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ABSTRACT 

We present an unsupervised classification algorithm 
based on an ICA mixture model. A mixture model is 
a model in which the observed data can be categorized 
into several mutually exclusive data classes. In an ICA 
mixture model, it is assumed that the data in each 
class are generated by a linear mixture of independent 
sources. The algorithm finds the independent sources 
and the mixing matrix for each class and also computes 
the class membership probability of for each data point. 
This approach extends the Gaussian mixture model 
so that the clusters can have non-Gaussian structure. 
Performance on a standard classification problem, the 
Iris flower data set, demonstrates that the new algo- 
rithm can improve classification accurately over stan- 
dard Gaussian mixture models. We also show that the 
algorithm can be applied to blind source separation in 
nonstationary environments. The method can switch 
automatically between learned miving matrices in dif- 
ferent environments. 

1. INTRODUCTION 

Recently, Blind Source Separation (BSS) by Indepen- 
dent Component Analysis (ICA) has received attention 
because of its potential signal processing applications 
such as speech enhancement systems, telecommunica- 
tions and medical signal processing. ICA is a technique 
for finding a linear non-orthogonal coordinate system 
in multivariate data. The directions of the axes of this 
coordinate system are determined by the data's sec- 
ond and higher-order statistics. The goal of the ICA 
is to linearly transform the data such that the trans- 
formed variables are as  statistically independent from 
each other as possible (Bell and Sejnowski, 1995; Car- 
doso and Laheld, 1996; Lee et d., 1999a). 

ICA generalizes the technique of principal compo- 
nent analysis (PCA) and, like PCA, has proven a use- 
ful tool for finding structure in data. ICA has also 
been successfu1)y applied to processing real world data, 
including separating mixed speech signals (Lee et al., 
1997) and removing artifacts from EEG recordings (Jung 
et al., 1998). 

One limitation of ICA is the assumption that the 
sources are independent. Here we present an approach 
for relaxing this assumption using mixture models. In 
a mixture model, the observed data can be categorized 
into several mutually exclusive classes (Duda and Hart, 
1973). When the class variables are modeled as multi- 
variate Gaussian densities, the mixture model is called 
a Gaussian mixture model. We generalize the Gaussian 
mixture model by modeling each class with a mixture of 
independent components (ICA mixture model). This 
allows modeling of clusters with non-Gaussian (e.g., 
platykurtic or leptokurtic) structure. An algorithm for 
learning the parameters is derived using the expecta- 
tion maximization (EM) algorithm. We demonstrate 
that this approach shows improved performance in data 
classification problems. In addition, we apply the algo- 
rithm to BSS by learning mixing matrices in different 
environments. This presents a method for addressing 
the problem of nonstationarity. 

2. THE ICA MIXTURE MODEL 

We assume that the data were generated by a mixture 
density (Duda and ~ a r i ,  1973): 

where O = (el, - - - , OK) are the unknown parameters 
for each p(xICk, Ok), called the component densities. 



We further assume that the number of classes, K, and . 

the a priori probability, p(Ck), for each class are known. 
In the case of a Gaussian mixture model, p(xlCk, Bk) a 
N(pk, Ck). Here we assume that the form of the com- 
ponent densities is non-Gaussian and the data within 
each class are described by an ICA model. 

where Ak is a N x M scalar matrix (called the basis 
or mixing matrix) and bk is the bias vector for class 
k. The vector s k  is called the source vector (these are 
also the coefficients for each basis vector). It  is as- 
sumed that the individual sources si within each class 
are mutually independent across a data ensemble. For 
simplicity, we consider the case where Ak is full rank, 
i.e. the number of sources (M) is equal to the number 
of mixtures (N). 

Figure 1 shows a simple example of a dataset that 
can be described by ICA mixture model. Each class 
was generated with eq.2 using different A and b. Class 
(0) was generated by two uniform distributed sources, 
whereas class (+) was generated by two Laplacian dis- 
tributed sources (p(s) cc exp(-Is!)). 

To model the unlabeled data points, the task is to 
determine the parameters for each class, Ak,  bk and 
the probability of each class p(Cklx, for each data 
point. A learning algorithm can be derived by an ex- 
pectation maximization approach (Ghahramani, 1994) 
and implemented in the following steps: 

1. Compute the log-likelihood of the data for each 
class: 

where Bk = {Ak, bk,sk). 

2. Compute the probability for each class given the 
data vector x 

3. Adapt the basis functions A and the bias terms 
b for each class. The basis functions are adapted 
using gradient ascent 

Note that this simply weights any standard ICA 
algorithm gradient by p(Cklx, 81:~).  The gradi- 
ent can also be summed over multiple data points. 

