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When subjects adapt their reaching movements in the setting of a sys-
tematic force or visual perturbation, generalization of adaptation can be
assessed psychophysically in two ways: by testing untrained locations
in the work space at the end of adaptation (slow postadaptation gen-
eralization) or by determining the influence of an error on the next trial
during adaptation (fast trial-by-trial generalization). These two measures
of generalization have been widely used in psychophysical studies, but
the reason that they might differ has not been addressed explicitly. Our
goal was to develop a computational framework for determining when
a two-state model is justified by the data and to explore the implications
of these two types of generalization for neural representations of move-
ments. We first investigated, for single-target learning, how well standard
statistical model selection procedures can discriminate two-process mod-
els from single-process models when learning and retention coefficients
were systematically varied. We then built a two-state model for multitar-
get learning and showed that if an adaptation process is indeed two-rate,
then the postadaptation generalization approach primarily probes the
slow process, whereas the trial-by-trial generalization approach is most
informative about the fast process. The fast process, due to its strong
sensitivity to trial error, contributes predominantly to trial-by-trial gen-
eralization, whereas the strong retention of the slow system contributes
predominantly to postadaptation generalization. Thus, when adaptation
can be shown to be two-rate, the two measures of generalization may
probe different brain representations of movement direction.
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1 Introduction

Generalization of motor adaptation has been assessed in two different
ways. One approach, postadaptation generalization, is to probe how a fully
learned local remapping generalizes to other unlearned locations or direc-
tions (Imamizu, Uno, & Kawato, 1995; Gandolfo, Mussa-Ivaldi, & Bizzi,
1996; Krakauer, Pine Ghilardi, & Ghez, 2000; Mattar & Ostry, 2007). An-
other way is to assess adaptation by examining how errors experienced
on trial k transfer to another part of the work space in trial k + 1 using
a single-state state-space model (trial-by-trial generalization) (Thorough-
man & Shadmehr, 2000; Baddeley, Ingram, Miall, 2003; Donchin, Francis,
& Shadmehr, 2003; Cheng & Sabes, 2007; Francis, 2008). In both cases, the
goal is to assess how a learned remapping generalizes to untrained areas
of the work space and thereby determine the nature of the representation
used by the brain to encode the learned remapping (Shadmehr, 2004).

This study focuses on directional generalization for multitarget adap-
tation. We have shown that in the case of eight-target visuomotor rotation
adaptation, the two generalization approaches yield similar narrow gen-
eralization patterns that do not extend beyond adjacent targets separated
by 45 degrees (Tanaka, Sejnowski, Krakauer, 2009). We demonstrated that
a population-coding model composed of narrowly tuned computational
units successfully explained both forms of generalization and several
additional experimental observations, such as the wider pattern of gener-
alization and the slower adaptation speed with an increasing number of
training targets. In contrast with these results for rotation adaptation, for
force-field adaptation, the two generalization approaches yielded different
generalization functions, with trial-by-trial adaptation affecting directions
as far as 180 degrees (Thoroughman & Shadmehr, 2000; Donchin et al.,
2003), whereas postadaptation generalization was limited to directions
within 90 degrees of the training targets (Mattar & Ostry, 2007).

How might these differences in generalization for rotations and viscous
force fields be explained? Recently an innovative two-state model of short-
term motor adaptation was proposed that posited a fast process with a fast
learning rate but weak retention and a slow process with a slow learning
rate but strong retention (Smith, Ghazizadeh, & Shadmehr, 2006). A subse-
quent study demonstrated that it is the slow processes that is retained as a
motor memory (Joiner & Smith, 2008). This shows that when initial adap-
tation is made up of more than one process, these processes may go on to
show divergent behavior on subsequent probing and may therefore be sep-
arable. In addition, the two-state model, or its multiple-time scale extension,
was successfully applied to saccadic gain adaptation (Körding, Tenenbaum,
& Shadmehr, 2007; Ethier, Zee, & Shadmehr, 2008). This suggests that an
explanation for why rotation adaptation yielded a single generalization
function for both approaches whereas force-field adaptation yielded two
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different generalization functions is that rotation adaptation is one-rate and
force-field adaptation is two-rate.

This study had two goals. The first was to investigate the reliability of
parameter estimation techniques to determine whether a process is indeed
multirate instead of single rate. The second was to show analytically and
by computational simulation that if adaptation is indeed two-rate, then
the postadaptation approach probes generalization of the slow process,
whereas the trial-by-trial approach evaluated with the single-state model
probes generalization of the fast process.

2 Statistical Tests for Determination of a State-Space Model’s
Dimensionality and Parameters

In a recent study, a computational model with fast and slow timescales
successfully explained savings, anterograde interference, spontaneous re-
covery, and rapid unlearning to adaptation in a viscous force field (Smith
et al., 2006). One critical question when applying multirate models to exper-
imental data is the degree to which the model’s parameters need to differ in
order for a standard statistical test to be able to detect multiple processes. We
investigated this issue by fitting state-space models to artificially generated
error data and performing statistical tests. We first simulated a two-state
model and then determined how well standard statistical tests can recover
the state-space model’s parameters.

A two-state model with a state vector x = (x(f) x(s))T includes a process
equation and an observation equation defined as

{
xk+1 = Axk + B�yk + wk

yk = Cxk + vk

, (2.1)

where the matrices are

A =
⎛
⎝ a(f) 0

0 a(s)

⎞
⎠ , B =

⎛
⎝ b(f)

b(s)

⎞
⎠ , C = (1 1) . (2.2)

Here k is a trial number. We focus on trial-based (i.e., discrete time)
state-space models with a fixed intertrial interval and briefly summarize
the relation between discrete- and continuous-time state-space models in
appendix A.

