially reveal much richer infor- 
mation about event-related brain dynamics, but suf- 
fers from: (1) difficulties in ignoring or removing per- 
vasive artifacts associated with blinks, eye-movements 
and muscle noise which are a serious problem for EEG 
interpretation and analysis, especially when blinks and 
muscle movements occur too frequently, as in some pa- 
tient groups; (2) poor signal-to-noise ratio arising from 
the fact that non-phase locked background EEG activi- 
ties often are larger than phase-locked response compo- 
nents, making extraction of event-related brain dynam- 
ics difficult; (3) variability in latencies and amplitudes 
of both event-related responses and endogenous EEG 
components. 

We present here two new methods for analyzing and 
visualizing multichannel unaveraged single-trial ERP 
records that solve or alleviate these problems. First, 
we introduce a new visualization tool, the 'ERP image' 
for visualizing phase, amplitude and timing relations 



between event-related single-trial EEG activity time- 
locked to experimental events (e.g., stimulus onsets or 
subject responses). Next, we demonstrate decomposi- 
tion of multi-channel EEG epochs using Independent 
Component Analysis (ICA). ICA decomposes multi- 
channel complex data into spatially fixed and tempo- 
rally independent components whose linear mixtures 
form the input data records. Applied to the single- 
trial EEG records from subjects in a visual selective 
attention experiment, ICA derived components whose 
dynamics were related to stimulus onsets and/or sub- 
ject responses in distinctly different ways. We demon- 
strate, through analysis of two sample data sets, the 
power of the proposed analysis and visualization tools 
for increasing the amount and quality of information 
about event-related brain dynamics that can be derived 
from single-trial EEG data. 

2. I N D E P E N D E N T  C O M P O N E N T  
ANALYSIS OF E E G  DATA 

In 1995, Bell and Sejnowski [4] proposed a simple neu- 
ral network algorithm that blindly separates mixtures, 
x, of independent sources, s ,  using infomax. They 
showed that maximizing the joint entropy, H ( y ) ,  of 
the output of a neural processor minimizes the mutual 
information among the output components, yi = g(u; ) ,  
where g(ui) is an invertible bounded nonlinearity and 
u = W x ,  a version of the original sources, s ,  identical 
save for scaling and permutation. Lee et al. [I] general- 
ized the infomax algorithm to perform blind source sep- 
aration on linear mixtures of sources with either sub- 
or super-Gaussian distributions. For details regarding 
the algorithms, see [I, 41. 

ICA is suitable for performing blind source sepa- 
ration on EEG data because: (1) it is plausible that 
EEG data recorded at multiple scalp sensors are lin- 
ear sums of temporally independent components aris- 
ing from spatially fixed, distinct or overlapping brain 
or extra-brain networks, and, (2) spatial smearing of 
EEG data by volume conduction does not involve sig- 
nificant time delays. For details regarding ICA assump- 
tions underlying EEG analysis, please see [5, 61. In 
single-trial EEG analysis, the rows of the input ma- 
trix x are the EEG signals recorded at different elec- 
trodes, while the columns are measurements recorded 
at different time points. The rows of the independent 
output data matrix u = W x  are time courses of ac- 
tivation of the ICA components, and the columns of 
the inverse matrix, W-', give the projection strengths 
of the respective components onto the scalp sensors. 
The scalp topographies of the components provide evi- 
dence as to their physiological origin (e.g., eye activity 

should project mainly to frontal sites). EEG signals of 
interest (e.g., event-related brain signals) can then be 
obtained by projecting selected ICA components back 
onto the scalp as x' = (W)-'u', where u' is the ma- 
trix of activation waveforms, u l  with rows representing 
activations of 'unwanted' or 'noise' sources set to zero. 

3. METHODS AND MATERIALS 

EEG data were recorded a t  29 scalp electrodes and 
2 periocular (EOG) placements from one normal and 
one high-functioning adult autistic subject who par- 
ticipated in a 2-hr visual selected attention task in 
which they were instructed to attend to circles flashed 
in random order at one of five locations laterally ar- 
rayed 0.8 cm above a central fixation point. Loca- 
tions were outlined by five evenly spaced 1.6-cm blue 
squares displayed on a black background at visual an- 
gles of 2~2.7 deg and f 5.5 deg from fixation. Attended 
locations were highlighted through entire 90-sec exper- 
imental blocks. Subjects were instructed to maintain 
fixation on the central cross and press a button each 
time they saw a circle in the attended location (see [9] 
for details). EEG data were referred to the right mas- 
toid; data were sampled at 512 HZ. 

