
Gradient Descent for Spiking Neural Networks

Dongsung Huh
Salk Institute

La Jolla, CA 92037
huh@salk.edu

Terrence J. Sejnowski
Salk Institute

La Jolla, CA 92037
terry@salk.edu

Abstract

Most large-scale network models use neurons with static nonlinearities that pro-
duce analog output, despite the fact that information processing in the brain is
predominantly carried out by dynamic neurons that produce discrete pulses called
spikes. Research in spike-based computation has been impeded by the lack of
efficient supervised learning algorithm for spiking neural networks. Here, we
present a gradient descent method for optimizing spiking network models by in-
troducing a differentiable formulation of spiking dynamics and deriving the exact
gradient calculation. For demonstration, we trained recurrent spiking networks on
two dynamic tasks: one that requires optimizing fast (≈ millisecond) spike-based
interactions for efficient encoding of information, and a delayed-memory task over
extended duration (≈ second). The results show that the gradient descent approach
indeed optimizes networks dynamics on the time scale of individual spikes as well
as on behavioral time scales. In conclusion, our method yields a general purpose
supervised learning algorithm for spiking neural networks, which can facilitate
further investigations on spike-based computations.

1 Introduction

The brain operates in a highly decentralized event-driven manner, processing multiple asynchronous
streams of sensory-motor data in real-time. The main currency of neural computation is spikes:
i.e. brief impulse signals transmitted between neurons. Experimental evidence shows that brain’s
architecture utilizes not only the rate, but the precise timing of spikes to process information [1].

Deep-learning models solve simplified problems by assuming static units that produce analog output,
which describes the time-averaged firing-rate response of a neuron. These rate-based artificial neural
networks (ANNs) are easily differentiated, and therefore can be efficiently trained using gradient
descent learning rules. The recent success of deep learning demonstrates the computational potential
of trainable, hierarchical distributed architectures.

This brings up the natural question: What types of computation would be possible if we could train
spiking neural networks (SNNs)? The set of implementable functions by SNNs subsumes that of
ANNs, since a spiking neuron reduces to a rate-based unit in the high firing-rate limit. Moreover,
in the low firing-rate range in which the brain operates (1∼10 Hz), spike-times can be utilized as
an additional dimension for computation. However, such computational potential has never been
explored due to the lack of general learning algorithms for SNNs.

1.1 Prior work

Dynamical systems are most generally described by ordinary differential equations, but linear time-
invariant systems can also be characterized by impulse response kernels. Most SNN models are
constructed using the latter approach, by defining a neuron’s membrane voltage vi(t) as a weighted

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

linear summation of kernels Kij(t− tk) that describe how the spike-event of neuron j at previous
time tk affects neuron i at time t. When the neuron’s voltage approaches a sufficient level, it generates
a spike in deterministic [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] or stochastic manner [13, 14, 15, 16, 17].
These kernel-based neuron models are known as spike response models (SRMs).

The appeal of SRMs is that they can simulate SNN dynamics without explicit integration steps.
However, this representation takes individual spike-times as the state variables of SNNs, which causes
problems for learning algorithms when spikes are needed to be created or deleted during the learning
process. For example, Spikeprop [2] and its variants [3, 4, 5, 6, 18] calculate the derivatives of
spike-times to derive accurate gradient-based update rules, but they are only applicable to problems
where each neuron is constrained to generating a predefined number of spikes.

Currently, learning algorithms compatible with variable spike counts have multiple shortcomings:
Most gradient-based methods can only train "visible neurons" that directly receive desired target
output patterns [7, 8, 9, 11, 13, 17]. While extensions have been proposed to enable training of
hidden neurons in multilayer [10, 14, 16, 19] and recurrent networks [15], they require neglecting
the derivative of the self-kernel terms, i.e. Kii(t), which is crucial for the gradient information to
propagate through spike events. Moreover, the learning rules derived for specific neuron dynamics
models cannot be easily generalized to other neuron models. Also, most methods require the training
data to be prepared in spike-time representations. For instance, they use loss functions that penalize
the difference between the desired and the actual output spike-time patterns. In practice, however,
such spike-time data are rarely available.

Alternative approaches take inspiration from biological spike-time dependent plasticity (STDP)
[20, 21], and reward-modulated STDP process [22, 23, 24]. However, it is generally hard to guarantee
convergence of these bottom-up approaches, which do not consider the complex effects network
dynamics nor the task information in designing of the learning rule.