For simplicity, we assumed that motor adaptation obeyed the Markov
property: the next state depends on only the current state and the error
experienced at the current trial. The feedback error �yk = uk − yk drives the
adaptation process when an external perturbation (uk) such as a visuomotor
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rotation or force-field perturbation is imposed. Here the two processes were
assumed to develop independently (i.e., no off-diagonal components in A;
for a discussion on the roles of off-diagonal components, see Criscimagna-
Hemminger & Shadmehr, 2008) and to contribute to output equally. We will
refer to a’s and b’s in equation 2.2 as retention and learning coefficients, re-
spectively. The process and measurement noises are assumed to be gaussian
as

wk ∼ N(0, Q) and vk ∼ N(0, R). (2.3)

Given values in the process matrices (A and B) and the noise covariance
matrices (Q and R), it is possible to simulate artificial error data {�yk}.

When a constant perturbation, uk = ū, is imposed, the average behavior
of two-state model can be solved analytically. We used arbitrary units for
the perturbations, so we set ū = 1 for the following discussion. We set the
noise terms to zero in equation 2.1, and the fast and slow processes can
develop as

{
x(f)

k+1 = a(f)x(f)
k + b(f)�yk

x(s)
k+1 = a(s)x(s)

k + b(s)�yk

, (2.4)

�yk = ū − x(f)
k − x(s)

k , (2.5)

where all variables are scalar. From these equations, the output at the kth
trial is

yk ≈ [d1e−λ+k + d2e−λ−k + d3]ū, (2.6)

where di are constants. Assuming the retention factors and learning gains
are small, the decay constants λ± are

λ± = 1
2

[(1 − a(f) + b(f)) + (1 − a(s) + b(s))]

±
√

[(1 − a(f) + b(f)) − (1 − a(s) + b(s))]2 + 4b(f)b(s). (2.7)

Thus, a double-exponential time course of adaptation can occur with a
two-state model but not with a single-state model. Therefore, if experimen-
tal data exhibit two timescales, a single-state model is incapable of modeling
the data and a two-state model is justified. The same result also applies to
multitarget training: a single-state model has a single timescale and hence
cannot explain a learning curve with more than one time constant.
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2.1 Maximum Likelihood Method. When there is more than one pos-
sible model for describing experimental data, they can be compared using
a statistical test that provides a measure of the goodness of fit of a model.
We tested how two standard methods of system identification estimated
the model’s dimensionality: maximum likelihood (ML) estimation and the
prediction error (PE) estimation. The ML estimation finds a parameter value
set θ that maximizes log likelihood,

log L
[
θ |y1:N

] = log p
(
y1:N|θ)

= log p
(
y1|θ

) +
N∑

n=2

log p
(
yn|y1:n−1, θ

)

= −
Ndy

2
log(2π) − 1

2
log det

(
C�1CT + R

)

−1
2

N∑
n=2

{log det �
y
n|n−1 + (y − ŷn|n−1)

T (�
y
n|n−1)

−1(y − ŷn|n−1)},

(2.8)

where the estimated value of yn given {y1, ..., yn−1},

ŷn|n−1 = E[yn|{y1, · · · , yn−1}, θ ], (2.9)

and its covariance,

�
y
n|n−1 = cov

[
yn|

{
y1, . . . , yn−1

}
, θ

]
(2.10)

are obtained using a standard Kalman filter forward computation (Kalman,
1960). Here N is the number of experimental trials in a single run. In the
two-state model, we parameterized the covariance matrices as

Q = σ 2
wI2, R = σ 2

v and cov[x1] = σ 2
1 I2, (2.11)

and a nine-dimensional parameter vector,

θML
2state = (

a(f), a(s), b(f), b(s), σw, σv, x(f)
1 , x(s)

1 , σ1

)
, (2.12)

was optimized to maximize the log likelihood. In the single-state model
defined as

{
xk+1 = axk + b�yk + wk

yk = Cxk + vk

, (2.13)
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a six-dimensional parameter vector,

θML
1state = (a, b, σw, σv, x1, σ1), (2.14)

was optimized. These parameters can be optimized by either numerical
maximization (Gupta & Mehra, 1974) or expectation-maximization (EM)
algorithms (Shumway & Stoffer, 1982, 2000). We used a numerical maxi-
mization method (the Nelder-Mead simplex method) rather than EM al-
gorithms because we found that the latter were slower and less robust in
convergence. For a statistical comparison of multiple models, we used the
Akaike information criterion (Akaike, 1974):

AIC = 2d − 2 log L[θ̂ML|y1:N] (2.15)

Here d is the number of estimated parameters: d= 9 for the two-state model
and d=6 for the single-state model. We optimized both parameter vectors
θML

1state and θML
2state that maximize the log likelihood, computed the AICs, and

determined which state-space model was selected by the AIC criterion.

2.2 Prediction Error Estimation Method. Given an initial estimate of
the system matrices, artificial error data were generated using the two-state
model, equation 2.1, or the single-state model, equation 2.13. In the PE
estimation method, the parameter vector was obtained by minimizing a
squared difference between data and estimated error (i.e., prediction error;
Goodwin & Sin, 1984):

V =
N∑

k=1

(�yk − �ŷk)
2. (2.16)

The state-space model parameter vector to be optimized is a three-
dimensional vector θPEM

1state = (a, b, x1) for the single-state model or a six-
dimensional vector and θPEM

2state = (a(f), a(s), b(f), b(s), x(f)
1 , x(s)

1 ) for the two-state
model. As a model selection criterion, we used a future prediction error
(FPE) (Akaike, 1969; Ljung & Ljung, 1987), defined as

FPE = 1 + d/N
1 − d/N

V. (2.17)

We used the same parameterization of the state-space models as defined
above for ML estimation. As in the ML method, we optimized the parameter
vectors, computed the FPEs, and selected the state-space model by the FPE
criterion.
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2.3 Numerical Results.

2.3.1 Dimensionality Estimation. We created surrogate error data using
the two-state state-space and estimated the dimensionality using the two
statistical model selection methods described. Several factors affect statisti-
cal tests of a state-space model’s dimensionality and parameter estimation:
noise strength, length of artificial error data, and state-space model param-
eters. First, if noise strength is substantial, multiple time constants in error
data may be misinterpreted as a single time constant process. Second, val-
ues of the retention and learning coefficients for the fast and slow processes
in the two-state model need to differ enough to be distinguishable from
the single-state model. Finally, the number of error trials, N, will determine
the balance between the goodness of fit and the number of parameters.
To simplify our discussion, we focused on the influence of noise strength
and state-space model parameter values by fixing the number of simulated
trials to 100.

