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Abstract 

The Independent Component Analysis (ICA) algorithm1 is a new information-theoretic 

approach to the problem of separating multichannel electroencephalographic (EEG) 

data into independent sources2. We tested the potential usefulness of the ICA algo- 

rithm for EEG source decomposition by applying the algorithm to simulated EEG 

data. These data were synthesized by projecting 6 known input signals from single- 

and multiple-dipole sources in a three-shell spherical model head3 to 6 simulated scalp 

sensors. 

In different simulations, we (1) altered the relative source strengths, (2) added 

multiple low-level sources (weak brain sources and sensor noise) to the simulated 

EEG, and (3) permuted the simulated dipole source locations and orientations. The 

algorithm successfully and reliably separated the activities of relatively strong sources 

from the activities of weaker brain sources and sensor noise, regardless of source lo- 

cations and dipole orientations. These results suggest t hat the ICA algorithm should 

be able to separate temporally independent but spatially overlapping EEG activi- 

ties arising from relatively strong brain and/or non-brain sources, regardless of their 

spatial distributions. 



1 Introduction 

Multichannel electromagnetic recordings from the scalp, including EEG, magnetoen- 

cephalographic (MEG), event-related potential (ERP) and event-related field (ERF) 

data, have been widely used to study dynamic brain processes involved in percep- 

tion, memory, selective attention, recognition, and priming. However, the underlying 

brain processes which produce fields recorded at the scalp are largely undetermined. 

The most common model for EEG generation assumes that electrodes placed on the 

scalp surface record the electromagnetic activity of local or distributed cortical neural 

networks which form effective single- or multiple-dipole sources (Fig la)42 5> 6. 

EEG recordings consist of a complex distribution of overlapping source activities, 

making it difficult to identify the contributing independent sources. The problem of 

separating sources without a priori knowledge of their number or spatial distribu- 

tion is known as "blind separation". Most existing techniques for approaching the 

problem of source separation employ second-order statistical methods (e.g. covari- 

ance, cross-correlation, and principle component analysis).6 The Independent Com- 

ponent Analysis (ICA) algorithm1 we use is a blind separation technique based on 

information-maximizat ion which uses higher-order st atistical information. The algo- 

rithm has been recently shown to produce useful decompositions of EEG data2, sepa- 

rating identifiable EEG components (e.g., alpha waves and steady-state responses7~ 8, 

into individual output channels. 

However, without prior knowledge of the actual brain sources which contribute 

to the EEG, it is difficult to verify the algorithm's effectiveness. We assume there 



may be a few strong sources active during a given EEG recording period along with a 

larger number of relatively weak sources. In addition, low-level sensor noise may con- 

taminate scalp recordings. To determine whether the ICA algorithm can successfully 

separate relatively strong signals mixed with numerous weaker signals, we performed 

several simulation experiments. 

We simulated the activities of 6 brain source signals projected in a three-shell 

spherical head model3 by volume conduction to 6 scalp electrodes and applied the 

ICA algorithm to resulting simulated EEG signals. The simulations allowed us to 

investigate changes in ICA algorithm performance with variations in source strength, 

location, and orientation as well as effects of adding simulated weak brain signals and 

sensor noise to the simulated EEG. 

1.1 The ICA algorithm 

The algorithm is based on an 'infomax' neural network1> 93 l o .  It finds, by stochastic 

gradient ascent, a matrix, W, which maximizes the entropy,ll H(y) ,  of an ensemble 

of 'sphered' input vectors {x,(t)), linearly transformed and sigmoidally compressed: 

The 'unmixing' matrix W performs source separation, while the sigmoidal nonlinear- 

ity g() provides necessary higher-order statistical information. Initial sphering of the 

zero-mean input data12: 

xs(t) = Px( t )  (2) 

where P is twice the matrix square root of the inverse of the covariance matrix, used 

to speed convergence: 

P = 2(xxT)-f (3) 