Lastly, there are rate-based learning approaches, which convert trained ANN models into spiking
models [25, 26, 27, 28, 29, 30], or apply rate-based learning rules to training SNNs [31]. However,
these approaches can at best replicate the solutions from rate-based ANN models, rather than
exploring computational solutions that can utilize spike-times.

1.2 New learning framework for spiking neural networks

Here, we derive a novel learning approach for training SNNs represented by ordinary differential
equations. The state vector is composed of dynamic variables, such as membrane voltage and synaptic
current, rather than spike-time history. This approach is compatible with the usual setup in optimal
control, which allows gradient calculation by using the existing tools in optimal control. Moreover,
resulting process closely resembles the familiar backpropagation rule, which can fully utilize the
existing statistical optimization methods in deep learning framework.

Note that, unlike the prior literature, our work here provides not just a single learning rule for a
particular model and task, but a general framework for calculating gradient for arbitrary network
architecture, neuron models, and loss functions. Moreover, the goal of this research is not necessarily
to replicate a biological learning phenomenon, but to derive efficient learning methods that can
explore the computational solutions implementable by the networks of spiking neurons in biology.
The trained SNN model could then be analyzed to reveal the computational processes of the brain, or
provide algorithmic solutions that can be implemented with neuromorphic hardwares.

2 Methods

2.1 Differentiable synapse model

In spiking networks, transmission of neural activity is mediated by synaptic current. Most models
describe the synaptic current dynamics as a linear filter process which instantly activates when the
presynaptic membrane voltage v crosses a threshold: e.g.,

τ ṡ = −s+
∑
k

δ(t− tk). (1)

2

t (ms) t (ms) t (ms) t (ms) t (ms)

A B C D E

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

M
em

br
an

e
vo

lta
ge

0 20 40

0
0.

1

0 20 40 0 20 40 0 20 40 0 20 40

(m
s-1

)
Sy

na
pt

ic
 c

ur
re

nt

Figure 1: Differentiability of synaptic current dynamics: The synaptic current traces from eq (2)
(solid lines, upper panels) are shown with the corresponding membrane voltage traces (lower panels).
Here, the gate function is g = 1/∆ within the active zone of width ∆ (shaded area, lower panels);
g = 0 otherwise. (A,B) The pre-synaptic membrane voltage depolarizes beyond the active zone.
Despite the different rates of depolarization, both events incur the same amount of charge in the
synaptic activity:

∫
s dt = 1. (C,D,E) Graded synaptic activity due to insufficient depolarization

levels that do not exceed the active zone. The threshold-triggered synaptic dynamics in eq (1) is also
shown for comparison (red dashed lines, upper panels). The effect of voltage reset is ignored for the
purpose of illustration. τ = 10 ms.

where δ(·) is the Dirac-delta function, and tk denotes the time of kth threshold-crossing. Such
threshold-triggered dynamics generates discrete, all-or-none responses of synaptic current, which is
non-differentiable.

Here, we replace the threshold with a gate function g(v): a non-negative (g ≥ 0), unit integral
(
∫
g dv = 1) function with narrow support1, which we call the active zone. This allows the synaptic

current to be activated in a gradual manner throughout the active zone. The corresponding synaptic
current dynamics is

τ ṡ = −s+ gv̇, (2)
where v̇ is the time derivative of the pre-synaptic membrane voltage. The v̇ term is required for
the dimensional consistency between eq (1) and (2): The gv̇ term has the same [time]−1 dimension
as the Dirac-delta impulses of eq (1), since the gate function has the dimension [voltage]−1 and v̇
has the dimension [voltage][time]−1. Hence, the time integral of synaptic current, i.e. charge, is
a dimensionless quantity. Consequently, a depolarization event beyond the active zone induces a
constant amount of total charge regardless of the time scale of depolarization, since∫

s dt =

∫
gv̇ dt =

∫
g dv = 1.

Therefore, eq (2) generalizes the threshold-triggered synapse model while preserving the fundamental
property of spiking neurons: i.e. all supra-threshold depolarizations induce the same amount of
synaptic responses regardless of the depolarization rate (Figure 1A,B). Depolarizations below the
active zone induce no synaptic responses (Figure 1E), and depolarizations within the active zone
induce graded responses (Figure 1C,D). This contrasts with the threshold-triggered synaptic dynamics,
which causes abrupt, non-differentiable change of response at the threshold (Figure 1, dashed lines).