To generate the error data, the retention coefficient for the slow process
and the learning coefficient for the fast process were fixed (a(s) = 0.99 and
b(f) = 0.20), and the ratios,

r(a) = a(f)

a(s) , r(b) = b(s)

b(f)
, (2.18)

were systematically varied from 0.10 to 0.97 in steps of 0.03, because we
were interested in the difference between the coefficients of fast and slow
processes. The same qualitative results were obtained (not shown) using
four different sets of anchoring values for a(s) and b(f) [(0.96, 0.20), (0.93,
0.20), (0.99, 0.15) and (0.99, 0.20)] . We performed a Monte Carlo simulation
for the estimation of dimensionality. First, 100 trials of artificial error data
were generated by simulating the two-state state-space model, equation 2.1,
and then the optimal dimensionality was determined (i.e., either the single-
or two-state model was chosen) using the statistical tests (ML or PE). This
procedure was repeated five times to obtain an average of estimated di-
mensionality. We considered three noise magnitudes: (1) σ 2

w = 1 × 10−4 and
σ 2

v = 3 × 10−4, (2) σ 2
w = 5 × 10−4 and σ 2

v = 15 × 10−4, and (3) σ 2
w = 10 × 10−4

and σ 2
v = 30 × 10−4. Typical realizations of artificial error data are shown

in Figure 1. Note that although the average error curves exhibited two
time-constant behaviors (initial rapid decrease and subsequence gradual
decrease in error), the noisier the learning curves become, the more difficult
it is to identify multiple time constants from the data. The noise used in the
first condition (σ 2

w = 1 × 10−4 and σ 2
v = 3 × 10−4) was roughly of the same

order of magnitude as in our previously published result for visuomotor
rotation adaptation (Zarahn, Weston, Liang, Mazzoni, & Krakauer, 2008)
(σ 2

w=2.530 (deg2) and σ 2
v=12.791 (deg2) or σ 2

w= 1.95 × 10−5 and σ 2
v= 9.87 ×

10−5 in dimensionless unit). Additional simulations confirmed that instead
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Figure 1: Typical error curves generated by simulating the two-state model,
equation 2.1, with (A) σ 2

w
= 1 × 10−4 and σ 2

v
= 3 × 10−4, (B) σ 2

w
= 5 × 10−4 and

σ 2
v

= 15 × 10−4, and (C) σ 2
w

= 10 × 10−4 and σ 2
v

= 30 × 10−4. Thin gray lines de-
pict individual realizations, and thick black lines depict average error curves.
External perturbations are 0 in trials 1–30 and 1 in trials 31–100 (shaded areas).

of fixing the ratio of the noise magnitudes, increasing the noise magnitude
of either process or measurement noise independently yielded qualitatively
similar dimensional estimates.

Figures 2A to 2C show the dimensionality estimated by the ML method
and Figures 2D to 2F the PE method. Three general conclusions follow from
these simulation results. First, as the noise strengths increased, multiple
timescales were lost, and a single-state model with a single time constant
was favored, as we expected. Second, retention coefficients (a’s in equation
2.2) needed to differ in order for multiple processes to be identified, whereas
the difference between the learning coefficients (b’s in equation 2.2) had little
influence on the dimensional estimation. Finally, the ML and PE methods
yielded qualitatively similar estimation methods, although the results of
the PE method appeared more robust in the setting of noise compared to
the ML method.

2.3.2 Parameter Estimation. We then asked how well the two methods
could reproduce the state-space parameters. This time we fixed the state-
space parameters (a(s) = 0.99, b(f) = 0.20, r(a) = r(b) = 0.20) to generate arti-
ficial data and computed the estimated ratios r̂(a) = â(f)/â(s), r̂(b) = b̂(s)/b̂(f).
This procedure was iterated 1000 times to obtain estimated distribu-
tions of ratios. We used two different noise levels; (1) σ 2

w = 1 × 10−4 and
σ 2

v = 3 × 10−4 and (2) σ 2
w = 5 × 10−4 and σ 2

v = 15 × 10−4.
Figure 3 summarizes the parameter values obtained by the ML method

(red histograms in Figures 3A and 3B) and by the PE method (blue his-
tograms in panels A and B). The two estimation methods gave qualitatively
similar results, although the ML provided tighter distributions. The esti-
mated distributions of the retention coefficient ratio were almost symmet-
rical and centered at the true value, whereas the estimated distributions of
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Figure 2: Estimation of state-space dimensionality using ML estimation
(A, B, C) and PE estimation (D, E, and F). Three levels of noises were considered:
(A, D) σ 2

w
= 1 × 10−4 and σ 2

v
= 3 × 10−4; (B, E) σ 2

w
= 5 × 10−4 and σ 2

v
= 15 × 10−4;

and (C, F) σ 2
w

= 10 × 10−4 and σ 2
v

= 30 × 10−4.

the learning coefficient ratio were skewed and peaked at the true value.
The estimation of the learning coefficients was found to be more precise
than that of the retention coefficients in both estimation methods. When
the noise strengths were increased (see Figures 3C and 3D), the estimated
distributions became broader, but essentially the same trend was observed.
In summary, our simulations showed that the ML and PE estimation meth-
ods provided similar results for both the dimensionality and the parameter
values of state-space models.

2.4 Robustness of the Estimation Methods. We here examine the ro-
bustness of the estimation methods in simulating motor adaptation pro-
cesses when some simplifying assumptions are violated: (1) process and
measurement noises are gaussian, (2) the learning function in response to
movement error is linear, and (3) perturbations are constant. Although these
assumptions are often made in system identification, they are not strictly
valid, so there is a risk of applying an inappropriate state-space model and
producing biased estimates in parameter estimation.