Figure 1: A simple example for classifying an ICA mix- 
ture model. There are two classes (+) and (0); each 
class was generated by two independent variables, two 
bias terms and two basis vectors. Class (0) was gen- 
erated by two uniform distributed sources as indicated 
next to the data class. Class (+) was generated by two 
Laplacian distributed sources with a sharp peak a t  the 
bias and heavy tails. The inset graphs show the dis- 
tributions of the source variables, si,k, for each basis 
vector. 

The bias term is updated according to 

where t is the data index (t = 1,. . . ,T). 

The three steps in the learning algorithm perform 
gradient ascent on the total likelihood of the data 

The extended infomax ICA learning rule is able to 
blindly separate mixed sources with sub- and super- 
Gaussian distributions. This is achieved by using a 
simple type of learning rule first derived by Girolami 
(1998). The learning riile in Lee et al. (1999b) uses 
the stability analysis of Cardoso and Laheld (1996) to 
switch between sub- and super-Gaussian regimes. The 
learning rule expressed in terms of W = A-', called 
the filter matrix is: 



where ki are elements of the N-dimensional diagonal Fwr daares mth MerenIdemiUeh, ba~rs hmcbons and bas (em 

matrix K and u = Wx. The unmixed sources u are Q 
6 - * 

the source estimate s (Bell and Sejnowski, 1995; Lee 
et al., 1999a). The ki's are (Lee et al., 1999b) o 

4 - 
ki = sign ( ~ [ s e c h ~ u i ] ~ [ u ~ ]  - E[u~ tanh ui]) . 

(9) 2 -  + 

The source distribution is super-Gaussian when ki = 1 
and sub-Gaussian when ki = -1. x" O -  

-2 - 

4 - 

For the log-likelihood estimation in eq.3 the term 
logp(s) can be approximated as follows 

~ o ~ P ( s )  0 ~ -  C1snl super - G. 
n 

s", log p(s) cc- log cosh s, - - sub - G. (10) 
2 

n 

Super-Gaussian densities, are approximated by a Lapla- 
cian density model; Sub-Gaussian densities are approx- 
imated by a bimodal density (Girolami, 1998). Al- 
though the source density approximation is crude it has 
been demonstrated that simple density models are suf- 
ficient for standard ICA problems (Lee et al., 1999b). 

3. UNSUPERVISED CLASSIFICATION 

To demonstrate the learning algorithm, we generated 
random data drawn from different classes and used the 
proposed method to learn the parameters and to clas- 
sify the data. Figure 2 shows an example of four classes 
in a two-dimensional data space. Each class was gen- 
erated from eq.2 using random choices for the class 
parameters. The task for the algorithm was to learn 
the four mixing matrices and bias vectors given only 
the unlabeled two dimensional data set. The param- 
eters were randomly initialized. The algorithm con- 
verged in 300 iterations through the data. The arrows 
in figure 2 indicate the basis vectors Ak and the bias 
terms bk were learned correctly for each class. Testing 
was accomplished by processing each instance with the 
learned parameters Ak and bk. The probability of the 
class p(Ck lx, Bk) was computed and the corresponding 
instance label was compared to the highest class prob- 
ability. For this example, in which the classes had sev- 
eral overlapping areas, the classification error on the 
whole data set was 7.5%. The Gaussian mixture model 
used in AutoClass (Stutz and Cheeseman, 1994) gave 
an error of 8.5%. For the k-means (Euclidean distance 
measure) clustering algorithm, the error was 11.3%. 

3.1. Iris Da ta  Classification 

To compare the proposed method to other classification 
algorithms, the method was applied to the classifica- 

Figure 2: An example of classification of a mixture of 
independent components. There are 4 diierent classes, 
each generated by two independent variables and bias 
terms. The algorithm is able to find the independent 
directions (basis vectors) and bias terms for each class. 

tion of real data from the machine learning benchmark 
(Merz and Murphy, 1998). As an example, we show 
the classification of the well known irii flower data set. 
The data set (Fisher, 1936) contains 3 classes, 4 nu- 
meric attributes of 50 instances each, where each class 
refers to a type of iris plant. One class is linearly s e p  
arable from the other two, but the other two are not 
linearly separable from each other. Note that from the 
viewpoint of the algorithm, all the data is unlabeled 
and learning is unsupervised. The algorithm converged 
after one hundred passes through the data. The clas- 
sification error on this data set was 2% whereas the 
error using AutoClass was 3.3%. We also performed a 
k-means clustering which gave an error rate of 4.7%. 

4. CONTEXT SWITCHING BETWEEN 
CLASSES 

The ICA mixture model can be used to identify dif- 
ferent contexts in data and classify them accordingly. 
Imagine the following situation: There are two people 
talking to each other while they are listening to mu- 
sic in the background. Two microphones are placed 
somewhere in the room that record the conversation. 
The conversation is in an alternating manner so that 
person #1 talks while person #2 listens, then person 
#1 listens to person #2 and so on. The mixing matrix 



changes as a function of the location of the speaker. 
In this case, the voice of person #1 gets mixed with 
the background music signal with A1 while the voice 
of person #2 get mixed with the music signal with A2. 
Figure 3 shows the two observed channels $1 and x2. 
Each channel contains the voices of person #1 and #2 
and the music signal. 