Note that the gv̇ term reduces to the Dirac-delta impulses in the zero-width limit of the active zone,
which reduces eq (2) back to the threshold-triggered synapse model eq (1).

The gate function, without the v̇ term, was previously used as a differentiable model of synaptic
connection [32]. In such a model, however, a spike event delivers varying amount of charge depending
on the depolarization rate: the slower the presynaptic depolarization, the greater the amount of charge
delivered to the post-synaptic targets.

1Support of a function g : X → R is the subset of the domain X where g(x) is non-zero.

3

Input Output ~

WU O

~ i(t) ~ o (t)

v (t) (t)s~~

Figure 2: The model receives time varying input, �i(t), processes it through a network of spiking
neurons, and produces time varying output, �o(t). The internal state variables are the membrane
voltage �v(t) and the synaptic current �s(t).

2.2 Network model

To complete the input-output dynamics of a spiking neuron, the synaptic current dynamics must
be coupled with the presynaptic neuron’s internal state dynamics. For simplicity, we consider
differentiable neural dynamics that depend only on the the membrane voltage and the input current:

v̇ = f(v, I). (3)

The dynamics of an interconnected network of neurons can then be constructed by linking the
dynamics of individual neurons and synapses eq (2,3) through the input current vector:

�I = W�s+ U�i+ �Io, (4)

where W is the recurrent connectivity weight matrix, U is the input weight matrix,�i(t) is the input
signal for the network, and �Io is the tonic current. Note that this formulation describes general, fully
connected networks; specific network structures can be imposed by constraining the connectivity: e.g.
triangular matrix structure W for multi-layer feedforward networks.

Lastly, we define the output of the network as the linear readout of the synaptic current:

�o(t) = O�s(t),

where O is the readout matrix. The overall schematic of the model is shown in Figure 2.

All of the network parameters W , U , O, �Io can be tuned to minimize the total cost, C ≡
∫
l(t) dt,

where l is the cost function that evaluates the performance of network output for given task.

2.3 Gradient calculation

The above spiking neural network model can be optimized via gradient descent. In general, the exact
gradient of a dynamical system can be calculated using either Pontryagin’s minimum principle [33],
also known as backpropagation through time, or real-time recurrent learning, which yield identical
results. We present the former approach here, which scales better with network size, O(N2) instead
of O(N3), but the latter approach can also be straightforwardly implemented.

Backpropagation through time for the spiking dynamics eq (2,3) utilizes the following backpropagat-
ing dynamics of adjoint state variables (pv, ps. See Supplementary Materials):

−ṗv = ∂vf pv − gṗs (5)
−τ ṗs = −ps + ξ, (6)

where pv, ps are the modified adjoints of v and s, ∂vf ≡ ∂f/∂v, and ξ is called the error current.
For the recurrently connected network eq (4), the error current vector has the following expression

�ξ = W ᵀ �(∂If pv) + �∂sl, (7)

which links the backpropagating dynamics eq (5,6) of individual neurons. Here, ∂If ≡ ∂f/∂I ,
(∂If pv)k ≡ (∂f/∂I)kpvk , and (∂sl)k ≡ ∂l/∂sk.

Interestingly, the coupling term of the backpropagating dynamics, gṗs, has the same form as the
coupling term gv̇ of the forward-propagating dynamics. Thus, the same gating mechanism that

4

mediates the spiked-based communication of signals also controls the propagation of error in the
same sparse, compressed manner.

Given the adjoint state vectors that satisfy eq (5,6,7), the gradient of the total cost with respect to the
network parameters can be calculated as

∇WC =

∫
~(∂If pv) ~s

ᵀ dt

∇UC =

∫
~(∂If pv)~i

ᵀ dt

∇IoC =

∫
~(∂If pv) dt

∇OC =

∫
~∂ol ~s

ᵀ dt

where (∂ol)k ≡ ∂l/∂ok. Note that the gradient calculation procedure involves multiplication between
the presynaptic input source and the postsynaptic adjoint state pv, which is driven by the gṗs term:
i.e. the product of postsynaptic spike activity and temporal difference of error. This is analogous to
reward-modulated spike-time dependent plasticity (STDP) [24].