W is then initialized (in our simulations with random values between 0.1 and 1.0), 

and iteratively adjusted using small batches of data vectors drawn randomly from 

{x,(t)) without substitution, according to: 

where e is the learning rate, I is the identity matrix, and vector 9 has elements 

The ( w T w )  'natural gradient' term in the update equation13 avoids matrix in- 

( versions and speeds convergence. We use the logistic nonlinearity, g(ui) = (1 + 
exp(-ui))-l, for which & = 1 - 2yi. When ICA algorithm is trained on EEG data, 

the rows of the resultant matrix ( W P )  are linear spatial filters which, applied to 

1 the input data, produce source activity waveforms (WPx(t)) .  The columns of the in- 

verse weight matrix (WP)-' represent the projection weights from the ICA algorithm 

sources to the sensor array. Further details and references about the algorithm appear 

in 1 3 1  1 4 1  l5, other related approaches and background material in 19. 

2 Methods 

An overview of the simulation process is given in Fig. 2. 

2.1 The three-shell spherical head model 

In our simulations, we used a three-shell spherical head model which projects dipoles 

at 4 fixed brain locations onto 6 scalp electrodes. The projection matrix containing the 

model parameters was precomputed by Anders Dale using an analytic representation 

for a three-shell spherical head model31 20. Electrode positions were vertices of a 
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triangulated icosahedron located on the model head sphere. At each of the 4 locations 

in the head model, we placed 1 to 3 dipoles pointing in different directions, giving a 

total of 7 dipoles. We assigned 5 input signals to single dipoles, and 1 input signal 

(Fig. 2a) to two bilateral dipoles (Fig. 2b). As shown in Fig. 2, two dipoles with 

different orientations were placed at a single dipole location, and three dipoles with 

different orient ations were placed at another location. 

These choices were expressed via a ((4 x 3) x 6) configuration matrix, C ,  which 

assigned 6 source signals to the 7 dipoles according to the configuration described 

above. The configuration matrix was then multiplied by the (6 x (4x3)) weight 

matrix, F, which projected the 7 dipoles (at the 4 dipole locations) to each of the 6 

selected electrode sites. The resulting matrix product: 

was a 6 x 6 "mixing" matrix specifying the simulated EEG signals as linear combina- 

tions of the 6 input sources. Simulation variables were chosen such that this mixing 

matrix was non-singular. Note that despite the complexity of the head model, the 

mixing matrix was a linear 6 x6 transformation of the 6 sources, and therefore satisfied 

the assumptions of the ICA algorithm. 

2.2 Input signals 

The input signals were six 7.5-sec (79,119-point) segments of acoustic signals consist- 

ing of speech signals ("iris" and "zach"), drum tapping sounds ("drum"), a sounding 

gong ("gong"), a choral excerpt from Handel's Messiah ("handel"), and a keyboard 

synthesizer sequence ("synth"). Each signal was recorded by the auxiliary microphone 

of a Sparc-10 workstation1. Before the simulations, each input was made zero-mean 



and normalized by linear scaling to fit within the [-I, 11 interval. 

2.3 Source strength adjustment 

To simulate sources with varied strengths, the vector of input signals, s(t), were scaled 

relative to one another in steps of -8 dB (Fig. 3) using a 6x6 diagonal attenuation 

matrix, A. Simulated EEG signals, x(t),  were derived from the input signals by 

multiplying by the attenuation and mixing matrices. 

2.4 Weak brain sources 

In some experiments, seven simulated weak brain source signals were added to the 

simulated EEG. These ("brain noise") sources consisted of uncorrelated random noise 

with a flat distribution in the [-1,1] interval, scaled to -40 dB below the strongest 

input signal (i.e., at the same level as the weakest input signal) (Fig. 3). The 7 brain 

noise sources were assigned to simulated "diffuse" dipoles placed close to each of the 

7 brain source dipoles by adding 1% gaussian-distributed noise to the matrix, M ,  

before mixing. The mixed brain noise signals were then added to the simulated EEG. 