3.1. E R P  image 

We have developed a new visualization tool, the ERP 
image for investigating variability in the latencies and 
amplitudes of event-related responses. To form an ERP 
image, potentials recorded a t  one channel or the acti- 
vations of one ICA component are plotted as parallel 
colored lines and sorted in order of a relevant response 
measure (e.g., subject response time). The single-trials 
may be colored separately, or first smoothed with a 
narrow (e.g., 5-30 trial) moving window to increase the 
visibility of consistently time- or phase-locked features. 

4. RESULTS 

The ICA algorithm was applied separately to concate- 
nated 31-channel single-trial EEG records from each 
subject. The derived independent components had a 
variety of distinct relations to task events. Some were 
clearly time- and phase-locked to stimuli presentations, 
while others were time- and phase-locked to subject re- 
sponses. Still others captured one category of sponta- 
neous EEG activity, such as blinks, eye-movements, or 
muscle artifacts, or else a type of oscillatory or other 
background EEG phenomena. 
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Figure 1: Example ERP images of single-trial EEG 
data. (left panel) Single-trial ERPs recorded at a cen- 
tral electrode (Cz) and time-locked to onsets of vi- 
sual target stimuli (thin vertical line) with superim- 
posed subject response times (thick black line). (mid- 
dle panel) The same 390 single trials, sorted (bottom to 
top) in order of increasing reaction time. (right panel). 
To increase signal-to-noise ratio and minimize the influ- 
ence of EEG activity not consistently time- and phase- 
locked to the experimental events, the sorted trials were 
averaged using a 30-trial moving window which was ad- 
vanced through the data in one-trial steps. 

4.1. ERP image 

ERP images can be used to visualize variability in the 
latencies and amplitudes of event-evoked responses ei- 
ther in spontaneous EEG epochs themselves or in the 
single-trial activations of independent components of 
the data. An example, shown in Figure 1 (left panel), 
plots 390 single-trial ERP epochs recorded at a cen- 
tral electrode (Cz) and time-locked to onsets of target 
stimuli (left vertical line). Each colored horizontal trace 
represents a 1-sec single-trial ERP record whose poten- 
tial variations are color coded (color bar on right). The 
jagged thick vertical line plots subject response time in 
each trial. Note the trial-to-trial fluctuations in ERP 
latency and reaction time. The ERP average of these 
trials is plotted below the ERP image. Next, the same 
single trials were sorted in order of increasing subject 
response time (RT) and plotted both before (middle 
panel) and after (right panel) smoothing with a 30-trial 
rectangular moving average. Note (right panel) that in 
all but the longest-RT trials the early positive feature 
(P2) is time-locked to stimulus onset (i.e. it is stimulus- 
locked), while in relatively long-RT trials, the P2 is 
absent or later and weaker. Also, the later P3 feature 
follows the response by about 100 ms in nearly all trials 
(i.e., it is response-locked). ERP-image plots allow easy 
visualization of relations between event-related EEG 
trials and single-trial contributions to the ERP average. 
ERP images make visible links between amplitudes and 

latencies of individual event-related responses and sub- 
ject behavior. They also reveal several problems of con- 
ventional response averaging. 

First, the trial-to-trial invariance of ERP signals 
cannot be assumed. In fact, not every trial in these 
data has a response morphology that resembles the av- 
eraged ERP waveform (bottom traces). Second, ERP 
components systematically associated with subject re- 
sponse latency are temporally smeared in the stimulus- 
locked average (bottom traces) (e.g., the P3 feature in 
the time period 300 to 900 ms), often making the av- 
eraged ERP a relatively poor representative of the un- 
derlying event-related response processes. 

4.2. Removing blink a n d  eye-movement ar t i facts  
f rom EEG records 

In visual experiments, autistic subjects may tend to 
blink more frequently than normal subjects [7]. ICA, 
applied to a data set from an autistic subject in which 
about 50% of the trials were contaminated by blinks, 
successfully isolated blink artifacts to a single compo- 
nent (Fig. 2A, left) whose contributions could be re- 
moved from the EEG records by subtracting out the 
component projection from the data [8]. Though the 
subject was instructed to  fixate during each 90-sec block, 
the technician noticed that his eyes tended to drift to- 
wards target stimuli presented at peripheral locations. 
A second ICA component accounted for these horizon- 
tal eye-movements (Fig. 2A, right). Fig. 2A (lower 
righi) shows separate ERP averages (at periocular site 
EOG2) of responses to targets presented at the five dif- 
ferent attended locations. The maximum activation of 
the prominent eye movement-related component scaled 
near linearly with the angle of the stimulus location 
from fixation. Its scalp pattern was also consistent 
with a pattern expected for lateral eye movements. 
Note the difference in scalp topography between the 
two components accounting for blinks and eye move- 
ments (Fig. 2A). 