3 Results

We demonstrate our method by training spiking networks on dynamic tasks that require information
processing over time. Tasks are defined by the relationship between time-varying input-output signals,
which are used as training examples. We draw mini-batches of ≈ 50 training examples from the
signal distribution, calculate the gradient of the average total cost, and use stochastic gradient descent
[34] for optimization.

Here, we use a cost function l that penalizes the readout error and the overall synaptic activity:

l =
‖~o− ~od‖2 + λ‖~s‖2

2
,

where ~od(t) is the desired output, and λ is a regularization parameter.

3.1 Predictive Coding Task

We first consider predictive coding tasks [35, 36], which optimize spike-based representations to
accurately reproduce the input-ouput behavior of a linear dynamical system of full-rank input and
output matrices. Analytical solutions for this class of problems can be obtained in the form of
non-leaky integrate and fire (NIF) neural networks, although insignificant amount of leak current is
often added [36]. The solutions also require the networks to be equipped with a set of instantaneous
synapses for fast time-scale interactions between neurons, as well slower synapses for readout.
Despite its simplicity, the predictive coding framework reproduces important features of biological
neural networks, such as the balance of excitatory and inhibitory inputs and efficient coding [35].
Also, its analytical solutions provide a great benchmark for assessing the effectiveness of our learning
method.

The membrane voltage dynamics of a NIF neuron is given by
f(v, I) = I.

Here, we impose two thresholds at vθ+ = 1 and vθ− = −1, and the reset voltage at vreset = 0, where
the vθ− threshold would trigger negative synaptic responses. This bi-threshold NIF model naturally
fits with the inherent sign symmetry of the task, and also provides an easy solution to ensure that the
membrane voltage stays within a finite range. However, the training also works with the usual single
threshold model. We also introduce two different synaptic time constants, as proposed in [35, 36]: a
fast constant τ = 1 ms for synapses for the recurrent connections, and a slow constant τs = 10 ms
for readout.

In the predictive-coding task, the desired output signal is the low-pass filtered version of the input
signal:

τs~̇od = −~od +~i,

5

-2

0

2

-2

0

2

0 40 80 120
time (ms)

-1

0

1

-0.5

0

0.5

Readout

Input current (components)

Input current (total)

Membrane voltage

A

B

C

D

(ms-1)

(ms-1)

-0.8

-0.4

0

0.4

0.8

E

F

10

20

30

10 20 30

-0.4 0 0.4
-2

-1

0

1

2

(ms)

(ms-1)

-

10

20

30

-0.8

-0.4

0

0.4

0.8

Figure 3: Balanced dynamics of a spiking network trained for auto-encoding task. (A) Readout
signals: actual (solid), and desired (dashed). (B) Input current components into a single neuron:
external input current (U�i(t), blue), and fast reccurent synaptic current (Wf�sf (t), red). (C) Total
input current into a single neuron (U�i(t) +Wf�sf (t)). (D) Single neuron membrane voltage traces:
the actual voltage trace driven by both external input and fast reccurent synaptic current (solid, 6
spikes), and a virtual trace driven by external input only (dashed, 29 spikes). (E) Fast recurrent
weight: trained (Wf , above) and predicted (−UO, below). Diagonal elements are set to zero to avoid
self-excitation/inhibition. (F) Readout weight O vs input weight U .

where τs is the slow synaptic time constant [35, 36]. The goal is to accurately represent the analog
signals using least number of spikes. We used a network of 30 NIF neurons, 2 input and 2 output
channels. Randomly generated sum-of-sinusoid signals with period 1200 ms were used as the input.

The output of the trained network accurately tracks the desired output (Figure 3A). Analysis of the
simulation reveals that the network operates in a tightly balanced regime: The fast recurrent synaptic
input, W�s(t), provides opposing current that mostly cancels the input current from the external signal,
U�i(t), such that the neuron generates a greatly reduced number of spike outputs (Figure 3B,C,D).
The network structure also shows close agreement to the prediction. The optimal input weight matrix
is equal to the transpose of the readout matrix (up to a scale factor), U ∝ Oᵀ, and the optimal fast
recurrent weight is approximately the product of the input and readout weights, W ≈ −UO , which
are in close agreement with [35, 36, 37]. Such network structures have been shown to maintain
tight input balance and remove redundant spikes to encode the signals in most efficient manner:
The representation error scales as 1/K, where K is the number of involved spikes, compared to the
1/
√
K error of encoding with independent Poisson spikes.