2.5 Sensor noise 

To simulate EEG sensor noise, uniformly-distributed white noise was added to each 

sensor signal at an intensity of -64 dB below the mean level of the simulated EEG 

signals. These noise sources were uncorrelated with each other. 



2.6 ICA algorithm training 

Training with the ICA algorithm began with an initial learning rate of 0.004. This 

was reduced to 0.0015 after the first training step. Thereafter, a heuristic method 

was used to reduce or increase the learning rate at each time step according to the net 

change in weights from the previous step. This change was computed by taking the 

sum of squares of the changes in weights between the current and previous time steps. 

Whenever the net weight change was less than the learning rate was mutliplied 

by 518th~. If the learning rate went below it was increased to 4 x and the 

input data was reshuffled to avoid overlearning. Training was stopped after 32 steps. 

All computations were performed using Matlab (version 4.2~)  on a Sun 670MP with 

64 megabytes of RAM and a 40MHz processor (equivalent to a Sparc 2). 

2.7 Performance measures 

2.7.1 SNR in t h e  ICA algorithm output  

Our measure of the ICA algorithm's performance was the signal-to-noise ratio (SNR) 

of each input signal in the output sources. For each input signal, si(t), we defined: 

in which all input signals except for s;(t) were zeroed out. The output source wave- 

forms for si(t) were then defined as: 

u;(t) = WPMAsi( t )  (9) 
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The signal level, S:pA, of the ith input signal in the kth output source waveform was 

computed by taking the standard deviation of the kth row of ui(t). The noise level 

for each input signal in each output source was computed by letting sic(t) consist of 

all input signals except si(t): 

siC(t) = 

These "complementary" signal vectors were passed through the simulated mixing and 

unmixing processes with brain noise and sensor noise sources added, giving output 

source waveforms: 

where n(t) is the weak brain sources and r(t) is the sensor noise. The noise level, 

N g A ,  was defined as the standard deviation of the kth row of ui(t). Then, the SNR 

of the ith signal in the ICA algorithm source waveforms was defined as: 

where n is the number of sources. 

2.7.2 SNR in t h e  simulated EEG 

The SNR of each input signal in the simulated EEG was computed for comparison 

with the SNR in the ICA output. The signal level, SGEG, for the ith input signal 



in the simulated EEG signal was defined as the standard deviation of the simulated 

EEG in the jth recording electrode (i.e. in the jth row of xi(t)): 

xi(t) = MAsi (t) (13) 

The noise level, NtEG, for the ith input signal was defined as the standard deviation 

of the jth row of the complementary mixed signal matrix: 

SNR of the ith input signal in the simulated EEG was then defined as: 

where m is the number of sensors. 

2.7.3 SNR gain from EEG to ICA algorithm outputs 

For each input signal, the difference between its SNRICA and SNREEG was defined 

as the SNR gain, G, resulting from ICA algorithm source separation. 

2.8 Four simulation experiments 

We conducted four simulation experiments to test the efficacy and reliability of the 

ICA algorithm in performing blind separation of EEG signals. Each experiment 

consisted of six different ICA algorithm trainings: 

Experiment 1: Without noise sources. To study the effect of different initial 

weights, W, and data presentation orders on the output of the ICA algorithm, 



we trained the algorithm with randomized initial weight matrices and input 

data present ation orders. 

Experiment 2: W i t h  noise sources. The simulations above were repeated with 

the 13 noise sources (7 weak brain sources and 6 sensor noise sources) added 

to the simulated EEG signals to test the source separation peformance of the 

algorithm under realistic conditions. 

Experiment 3: Varying input  signal s t rength assignments. Performance of 

the ICA algorithm may depend in part on the statistical distributions of the 

input signals12. To test whether differences in the input signal distributions were 

responsible for the results of Experiment 2, we circularly permuted the order of 

assignment of input signals (by rotating the rows of s(t)) to attenuation levels 

A (eqn. 7). 