We therefore relaxed these assumptions in simulations of the two-state
state-space model (see equation 2.1), and tested how well the parameters
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Figure 3: Distributions of the estimated coefficient ratios by Monte Carlo
simulations using ML estimation (red histograms) and PE estimation (blue
histograms) for noise values (A, B) σ 2

w
= 1 × 10−4 and σ 2

v
= 3 × 10−4 and

(C, D) σ 2
w

= 5 × 10−4 and σ 2
v

= 15 × 10−4. The dashed vertical lines indicate
the value of the ratios used to generate artificial error data.

were estimated. Both the PE and ML methods yielded similar results in these
tests, but only the results of ML method will be shown. The covariances of
process and measurement noises were fixed at σ 2

w = 1 × 10−4 and σ 2
v = 3 ×

10−4, respectively, and the state-space model parameters were a(s) = 0.99,
b(f) = 0.20, and r(a) = r(b) = 0.20.

We first investigated the effects of having nongaussian processes and
measurement noise. We used a Pearson distribution parameterized by the
four first cumulants (mean, variance, skewness, and kurtosis). The skew-
ness and kurtosis were systematically varied for both the processes and
measurement noise. Highly nongaussian distributions such as bimodal dis-
tributions were not considered. The ML estimation method was applied to
artificially generated noise data for two levels of skewness, −0.5 and 0.5
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Figure 4: Robustness of parameter estimation for nongaussian noise. (A) Skew-
ness systematically varied. (B, C) Box plots of estimated ratios of parameters
for the skewed distributions. (D) Kurtosis was systematically varied. (E, F) Box
plots of estimated ratios of parameters for sub- and supergaussian distributions.

(shown in Figure 4A). The results in Figures 4B and 4C confirmed that the
parameter estimation was little affected by these moderately skewed dis-
tributions. Next, simulated artificial error data were generated (see Figure
4D) at four levels of kurtosis (2.0, 2.5, 3.5, and 4.0). The ML parameter esti-
mation was minimally affected by varying the kurtosis over a wide range
of subgaussian (kurtosis smaller than 3) and supergaussian (kurtosis larger
than 3) distributions (see Figures 4E and 4F).

The influence of using a nonlinear learning function was investigated
next. Fine and Thoroughman (2006) reported that perceived error during
motor learning was linear for small errors but was saturated at an upper
bound when the error was relatively large. To model this nonlinear effect,
the linear error term (�yk) was replaced with a function that saturated for
large inputs, s · tanh

(
�yk/s

)
, where s is a scale parameter controlling the

degree of nonlinearity:

⎧⎨
⎩ xk+1 = Axk + B · s · tanh

(
�yk

s

)
+ wk

yk = Cxk + vk

. (2.19)
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When s is small, the learning function is less sensitive to large errors, re-
sulting in slower learning curves, as illustrated in Figure 5A. Artificial error
data were generated using this nonlinear state-space model and were then
fitted by ML to a linear two-state state-space model with gaussian noise
(see equation 2.1). Essentially the same results were obtained, confirming
the robustness of our estimation methods, although small estimation biases
were observed, especially in estimating r̂(b) (see Figures 5B and 5C). This
occurred because the learning rate of the fast process was underestimated
due to the saturation of nonlinear learning function.

Finally, a random perturbation (gaussian perturbations with a mean of
0 and standard deviation of 1) was used to generate artificial error data,
to which the ML method was applied. As in the case of constant perturba-
tions, the estimated values for the ratios of retention and learning coeffi-
cients were recovered (see Figures 5D and 5E). Estimation of the learning
coefficients was more accurate (i.e., had smaller variance), but estimation of
the retention coefficients was less accurate (i.e., larger variance) for random
perturbation than for constant perturbation.

In summary, the estimation methods were robust even when some of the
standard assumptions were violated, giving us more confidence that the
fitting procedures can safely be applied to experimental data.

2.5 Reliability of Dimensional Estimation. To apply our estimation
methods reliably to experimental data, we need to assess how often multiple
processes are identified from data generated from a single-state model, and
vice versa (false positives). We thus generated error data by simulating
single- and two-state models with various numbers of trials and applied
our dimensional estimation methods.

A range of trial numbers was tested from 60 to 240 in steps of 30 trials
(the initial 30 trials were baseline, and the perturbation was turned on there-
after). Estimated dimensions were computed as functions of the number of
trials. Dimensional and parameter estimation depends on factors other than
the number of trials, such as values of retention and learning coefficients and
noise variances. According to Figure 2, the retention coefficients (a) were
more influential than the learning coefficients (b), so several values of the
retention coefficients were examined while the learning coefficients were
fixed. First, the ML estimation method was applied to error data generated
with the single-state model (see equation 2.13). The value of the retention
coefficient was set to 0.80, 0.90, or 0.95, and the learning coefficient was set
to 0.2. Three levels of noise magnitudes were considered. For each number
of trials, the ML estimation was applied to 50 independent realizations, and
their mean value of estimated dimensions from each run was used as the
estimated dimensionality. The results showed a gradually increasing trend
of identifying the correct dimensionality (which was one in this case) with
the increasing number of trials (see Figure 6). Also, our dimensional esti-
mation method was quite robust against the noise. For noise magnitudes



Generalization and Multirate Models of Motor Adaptation 951

Fi
gu

re
5:

R
ob

us
tn

es
s

of
th

e
le

ar
ni

ng
fo

r
no

nl
in

ea
r

le
ar

ni
ng

fu
nc

ti
on

s.
(A

)L
ea

rn
in

g
cu

rv
es

fo
r

a
no

nl
in

ea
r,

sa
tu

ra
ti

ng
fu

nc
ti

on
(s

ee
eq

ua
ti

on
2.

19
).

(B
,C

)B
ox

pl
ot

s
of

es
ti

m
at

ed
ra

ti
os

of
m

od
el

pa
ra

m
et

er
s.

(D
,E

)B
ox

pl
ot

s
of

es
ti

m
at

ed
ra

ti
os

of
m

od
el

pa
ra

m
et

er
s

fo
r

ra
nd

om
pe

rt
ur

ba
ti

on
s.