6

time (ms)

0 100 200 300 400 500 600
time (ms)

time (ms)time (ms)

time (ms)time (ms)

Spikes

Spikes

Go-cue

Output

Input

0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600

0 100 200 300 400 500 6000 100 200 300 400 500 600

Input

Go-cue

Output

A B C

D E F

Figure 4: Delayed-memory XOR task: Each panel shows the single-trial input, go-cue, output traces,
and spike raster of an optimized QIF neural network. The y-axis of the raster plot is the neuron
ID. Note the similarity of the initial portion of spike patterns for trials of the same first input pulses
(A,B,C vs D,E,F). In contrast, the spike patterns after the go-cue signal are similar for trials of the
same desired output pulses: (A,D: negative output), (B,E: positive output), and (C,F: null output).

3.2 Delayed-memory XOR task

A major challenge for spike-based computation is in bridging the wide divergence between the time-
scales of spikes and behavior: How do millisecond spikes perform behaviorally relevant computations
on the order of seconds?

Here, we consider a delayed-memory XOR task, which performs the exclusive-or (XOR) operation
on the input history stored over extended duration. Specifically, the network receives binary pulse
signals, + or −, through an input channel and a go-cue through another channel. If the network
receives two input pulses since the last go-cue signal, it should generate the XOR output pulse on the
next go-cue: i.e. a positive output pulse if the input pulses are of opposite signs (+− or −+), and
a negative output pulse if the input pulses are of equal signs (++ or −−). Additionally, it should
generate a null output if only one input pulse is received since the last go-cue signal. Variable time
delays are introduced between the input pulses and the go-cues.

A simpler version of the task was proposed in [26], whose solution involved first training an analog,
rate-based ANN model and converting the trained ANN dynamics with a larger network of spik-
ing neurons (≈ 3000), using the results from predictive coding [35]. It also required a dendritic
nonlinearity function to match the transfer function of rate neurons.

We trained a network of 80 quadratic integrate and fire (QIF) neurons2, whose dynamics is

f(v, I) = (1 + cos(2πv))/τv + (1− cos(2πv))I,

2NIF networks fail to learn the delayed-memory XOR task: the memory requirement for past input history
drives the training toward strong recurrent connections and runaway excitation.

7

also known as Theta neuron model [38], with the threshold and the reset voltage at vθ = 1, vreset = 0.
Time constants of τv = 25, τf = 5, and τ = 20 ms were used, whereas the time-scale of the task
was ≈ 500 ms, much longer than the time constants. The intrinsic nonlinearity of the QIF spiking
dynamics proves to be sufficient for solving this task without requiring extra dendritic nonlinearity.
The trained network successfully solves the delayed-memory XOR task (Figure 4): The spike patterns
exhibit time-varying, but sustained activities that maintain the input history, generate the correct
outputs when triggered by the go-cue signal, and then return to the background activity. More analysis
is needed to understand the exact underlying computational mechanism.

This result shows that out algorithm can indeed optimize spiking networks to perform nonlinear
computations over extended time.

4 Discussion

We have presented a novel, differentiable formulation of spiking neural networks and derived the
gradient calculation for supervised learning. Unlike previous learning methods, our method optimizes
the spiking network dynamics for general supervised tasks on the time scale of individual spikes as
well as the behavioral time scales.

Exact gradient-based learning methods, such as ours, may depart from the known biological learning
mechanisms. Nonetheless, these methods provide a solid theoretical foundation for understanding the
principles underlying biological learning rules. For example, our result shows that the gradient update
occurs in a sparsely compressed manner near spike times, similar to reward-modulated STDP, which
depends only on a narrow 20 ms window around the postsynaptic spike. Further analysis may reveal
that certain aspects of the gradient calculation can be approximated in a biologically plausible manner
without significantly compromising the efficiency of optimization. For example, it was recently
shown that the biologically implausible aspects of backpropagation method can be resolved through
feedback alignment in rate-based multilayer feedforward networks [39]. Such approximations could
also apply to spiking neural networks.

Here, we coupled the synaptic current model with differentiable single-state spiking neuron models.
We want to emphasize that the synapse model can be coupled to any neuron model, including
biologically realistic multi-state neuron models with action potential dynamics 3, including the
Hodgkin-Huxley model, the Morris-Lecar model and the FitzHugh-Nagumo model; and an even
wider range of neuron models with internal adaptation variables and neuron models having non-
differentiable reset dynamics, such as the leaky integrate and fire model, the exponential integrate
and fire model, and the Izhikevich model. This will be examined in the future work.