Experiment 4: Varying input  signal source assignments. In previous exper- 

iments, the assignment of stronger and weaker signals to model brain sources 

was fixed. In this experiment, we varied the attenuated signal assignments to 

brain sources across ICA algorithm trainings. First, we attenuated the input 

signals in the same order as in Experiment 1. We then circularly permuted the 

assignment of the attenuated input signals to brain sources (by rotating the 

rows of As(t) before multiplying by M in equation 7). 



3 Results 

3.1 ICA algorithm performance without low-level sources 

With simulated weak brain sources and sensor noise sources turned off, the ICA 

algorithm consistently separated each source into a different output channel regardless 

of differences in signal amplitudes (Fig. 4) and the algorithm's initial conditions. The 

results confirmed similar findings reported for earlier audio simulations1. Each input 

signal was separated into a different output channel with an SNRIcA of at least 30 dB. 

The SNR gain, G, for the 6 input signals ranged from 21 dB to 67 dB. Although both 

the input signal levels and SNRICA varied widely between signals (ranges of 40 dB 

and 36 dB respectively), each input source was separated cleanly into a separate ICA 

algorithm output channel. This result was highly reproducible; standard deviations 

of SNRICA across trainings were all less than 1 dB. Most SNR gain occurred during 

the first training step. 

3.2 Effects of adding low-level sources 

When the 13 low-level sources were added to the simulated EEG, separation remained 

strong for the two strongest input sources (SNRICA > 20 dB) (Fig. 5), moderate for 

the two next-strongest signals (SNRICA > 8 dB), and weak for the weakest two input 

signals (SNRICA < -10 dB). SNR gains for the 6 brain sources ranged from 12 dB to 

29 dB. Nearly all SNR gain occurred during the first 5 training steps. 

3.3 Effects of varying input signal strength assignments 

Mean differences in SNRICA for the 6 input signals closely followed their relative 

input amplitudes (Fig. 6). The range of mean SNRICA values (39 dB) was again 



close to the range of input levels (40 dB). The SNR gain for the 6 input signals 

ranged from 13 dB to 31 dB. Stronger sources appeared in individual ICA output 

channels while weaker ones (and noise sources) were mixed in remaining channels. 

3.4 Effects of varying source assignments 

For each permutation of signal-to-source assignments, the ICA algorithm gave results 

comparable to those in Experiment 3. The range of mean SNR"~ (39 dB) closely 

matched the range of input signal strengths (40 dB) (Fig. 7). SNR gains ranged from 

14 dB to 30 dB. 

4 Conclusion 

The reported effectiveness of the ICA algorithm in separating multiple linearly-mixed 

sourcesl~ 91 lo was reproduced in our EEG simulations using a three-shell head model 

with 6 input signals. Previously, performance of the algorithm in the presence of 

multiple weak brain sources and noise sources had not been systematically investi- 

gated. In our experiments, relatively strong simulated EEG signals were successfully 

and repeatedly separated with SNR gains averaging 22 dB. Our results indicate that 

the performance of the algorithm degrades gracefully in the presence of multiple weak 

independent sources. 

5 Discussion 

The Independent Component Analysis algorithm appears to be a promising tool for 

the analysis of highly correlated multichannel EEG signals. Our results suggest that 

relatively strong brain EEG sources may be effectively separated from weak brain and 



noise signals with SNR gains of 20 dB and above. Applications of ICA algorithm to av- 

eraged event-related potentials (ERPs) may be particularly promising since response 

averaging increases the amplitudes of activity, time- and phase-locked to experimental 

events, relative to the activities of all other spontaneous (i.e. non-phase locked) EEG 

sources. The number of independent strong brain sources contributing to ERP data 

may be smaller than the number of EEG channels typically used to record them15. In 

that case, most or all of the ERP sources may be separable using the ICA algorithm. 