952 H. Tanaka, J. Krakauer, and T. Sejnowski

Figure 6: Averaged estimated dimension as a function of the number of trials
when error data were generated from a single-state model. The noise variances
were (A) σ 2

w
= 1 × 10−4 and σ 2

v
= 3 × 10−4, (B) σ 2

w
= 5 × 10−4 and σ 2

v
= 15 ×

10−4, and (C) σ 2
w

= 10 × 10−4 and σ 2
v

= 30 × 10−4.

that fall in the range reported experimentally for visuomotor rotation (see
Figure 6A), 100 trials should be sufficient to achieve the correct result with
a probability of over 90%.

Next, the ML estimation method was applied to error data generated
with the two-state model, equations 2.1 and 2.2. The retention coefficient
of the slow process (a(s)) was fixed to 0.99, and three values of the ratio
r = a(f)/a(s) were examined (0.80, 0.90, and 0.95). The learning coefficients
b(f) and b(s) were set to 0.2 and 0.02, respectively. As in the previous sim-
ulation, three sets of noise variances were considered. The results showed
that as in the case of the single-state model, the probability of correctly
estimating the model dimensions was a gradually increasing function of
the number of trials, and the difference between time constants of the
two processes was relevant in recovering the correct dimensionality (see
Figure 7). If the ratio of retention coefficients was 0.8, the estimation method
could recover the correct dimensionality within 200 trials. When the num-
ber of trials is small or the noises are significant, there is in general a bias
toward a single-state model, so the AIC is biased in this case as we expected.

These results suggest a heuristic for estimating the dimensionality from
experimental data: acquire error data for at least a few hundred trials and
apply the dimensional estimation method to some of the data with an
increasing number of trials. If the estimated dimensionality tends to increase
with the number of trials, multiple timescales are indicated. If instead the
estimated dimensionality decreases with an increasing number of trials, a
single-state model is selected.

3 A Two-State State-Space Model for Multitarget Adaptation

The original formulation of two-state model (Smith et al., 2006) was de-
signed to describe single-target adaptation and is not able to describe
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Figure 7: Averaged estimated dimension as a function of the number of trials
when error data were generated from a two-state model. The noise variances
were (A) σ 2

w
= 1 × 10−4 and σ 2

v
= 3 × 10−4, (B) σ 2

w
= 5 × 10−4 and σ 2

v
= 15 ×

10−4, and (C) σ 2
w

= 10 × 10−4 and σ 2
v

= 30 × 10−4.

generalization to multiple targets. Here we extended their model to a gen-
eral state-space model for directional errors to multiple targets with two
states composed of fast and slow adaptation processes.

Consider a motor adaptation paradigm consisting of eight targets sep-
arated by 45 degrees and arrayed on a circle (0◦, ±45◦, ±90◦, ±135◦, and
180◦). The scalars of fast and slow processes (x(f) and x(s)) in equation 2.1
are generalized to eight-dimensional vectors whose components represent
the learning to eight targets. The two-state model consists of two eight-
dimensional state vectors—a fast state (X(f)) representing the fast process
and a slow state (X(s)) representing the slow process. Their trial-by-trial
update is defined as

⎧⎨
⎩

X(f)
k+1 = A(f)X(f)

k + B(f)HT
k �yk

X(s)
k+1 = A(s)X(s)

k + B(s)HT
k �yk

. (3.1)

Here the subscripts (k) denote trial number. The pth component of the state
vectors X(f) and X(s) denotes the fast and slow processes’ contribution to the
hand movement direction when the target p (p = 1, . . . , 8) is shown. Each
process in equation 3.1 is similar to single-state state-space models previ-
ously proposed but with minor differences: Thoroughman and Shadmehr
(2000) used perturbation inputs rather than motor errors, whereas Donchin
and colleagues (2003) defined their model without retention factors (i.e., A
was set to one). The 8 × 8 retention factor matrices, (A(f), A(s)), are the part
of the current states that will have decayed by the next state. For simplicity,
these matrices are assumed to be identity matrices multiplied by scalars.
The 8 × 8 generalization matrices, (B(f), B(s)), are the part of the current er-
ror that generalizes to other target directions. The 1 × 8 observation matrix,
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Hk, in equation 3.1 converts a scalar error into a vector. If a target is pre-
sented in the pth direction in the kth trial, the pth component of Hk is set
to one and the other components to zero. Those state vectors consist of
eight components that correspond to hand movement directions for the
eight targets, respectively. The diagonal components of the generalization
matrices, (B(f), B(s)), determine, separately for the two processes, how fast
motor adaptation occurs for each target, and the off-diagonal components
determine how much an error (�yk) experienced at one target at kth trial
generalizes to other targets. In theory, generalization patterns from the two
processes can take distinct shapes. The retention factors,(A(f), A(s)), describe
how the learned remapping decays. The fast process is assumed to learn and
forget much more quickly than the slow process (B(f) � B(s), A(s) � A(f)).
Prior to adaptation, the initial values of the fast and slow processes were
zero.

We assumed that the fast and slow processes linearly contribute to motor
output yk. The observation matrix Hk in the observation equation,

yk = Hk(X
(f)
k + X(s)

k ), (3.2)

extracts one performed movement direction depending on what target is
presented; the movement direction is assumed to be the sum of fast and
slow processes. The change �yk= ū − yk, where ū is a constant imposed
perturbation, is the directional error measured in work-space coordinates
that drives motor adaptation. Equations 3.1 and 3.2 can be used to generate
artificial directional error data for any sequence of target presentations.