Figure 2B (left) shows 641 single-trial EEG epochs 
recorded at one frontal electrode (EOG2), (middle) the 
signals identified as blink and eye-movement artifacts 
by ICA, and (right) the corrected EEG trials obtained 
by subtracting both artifacts from the original records. 
As can be seen, a large number of blink and eye-movement 
artifacts (center panel, blue and red lines) were removed 
from the records by this procedure. 

Figure 2C shows the averaged ERPs at electrode 
EOG2 in response to stimuli presented at the five differ- 
ent attended locations, before and after artifact-removal 
(blue and red traces, respectively). After artifact cor- 
rection, the averaged ERP responses to stimuli pre- 
sented at the five different locations did not depend on 



stimulus location. 
Figure 2D shows the same artifact-removal proce- 

dure applied to data collected from a normal subject. 
After artifact correction, the ERPs at site EOG2 for 
the five different target locations were quite similar 
and showed strong inferior frontal activity identified 
as P3f by Makeig et al. [9], a newly identified sub- 
component of the P300 or Late Positive Complex of 
the visual target ERP. Rejection of the contaminated 
EEG epochs could not wholly avoid these artifacts since 
their amplitudes were often smaller than typical or 
practical rejection thresholds for rejecting blinks and 
eye-movements. If, alternatively, the periocular data 
channels (here, EOGl and EOG2) had been used as 
references to  regress out contributions to signals at ad- 
jacent sites [lo, 111, cerebral activity expressed in those 
channels would have been subtracted from every scalp 
site, and the reference sites themselves would have be- 
come silent. This may explain the failure of previous 
ERP literature to identify the P3f component. 

4.3. Extract ing event-related brain act ivi ty  f rom 
EEG Records ,  

As mentioned previously, a second problem of single- 
trial analysis concerns the extraction of single-trial ERPs 
from background EEG processes that are not both time- 
and phase-locked to the stimulus. ICA, applied sep- 
arately to  each data set, separated stimulus-locked, 
response-locked, and non-phase locked background EEG 
activities into different independent components. Num- 
bers of components in each class varied across sub- 
jects. Figure 3A shows the summed projections of 
the subgroups of ICA components accounting primar- 
ily for (left) stimulus-locked, (middle) response-locked, 
and (right) remaining non-phase locked background EEG 
activity at site P03. Notice that, (1) both the response 
latencies and active durations of the early stimulus- 
locked P1 and N1 components were stable in nearly all 
trials; (2) the peak of the later P3 component covar- 
ied with response time, and was weak in longest-RT 
trials; and, (3) the projections of ICA components ac- 
counting for non-phase locked background EEG activ- 
ity contributed very little t o  the averaged ERP (right 
panel, bottom trace). These results indicate that ICA 
makes possible the extraction and separation of event- 
related brain phenomena of all types from spontaneous 
single-trial EEG records. 

4.4. Realigning single-trial E R P s  

Figure 3B (left panel) shows the raw artifact-corrected 
single-trial ERP epochs (the sum of the data shown in 
Fig. 3A) at left posterior site P03. Response latency 

Figure 2: (A) (left) Scalp topography and 5 consecu- 
tive 1-sec epochs of the activation time course of an ICA 
component counting for blink artifacts in 641 single tri- 
als recorded from an adult autistic subject. (right) The 
approximate scalp topography of an "eye-movement" 
component and its averaged activation time courses in 
response to target stimuli presented a t  five different lo- 
cations. (B) (left) ERP images of single-trial ERPs at 
site EOG2 time locked to targets presented at all five 
attended locations, sorted by subject response time; 
(center) projections of components identified as arti- 
facts by ICA; (right) corrected single-trial ERPs ob- 
tained by subtracting the ICA-extracted artifacts from 
the original data. ( C )  Averaged ERPs at site EOG2 
to targets presented at the respective five attended lo- 
cations, before (faint traces) and after (bold traces) ar- 
tifact removal. Removipg eye drift artifacts from the 
single-trial ERPs revealed the apparent independence 
of the small visual response from stimulus location. 
(D) The same artifact-removal procedure applied to 
the EEG data collected from a normal subject. Note 
that, the difference in the target ERPs before/after 
artifact removal are progressively larger in responses 
to stimuli presented farther from the central fixation 
point, consistent with an involuntary tendency of both 
subjects to move their eyes towards presented targets. 