References
[1] Rufin VanRullen, Rudy Guyonneau, and Simon J Thorpe. Spike times make sense. Trends in neurosciences,

28(1):1–4, 2005.

[2] Sander M Bohte, Joost N Kok, and Han La Poutre. Error-backpropagation in temporally encoded networks
of spiking neurons. Neurocomputing, 48(1):17–37, 2002.

[3] Jianguo Xin and Mark J Embrechts. Supervised learning with spiking neural networks. In Neural Networks,
2001. Proceedings. IJCNN’01. International Joint Conference on, volume 3, pages 1772–1777. IEEE,
2001.

[4] Benjamin Schrauwen and Jan Van Campenhout. Extending spikeprop. In Neural Networks, 2004.
Proceedings. 2004 IEEE International Joint Conference on, volume 1, pages 471–475. IEEE, 2004.

[5] Olaf Booij and Hieu tat Nguyen. A gradient descent rule for spiking neurons emitting multiple spikes.
Information Processing Letters, 95(6):552–558, 2005.

[6] Peter Tiňo and Ashely JS Mills. Learning beyond finite memory in recurrent networks of spiking neurons.
Neural computation, 18(3):591–613, 2006.

[7] Robert Gütig and Haim Sompolinsky. The tempotron: a neuron that learns spike timing–based decisions.
Nature neuroscience, 9(3):420–428, 2006.

3Simple modification of the gate function would be required to prevent activation during the falling phase of
action potential.

8

[8] Robert Urbanczik and Walter Senn. A gradient learning rule for the tempotron. Neural computation,
21(2):340–352, 2009.

[9] Raoul-Martin Memmesheimer, Ran Rubin, Bence P Ölveczky, and Haim Sompolinsky. Learning precisely
timed spikes. Neuron, 82(4):925–938, 2014.

[10] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using
backpropagation. Frontiers in neuroscience, 10, 2016.

[11] Robert Gütig. Spiking neurons can discover predictive features by aggregate-label learning. Science,
351(6277):aab4113, 2016.

[12] Răzvan V Florian. The chronotron: a neuron that learns to fire temporally precise spike patterns. PloS one,
7(8):e40233, 2012.

[13] Jean-Pascal Pfister, Taro Toyoizumi, David Barber, and Wulfram Gerstner. Optimal spike-timing-dependent
plasticity for precise action potential firing in supervised learning. Neural computation, 18(6):1318–1348,
2006.

[14] Danilo J Rezende, Daan Wierstra, and Wulfram Gerstner. Variational learning for recurrent spiking
networks. In Advances in Neural Information Processing Systems, pages 136–144, 2011.

[15] Johanni Brea, Walter Senn, and Jean-Pascal Pfister. Matching recall and storage in sequence learning with
spiking neural networks. Journal of neuroscience, 33(23):9565–9575, 2013.

[16] Brian Gardner, Ioana Sporea, and André Grüning. Learning spatiotemporally encoded pattern transforma-
tions in structured spiking neural networks. Neural computation, 27(12):2548–2586, 2015.

[17] Brian Gardner and André Grüning. Supervised learning in spiking neural networks for precise temporal
encoding. PloS one, 11(8):e0161335, 2016.

[18] Sam McKennoch, Thomas Voegtlin, and Linda Bushnell. Spike-timing error backpropagation in theta
neuron networks. Neural computation, 21(1):9–45, 2009.

[19] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multi-layer spiking neural
networks. arXiv preprint arXiv:1705.11146, 2017.

[20] Filip Ponulak and Andrzej Kasiński. Supervised learning in spiking neural networks with resume: sequence
learning, classification, and spike shifting. Neural Computation, 22(2):467–510, 2010.

[21] Ioana Sporea and André Grüning. Supervised learning in multilayer spiking neural networks. Neural
computation, 25(2):473–509, 2013.

[22] Eugene M Izhikevich. Solving the distal reward problem through linkage of stdp and dopamine signaling.
Cerebral cortex, 17(10):2443–2452, 2007.

[23] Robert Legenstein, Dejan Pecevski, and Wolfgang Maass. A learning theory for reward-modulated
spike-timing-dependent plasticity with application to biofeedback. PLoS Comput Biol, 4(10):e1000180,
2008.