We show below that the multitarget two-state model (see equations 3.1
and 3.2) can be reduced to the single-target two-state model (see equation
2.1) if averages over independent runs with randomized target orders are
considered. Because the state-space model is not time invariant (the ob-
servation matrix Hk depends on the target direction at the kth trial), an
analytical solution cannot be obtained. If, however, target directions are
presented in a uniformly random order, the mean learning curve averaged
over repeated runs can be obtained by replacing Hk with its expected value,
H̄ = (1/8, . . . , 1/8)T . With this approximation, the fast and slow state vec-
tors can be reduced to their mean scalars as

x(f)
k = 1

8

8∑
i=1

(
X(f)

k

)
i, x(s)

k = 1
8

8∑
i=1

(
X(s)

k

)
i. (3.3)

The multitarget state-space model, equations 3.1 and 3.2, is then reduced to
the single-target state-space model, equations 2.1 and 2.2 with the following
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replacements:

a(f) = 1
8

8∑
i=1

(
A(f))

ii, a(s) = 1
8

8∑
i=1

(
A(s))

ii, (3.4)

b(f) = 1
82

8∑
i, j=1

(
B(f))

i j, b(s) = 1
82

8∑
i, j=1

(
B(s))

i j. (3.5)

Therefore, we can apply the same statistical tests (the AIC criterion of ML
or the FPE criterion of the PE method) to multitarget state-space models to
determine whether there is a single process or there are multiple concurrent
processes. In psychophysical experiments, in order to determine whether
there is a single process or there are multiple processes in multitarget motor
adaptation, the statistical methods described in section 2 can be applied to
learning curves obtained by averaging independent runs with randomized
target presentation orders.

Here, to reduce the multitarget model to a single-target model, the aver-
age over independent runs with randomized target order was assumed. Al-
though this is a standard procedure in machine learning, it is not possible in
psychophysical experiments, where fixed pseudo-randomized target order
is frequently used. We therefore simulated the two-state model equations
3.1 and 3.2, with a fixed target sequence by adding process noise (σ 2

w =
1 × 10−4) and measurement noise (σ 2

v = 3 × 10−4). Each learning curve was
noisy, but their averages clearly demonstrated multiple-time behaviors.
Therefore, even when a fixed target sequence is used, it is possible to detect
multiple timescales if there are enough independent runs with independent
noise.

Generalization of the fast and slow processes in principle could be deter-
mined by directly fitting the two-state model to the experimental trial-by-
trial errors. It was, however, difficult to fit the two-state model reliably due
to the large number of parameters. Instead, we used the single-state model
approach, described below, to evaluate trial-by-trial generalization.

4 Analysis of Trial-by-Trial Generalization Using a Single-State
State-Space Model

We briefly review an approach using a single-state state-space model to
evaluate trial-by-trial generalization from trial error data. (Details can
be found in Tanaka et al., 2009.) To assess how an error experienced in
one direction influences learning in another direction, we used a single-
state state-space model originally introduced for force-field adaptation.
Here, we recast the single-state analysis into a form that is applicable to
any form of motor adaptation, including visuomotor rotation learning.
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The analysis begins by defining a state-space model, which consists of
a state vector, which is usually not directly observable, and an observ-
able variable. The equations that define the single-state state-space model
are

{
Xk+1 = Xk + BHT

k �yk

yk = HkXk

. (4.1)

The first equation describes how an error �yk in the kth trial updates the
current state vector Xk to the next state Xk+1, and the second equation
describes which component of the state vector is actually observed. The
matrix B in equation 4.1 represents how the angular error experienced
in the current trial updates the state vector and thus defines trial-by-trial
generalization. To avoid overfitting, we assumed that the degree of trial-
by-trial generalization depends on only the angular difference between the
current and subsequent direction (−135◦, −90◦, −45◦, 0◦, 45◦, 90◦, 135◦,
and 180◦). We also optimized an initial value of state vector X1 in order to
account for initial biases.

In section 2, we showed that the ML and PE methods give similar results
for estimating state-space model parameters. Therefore, for estimating trial-
by-trial generalization, we used the PE method for its speed and simplicity.
We looked for the parameter value that best explained the data, and the
16 parameters θ ≡ (B, X1) were optimized so as to minimize the quadratic
error:

θ̂ = argmin
λ

∑
k

(
�ydata

k − �ytrial−analysis
k

)2
(4.2)

Here the error time course {�ydata
k } was generated artificially with the two-

state model introduced above (see equations 3.1 and 3.2). Optimal values
of the parameters were searched for using the downhill simplex method
(Press, Teukolsky, Vetterling, & Flannery, 2007). A confidence interval for the
estimated parameters was computed using a standard bootstrap method
(Efron, 1982), and we found that 200 independent samples were sufficient
to obtain reasonably robust results.

5 Trial-by-Trial and Postadaptation Generalization Target
the Fast and Slow Adaptation Processes, Respectively

Starting with the premise that learning has fast and slow processes, it is
of interest to ask how each of these two processes generalizes. One way
to compare generalization functions for the fast and slow processes would
be to directly fit a two-state state-space model, equations 3.1 and 3.2, to
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experimental data and compute the generalization matrices (B(f) and B(s)).
This is difficult to do, however, because of the high dimensionality of the
state-space model with two states. The full model has 34 parameters (16
for initial conditions; 16 for generalization functions, assuming rotational
symmetry; and 2 for the retention factors, assuming A(f) and A(s) to be
diagonal with equal diagonal components).

Instead, we show formally that trial-by-trial generalization and
postadaptation generalization are characterized by fast and slow processes,
respectively. Specifically, using analysis and computational simulations,
we show that trial-by-trial generalization of the state-space model with a
single state arises mainly from fast learning, whereas the postadaptation
generalization function derives from the slow process, provided that cer-
tain conditions regarding learning and retention speed are satisfied. This
claim can be understood intuitively. Because the fast process has a larger
gain than the slow process, the fast process will accordingly make larger
corrections to trial errors. Trial-by-trial generalization reflects mainly the
change in the fast process, namely, the B(f) matrix in equation 3.1. After
completion of adaptation, the fast process will have largely decayed due
to weak retention, leaving the residue of the slow process. Thus, postadap-
tation generalization reflects mainly the net change in the slow process,
namely, the B(s) matrix in equation 3.1.