Figure 3: (A) Projections of ICA components at a 
posterior scalp site (P03) accounting for, respectively, 
stimulus-locked (left), response-locked (middle), and 
non-phase locked or background (right) EEG activ- 
ity. (B) Artifact-corrected single-trial ERP records 
time-locked, respectively, to  stimulus onsets (left), and 
subject responses (center). Note that the early ERP 
features (PI,  N1, etc.) are not in phase in the 
response-locked trials (center) and do not appear in 
the response-locked average (center bottom). Projec- 
tions of the response-locked components were aligned 
to median reaction time (355 ms) and summed with 
stimulus-aligned component projections (right), form- 
ing an enhanced stimulus-aligned ERP (right bottom). 
( C . )  Projections of the ICA components accounting for 
response-locked P3 activity (left) could be segregated 
into 'good-P3' trials (center), whose waveforms resem- 
bled the averaged P3, and 'bad-P3' trials (right) whose 
average was very different from those of the good trials 
or of all the trials (bottom right). To reveal inter-trial 
difference, in (C)  the ERP images are unsmoothed. 

differences produce a pronounced temporal smearing 
of the P3 feature in the averaged ERP (bottom left). 
Realigning the single-trial ERP epochs to the median 
reaction time (center panel) sharpens the averaged P3 , 
but unfortunately makes the early stimulus-locked ac- 
tivity out of phase and smears out the early ERP fea- 
tures (100-300 ms). However, because ICA separated 
stimulus-locked and response-locked activity into dif- 
ferent independent components, we could realign the 
time courses of the response-locked P3 component to 
the median reaction time and project the adjusted data, 
along with the unaligned time courses of stimulus-locked 
early components (P l ,  N1, etc.), back onto the scalp 
sensors (right panel). This realignment preserves the 
early stimulus-locked responses (Pl /Nl)  while sharp- 
ening the response-locked P3, minimizing temporal smear- 
ing in the averaged ERP arising from performance fluc- 
tuations (compare lefl and right panels). 

4.5. Classifying Sub-types of endogenous E R P s  

The P3 (or P300) component in response to expected 
but unpredictable target stimuli typically peaks 300 ms 
or more after onsets of infrequently presented target 
stimuli. However, P3  amplitude and waveshape may 
vary widely from trial to trial, possibly because sub- 
jects may employ different strategies for performing 
the task, even within the same session. Several stud- 
ies [3, 121 have reported a number of different single- 
trial response subtypes. However, classifying subtypes 
of single-trial scalp ERPs remains difficult because the 
presence of large artifacts and non-task related back- 
ground EEG activity in the single-trials. Because ICA 
can separate event-related responses from the back- 
ground EEG and EEG artifacts, i t  allows us totxamine 
the subtypes of each event-related response by classify- 
ing the relatively 'clean' spatiotemporal P3 feature ex- 
tracted by ICA for each trial. This can simply be done 
by first realigning the time courses of the response- 
locked P3 component(s) to the median response time, 
then projecting only those aligned activations back to 
scalp sensors (Fig. 3C, left panel). By using the aver- 
aged 'realigned' P3 waveform (bottom irace, lefl panel) 
as a template for correlating with the waveform of each 
single-trial activation (left panel), relatively 'good' and 
'bad' P3 trials can then be identified. For example, 
Fig. 3C (center) shows the ERP image plots of 'good- 
P3' trials, in which the P3-component activation resem- 
bles the averaged activation ( r  2 0.3, -80% of the tri- 
als) and remaining 'bad-P3' trials (right) in which the 
response morphology of the P3-component activation 
differs sharply (r < 0.3) from the activation average. 



, 5. CONCLUSIONS 

We have developed analytic and visualization tools for 
analysis of multichannel single-trial EEG records. ERP 
images make visible systematic relations between single- 
trial EEG records, experimental events, and the re- 
spective ERP averages. ERP images can also be used 
to display relationships between phase, amplitude and 
timing of event-related EEG components that are time- 
locked either to stimulus onsets, to subject responses, 
or to other events. Single-trial ERP analysis based on 
Independent Component Analysis allows blind separa- 
tion of multichannel complex EEG data into a sum 
of temporally independent and spatially fixed compo- 
nents. Our results show that ICA can separate artifac- 
tual, stimulus-locked, response-locked, and non-event 
related background EEG activities into separate com- 
ponents, allowing (1) removal of pervasive artifacts of 
all types from single-trial EEG records, and (2) iden- 
tification and segregation of stimulus- and response- 
locked EEG components, (3) realignment of the time 
courses of response-locked components to prevent tem- 
poral smearing in the average, which in these experi- 
ments is mostly time-locked to fluctuations in response 
time, and (4) classification of response subtypes. 

The analysis and visualization tools proposed in 
this study increase the amount and quality of informa- 
tion on event- or response-related brain signals that can 
be extracted from ERP data, and appear broadly ap- 
plicable to electrophyiological research on normal and 
clinical populations. 
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