[24] Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity, and theory of
three-factor learning rules. Frontiers in neural circuits, 9, 2015.

[25] Eric Hunsberger and Chris Eliasmith. Spiking deep networks with lif neurons. arXiv preprint
arXiv:1510.08829, 2015.

[26] LF Abbott, Brian DePasquale, and Raoul-Martin Memmesheimer. Building functional networks of spiking
model neurons. Nature neuroscience, 19(3):350–355, 2016.

[27] Peter O’Connor, Daniel Neil, Shih-Chii Liu, Tobi Delbruck, and Michael Pfeiffer. Real-time classification
and sensor fusion with a spiking deep belief network. Frontiers in neuroscience, 7:178, 2013.

[28] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer. Fast-
classifying, high-accuracy spiking deep networks through weight and threshold balancing. In Neural
Networks (IJCNN), 2015 International Joint Conference on, pages 1–8. IEEE, 2015.

[29] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, and Michael Pfeiffer. Theory and tools for the
conversion of analog to spiking convolutional neural networks. arXiv preprint arXiv:1612.04052, 2016.

9

[30] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking neural
networks: Vgg and residual architectures. arXiv preprint arXiv:1802.02627, 2018.

[31] Peter O’Connor and Max Welling. Deep spiking networks. arXiv preprint arXiv:1602.08323, 2016.

[32] Guillaume Lajoie, Kevin K Lin, and Eric Shea-Brown. Chaos and reliability in balanced spiking networks
with temporal drive. Physical Review E, 87(5):052901, 2013.

[33] Lev Semenovich Pontryagin, EF Mishchenko, VG Boltyanskii, and RV Gamkrelidze. The mathematical
theory of optimal processes. 1962.

[34] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[35] Sophie Denève and Christian K Machens. Efficient codes and balanced networks. Nature neuroscience,
19(3):375–382, 2016.

[36] Martin Boerlin, Christian K Machens, and Sophie Denève. Predictive coding of dynamical variables in
balanced spiking networks. PLoS Comput Biol, 9(11):e1003258, 2013.

[37] Wieland Brendel, Ralph Bourdoukan, Pietro Vertechi, Christian K Machens, and Sophie Denéve. Learning
to represent signals spike by spike. arXiv preprint arXiv:1703.03777, 2017.

[38] Bard Ermentrout. Ermentrout-kopell canonical model. Scholarpedia, 3(3):1398, 2008.

[39] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic feedback
weights support error backpropagation for deep learning. Nature Communications, 7, 2016.

10

Supplementary Materials: Gradient calculation for the spiking neural
network

Pontryagin’s minimum principle According to [33], the Hamiltonian for the dynamics eq (2,3,4) is

H =
∑
i

p̄vi v̇i + p̄si ṡi + l(~s)

=
∑
i

(p̄vi + gip̄si/τ)fi − p̄sisi/τ + l(~s),

where p̄vi and p̄si are the adjoint state variables for the membrane voltage vi and the synaptic current si of
neuron i, respectively, and l(~s) is the cost function. The back-propagating dynamics of the adjoint state variables
are:

− ˙̄pvi =
∂H
∂vi

= (p̄vi + gip̄si/τ)∂vfi + fig
′
ip̄si/τ

− ˙̄psi =
∂H
∂si

=
∑
j

(p̄vj + gj p̄sj/τ) · ∂Ifj Wji − p̄si/τ + lsi

where fi ≡ f(vi, Ii), gi ≡ g(vi), ∂vfi ≡ ∂f/∂vi, ∂Ifi ≡ ∂f/∂Ii, g′i ≡ dg/dvi, and lsi ≡ ∂l/∂si.

This formulation can be simplified via change of variables, pvi ≡ p̄vi + gp̄si/τ , psi ≡ p̄si/τ , which yields

H = ~pv · ~f − ~ps · ~s+ l

−ṗvi = ∂vfi pvi − giṗsi
−τ ṗsi = −psi + lsi +

∑
j

Wji∂Ifj pvj ,

where we used ṗvi = ˙̄pvi + fi g
′
ip̄si/τ + gi ˙̄psi/τ .

The gradient of the total cost can be obtained by integrating the partial derivative of the Hamiltonian with respect
to the parameter (e.g. ∂H/∂Wij , ∂H/∂Uij , ∂H/∂Ioi , ∂H/∂Oij).

11