This algorithm could be used to compare the time courses and relative strengths 

of ERP source activations in different experimental conditions. Since the algorithm 

describes what independent sources produce its input data, not where these sources 

are spatially located, neurophysiological interpretation of the ICA algorithm sources 

poses a further research challenge. 
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# EEG waveforms 
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Overlapping source 
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Dipolar brain sources 

--- Source waveforms 

Figure 1: Schematic illustration of two dipole sources with overlapping pro- 
jections to the scalp. Activities of each dipole ( "source waveforms") are projected 
to the scalp through three conductive layers (brain, skull, and scalp). The scalp 
sensors record potentials ( "EEG waveforms") which sum activity from both dipoles. 



Simulated Simulated - 
Input 
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Sphering Unmixing 

Brain noise sources Sensor noise sources 

EEG Simulation 

Figure 2: Schematic overview of t h e  simulations. Input signals were scaled 
relative to one another (circles under "Scaling") and assigned to single- or multiple- 
dipole brain sources (long arrows). One signal (a) (here, "zach") was assigned to a 
bilateral dipole source (b) simulating, for example, a bitemporal source in the audi- 
tory cortices. Other signals (here, for instance, "gong", "synth", and "drum") were 
assigned to sources modeled as single dipoles with different orientations at the same 
brain location (c). Seven weak brain (or "brain noise") sources (small arrows) were 
positioned near the seven signal dipoles. The 6 input signal sources and 7 brain noise 
signals were mixed at the 6 simulated EEG sensors on the scalp surface (semicircles). 
Uncorrelated low-level "sensor noise" signals (small boxes near sensors) was added 
to the simulated EEG at each of the scalp sensors. After an initial "sphering" of 
the simulated EEG data, source separation was performed via the "unmixing" ma- 
trix produced by the ICA algorithm. Spatial filtering of the simulated EEG with 
the sphering and unmixing matrices produced output source signals. Four of these 
(labeled "iris", "gong", "zach", and "handel") were highly correlated with their re- 
spective input signals. Two other ICA algorithm outputs (labeled '??') mixed the 
remaining two weakest input signals ( "synth" and "drum") with the noise signals. 
(See http://www.cnl.sal~.edu/~dara/icasim for an audio presentation of the signals 
at each stage of the simulation). 



Relative strengths of input signals 
weak 
brain 

Figure 3: Relative strengths of input signals. Input signals were scaled relative 
to one another in -8 dB steps. The 7 weak brain (or "brain noise") sources added to 
the simulated EEG in Experiments 2-4 (rightmost bar) were scaled to the level of the 
weakest input signal. 



Training with 6 different initial weights without noise 

I I I I 

1 10 20 30 
Training Steps 

Figure 4: Experiment 1. Output signal-to-noise ratio (SNR) for each input signal 
in the simulated EEG signals (dashed lines) and during ICA algorithm training. ICA 
algorithm separation performance was strong and consistent across all sources and 
multiple training runs. 



Training with 6 different initial weights 

Training Steps 

Figure 5: Experiment 2. When 13 additional low-level sources (7 weak bram 
sources, 6 sensor noise sources) were added to the simulated EEG, ICA performance 
in separating the 6 input signals was favorable (> 20 dB) for strongest input signals, 
and poor (< -10 dB) for relatively weak inputs. SNR gains (diflerence between EEG 
and Jinal ICA SNR values) ranged from 12 dB to 29 dB for the six signals. 



Permutation of source signals BEFORE attenuation 
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Figure 6: Experiment 3. Blind separation performance by the ICA algorithm for 6 
permutations of input signal ordering prior to attenuation (see Section 2.8 of text). 
The order of signal attenuation was reproduced in the output SNR. The range of 
output SNR values after 32 training steps (rightmost values) was close to the 40 dB 
range of relative input signal strengths. SNR gains for the 6 sources ranged from 13 
dB to 31 dB. 



Permutation of source signals AFTER attenuation 

Training Steps 

Figure 7: Experiment 4. ICA algorithm performance for six different orders of 
assignments of attenuated input signals to brain sources (see Section 2.8 of text). 
Again, stronger signals were separated better than weaker signals, and the range of 
mean output SNRs (39 dB) was nearly equal to the input signal scaling range (40 
dB). SNR gains for the 6 sources ranged from 14 dB to 30 dB. 