In the update equation, 3.1, during the initial phase of adaptation, the
fast and slow states are close to their initial values, so the retention terms are
negligible. Thus, trial-by-trial generalization is well approximated by the
average of B matrices (b(f) for B(f) and b(s) for B(s)), and the fast process dom-
inates trial-by-trial adaptation. Postadaptation generalization refers to the
degree to which the fast and slow systems have retained the imposed per-
turbation after the learning has approached its asymptote. The asymptotic
values of the fast and slow processes can be computed using the average
learning curve, respectively:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(f) =
(
1 − a(s)

)
b(f)

‖I − A + BC‖ ū

x(s) =
(
1 − a(f)

)
b(s)

‖I − A + BC‖ ū

. (5.1)

Therefore, the ratio of the average fast and slow processes is given by

x(s)

x(f)
=

(
1 − a(f)

)
b(s)(

1 − a(s)
)

b(f)
. (5.2)

If (1 − a(s))−1 b(s) > (1 − a(f))−1b(f) is satisfied, then the learned remapping
(probed by testing for post-adaptation generalization) is stored mainly in
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the slow process. Note that for single-target viscous force field adaptation,
the values for the learning gains and retention factors found experimentally
satisfy the above conditions: (1 − a(s))−1b(s) = 2.5 > (1 − a(f))−1b(f) = 0.51,
calculated from the parameter values best fit to the experimental data (a(f)=
0.59, a(s)= 0.992, b(f)= 0.21 and b(s)= 0.02) (Smith et al., 2006).

To confirm this analysis, we performed computational simulations with
three combinations of narrow, intermediate, and broadly tuned B matrices
(see Figure 8). In the following simulations, the retention-factor matrices
were assumed to be diagonal, with all diagonal values A(f) = 0.95 · I8 and
A(s) = 0.998 · I8, respectively. When parameterizing B, we assumed rota-
tional symmetry, as for the single-state model, so each matrix was described
by eight row components. We assumed that the diagonal components of
the generalization matrices, which determine trial-by-trial generalization
to the same direction, took a maximal value, and that the value of the
off-diagonal components decreased as the angular difference between the
learned and tested directions increased. The maximal values of the gen-
eralization matrices were fixed at 0.12 and 0.03, respectively, for the fast
and slow processes. With these parameter values, the statistical tests de-
scribed in section 2 identify two concurrent processes rather than one. Sim-
ilar results were also observed when the values for the fast process were
larger than those of the slow process and (1 − a(s))−1b(s) > (1 − a(f))−1b(f).
Artificial error data were generated using the two-state model with var-
ious gaussian widths for B(f) and B(s): (A) (σ (f), σ (s)) = (1◦, 60◦), (B)
(σ (f), σ (s)) = (30◦, 30◦), and (C) (σ (f), σ (s)) = (60◦, 1◦). Our analysis indi-
cated that the sums over the components of B matrices, equation 4.1,
determine how much the fast and slow processes contribute to trial-by-
trial and postadaptation generalization, respectively. The values of b( f ),
b(s), (1 − a(f))−1b(f), and (1 − a(s))−1b(s) computed from the various gaus-
sian widths are summarized in Table 1. The conditions b(f) > b(s) and
(1 − a(s))−1b(s) > (1 − a(f))−1b(f) are satisfied for these three sets of gaussian
widths.

We first investigated which process contributes more to trial-by-trial
generalization. The two-state model was trained with eight targets to
produce artificial error data, and trial-by-trial generalization was then as-
sessed using the single-state state-space model. The shapes of the trial-by-
trial generalization functions were found to reflect mainly the width of
the B matrix for the fast process (the middle row of Figure 8). We next
investigated which process contributes most to postadaptation general-
ization. The two-state model was trained with a single target with the
motor perturbation, and the degree of generalization was computed after
the training was completed. As predicted, the width of the postadaptation
generalization function mainly reflects the slow process (the bottom row
of Figure 8). Trial-by-trial and postadaptation generalization have similar
shapes only when the fast and slow processes have similar widths for their
B matrices.
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Table 1: Summary of Parameter Values Used for the Simulation of Figure 8.

b(f) b(s) (1 − a(f) )−1b(f) (1 − a(s) )−1b(s)

(A) (σ (f), σ (s) ) = (1◦, 60◦) 0.12 0.099 2.40 49.95
(B) (σ (f), σ (s) ) = (30◦, 30◦) 0.20 0.050 4.012 25.05
(C) (σ (f), σ (s) ) = (60◦, 1◦) 0.40 0.030 8.10 15.00

In summary, we conclude that if motor adaptation has a fast and a slow
adaptation process, then trial-by-trial generalization will reflect the fast
process and postadaptation generalization the slow process.

A recent study demonstrated that the decrease in relearning rate in
A1BA2 paradigms, or anterograde interference, can be explained with a
two-state model (Sing & Smith, 2010). Anterograde interference is defined
as how the memory of task A1 interferes with the subsequent learning of
task B. A two-state model attributes anterograde interference to the mem-
ory stored in the slow process, and the degree of anterograde interference
increases with the duration of learning of task A1. These predictions from
the two-state model were confirmed experimentally.

Our multitarget two-state model posits that the slow process contributes
mainly to postadaptation generalization once adaptation is almost com-
plete. The model also makes an interesting prediction: the pattern of
postadaptation should reflect that of the fast process if adaptation is prema-
turely terminated and should approach that of slow process asymptotically.
Therefore, in addition to the degree of anterograde interference, a buildup
of the slow process should be manifest as a gradual transition in the shape
of postadaptation generalization if the fast and slow systems have distinct
generalization matrices.

We simulated anterograde interference and postadaptation generaliza-
tion with various numbers of single-target adaptation trials. We considered
a narrow (1◦) and a broad (90◦) shape of fast and slow process, respectively,
and vice versa. In initial 10, 20, 40, and 160 trials, positive perturbations (+1)
were imposed, and in subsequent trials, negative perturbations (−1) were
delivered. The adaptation rate became slower as the number of adaptation
trials increased, suggesting anterograde interference of prior learning of the
positive perturbations to subsequent learning of the negative perturbations
(see Figure 9A). Accordingly, the shape of postadaptation generalization
changed gradually from one mostly reflecting the fast process to another
mostly reflecting the slow process (see Figures 9B and 9C).