The algorithm was trained on 11 seconds sampled at  
8 kHz to learn two classes of ICA representations. The 
two basis vectors A1 and A2 were randomly initialized. 
For each gradient in eq.5 a stepsize was computed as a 
function of the amplitude of the basis vectors and the 
number of iterations. 

The time course of the unmixed signals using the 
ICA mixture model is shown in figure 4. The top plot 
shows the two speech signals with correct markers in- 
dicating which speaker was talking. The bottom plot 
shows the time course of the background music signal. 

Figure 5 (Top) shows the class conditional proba- 
bility, p(CzIx, 82) = 1 - p(C1 lx, dl), for each sample 
(data vector) in the series. Note that a sirlgle sam- 
ple typically does not contain enough information to 
unambiguously assign class membership. The inter- 
mediate values for the class probability represent un- 
certainty about the class membership. A threshold a t  
p(C21x,Bz) = 0.5 can be used to determine the class 
membership. Using this threshold for single samples in 
figure 5 (Top) gave an error rate of 27.4%. This can 
be rectified using the a priori knowledge that a given 
context persists over many samples. This information 
could be incorporated into a more complex temporal 
model for p(Ck), but here we use the crude but simple 
procedure of computing the class membership proba- 
bility for an n-sample block. This value is plotted for 
a block size of 100 samples in figure 5 (Middle). The 
value provides a much more accurate estimate of class 
membership (6.5% error). The error rate dropped to 
zero when the block size was increased to 2000 samples 
(figure 5 (Bottom)) the correct class probabilities were 
recovered and matched those in figure 4 (Top). 

The Signal to Noise Ratio (SNR) for the experiment 
with a block size of 100 samples was 20.8 dB and 21.8 
dB using the context switching ICA mixture model. 
The standard ICA algorithm is able to learn only one 
unmixing matrix and the SNR using infomax (Bell and 
Sejnowski, 1995) was 8.3 dB and 6.5 dB respectively. 

mixture model when the source priors are Gaussian. 
Purely Gaussian structure, however, is rare in real data 
sets. Here we have used priors of the form of super- 
Gaussian and sub-Gaussian densities. But these could 
be extended as proposed by Attias (1999). The prc- 
posed model was used for learning a complete set of 
basis functions without additive noise. However, the 
method can be extended to take into account additive 
Gaussian noise and an overcomplete set of basis vectors 
(Lewicki and Sejnowski, 1998). A completely different 
approach to data modeling is the multidimensional ICA 
algorithm by Cardoso (1998) which is based on a geo- 
metric parameterization of the ICA matrices. 

We have performed several experiments on bench- 
mark data sets for classification problems. The results 
were comparable or improved over those obtained by 
Autoclass (Stutz and Cheeseman, 1.994) which uses a 
Gaussian mixture model. 

Another application of the proposed method is the 
automatic detection of sleep stages by observing EEG 
signals. The method can identify these stages due to 
the changing source priors and their mixing. 

In Lee et al. (1999c), we show experiments with 
natural images using the ICA mixture model (Lewicki 
and Olshausen, 1998). The algorithm can be used to 
find efficient representations of image patterns such as 
text in newspapers and natural scenes. Preliminary 
results show that the algorithm is able to find classes 
so that one class encodes the natural images and the 
other class specializes on encoding the text segments. 

6. CONCLUSIONS 

The new algorithm for unsupervised classification pre- 
sented here is based on a maximum likelihood mixture 
model using independent component analysis to model 
the structure of the classes. We demonstrated on sim- 
ulated and real world data that the algorithm gives 
highly competitive classification results. We also show 
that the algorithm can be applied to blind source s e p  
aration in nonstationary environments. The method 
can switch automatically between learned mixing ma- 
trices in different environments. We believe that this 
method provides greater flexibility in modeling struc- 
ture in high-dimensional data and has many potential 
applications. 
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Figure 3: The two observed channels XI and xz sampled a t  8 kHz. Each channel contains the voices of person #I  
and #2 and the music signal. 
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4: The time course of the unmixed signals using the mixture model and a block size of 2000 samples for 
estimating the class probability. (Top) The two speech signals with correct markers indicating which speaker was 
talking. (Bottom) The time course of the background music signal. 

Figure 5: The class conditional probability ~ (Cz lx ,  62). (Top) Class probability for single samples. (Middle) Class 
probability for blocks of 100 samples. (Bottom) Class probability for blocks of 2000 samples. 
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