6 Discussion

Starting with the premise that motor adaptation is mediated by slow
and fast processes (Smith et al., 2006), we showed analytically and with
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Figure 9: (A) Learning curves of opposite perturbations (−1) (aligned at the
zero crossing point) after learning positive perturbations for 10, 20, 40, and 160
trials. The red solid line denotes the learning curve without prior learning as
a comparison. (B, C) Gradual transition in the shape of postadaptation gener-
alization after learning positive perturbations for 10, 20, 40, and 160 trials. The
red solid and dashed lines show the normalized generalization functions for
the fast and slow systems, respectively.

computational simulations that these two processes lead to double expo-
nential learning curves and are reflected, respectively, in the postadap-
tation and the trial-by-trial measures of generalization. The question of
whether the fast and slow processes had the same or different generaliza-
tion functions was not addressed in the original two-rate adaptation model.
Our formal demonstration suggests that psychophysical investigation us-
ing the two generalization measures can probe their corresponding neural
representations.

6.1 Visuomotor Rotation Learning. The generalization function for ro-
tation learning had the same shape whether it was obtained by testing in
untrained directions at the end of adaptation or derived from a state-space
model with a single state (Tanaka et al., 2009). There are two potential
explanations. The first is that rotation adaptation is single-rate. This is cer-
tainly the case for one-target rotation adaptation (Zarahn et al., 2008). The
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second is that multitarget rotation adaptation is two-rate. We found that
double exponentials fits were significantly better than single exponentials
to eight-target rotation adaptation data in our previous paper (Tanaka et al.,
2009), consistent with an initial fast adaptation process followed by a slower
one (Smith et al., 2006). This difference between one-target and multitarget
learning could be biologically interesting in and of itself, or it could be an
artifact of the parameter estimation procedures. Multitarget learning curves
were assessed using 264 trials (Tanaka et al., 2009), but in single-target learn-
ing, only 80 trials were analyzed (Zarahn et al., 2008). As we noted, the AIC
criterion prefers single-state models to two-state models when the number
of error trials is insufficient (see equation 2.15 and section 2.3.1). Further ex-
periments with different-sized rotations and different target numbers may
help resolve this issue.

6.2 Force-Field Adaptation. For force-field adaptation, different gener-
alization functions have been described depending on the approach used
to derive them. The postadaptation approach to generalization for viscous
force-field learning found no generalization beyond 90 degrees from the
training direction (Mattar & Ostry, 2007). In contrast, state-space models
yielded a broader bimodal pattern of trial-by-trial generalization (Thor-
oughman & Shadmehr, 2000; Donchin et al., 2003). Our theoretical analysis
suggests that this apparent contradiction arises because Mattar and Ostry
(2007) probed the slow adaptation process, whereas previous force-field
generalization studies studied the fast process. This distinction indicates
that in the case of force-field adaptation, fast and slow processes have dis-
tinct neural correlates with different directional tuning properties. Thus,
force-field adaptation differs from rotation adaptation with respect to both
the dimensionality of the state-space model and the widths of the gen-
eralization functions. This is in agreement with our previous contention
that kinematic and dynamic adaptation are distinct learning processes
(Krakauer, Ghilardi, & Ghez, 1999). It is also of interest that recent work
has shown that the fast process in force-field adaptation may be mechanis-
tically distinct from the slow process (Smith et al., 2006; Keisler & Shadmehr,
2010). Thus, differences in generalization for the two processes might be less
surprising.

Further comment is required, however, with respect to the state-space
modeling results for viscous curl force-field learning that have suggested
substantial bimodality, with generalization to opposite movement direc-
tions reaching nearly 90% if invariant desired trajectories were assumed
(Donchin et al., 2003). However, results from the same paper suggest less
than 10% generalization to opposite-movement directions if desired tra-
jectories were assumed to be variable. State-space modeling results from
Thoroughman and Shadmehr (2000) suggest about 27% generalization to
opposite-movement directions. A direct comparison between those results
is difficult because these two papers adopted different definitions for their
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generalization functions, with motor error given in terms of either a scalar
or vector. Whether the disparity between these results resulted from this
methodological subtlety will require future confirmatory experiments.

6.3 Nonlinear Interactions. We should emphasize that the state-space
framework assumes that adaptation processes are linear time-invariant
(LTI). It is interesting that under certain experimental conditions, adaptation
paradigms do indeed generate several phenomena that are well predicted
by LTI state-space models (Smith et al., 2006; Tanaka et al., 2009). However,
adaptation experiments also yield phenomena that are not LTI. For ex-
ample, we recently showed that savings can occur for rotation adaptation
after complete washout (Zarahn et al., 2008), a finding that is incompatible
with any LTI multirate model. Similarly, in previous work, we showed that
interference can persist in the absence of aftereffects (Krakauer, Ghez, &
Ghilardi, 2005). Thus, dissociation of savings and interference effects can-
not be explained by current LTI state-space models. One proposed solution
is that memories can be protected by contextual cues (Lee & Schweighofer,
2009); modulation by context is by definition nonlinear. Alternatively, qual-
itatively distinct memory processes may be operating over trials compared
to those operating over longer time periods; that is, time and trial may
have distinct effects, with only trials corresponding to LTI-based state-
space models. We suggest that error-based LTI models capture short-term
adaptation processes that are likely cerebellar based (Tseng, Diedrichsen,
Krakauer, Shadmehr, & Bastian, 2007; Criscimagna-Hemminger, Bastian, &
Shadmehr, 2010; Taylor & Ivry, 2011) and that deviations from LTI models
represent the presence of additional learning processes, and not necessarily
and error in the models themselves (Huang, Haith, Mazzoni, & Krakauer
2011). It is to be hoped that the structure of behavioral deviation from the
predictions of LTI state-space models will be informative and can lead to
new experiments and the formulation of new models.

Appendix A: Trial-Based and Time-Based State-Space Models

Here we discuss the relationship between continuous- and discrete-time
state-space models and show that the learning coefficients in discrete-time
models depend on the forgetting factors for continuous-time models and the
intertrial interval (see also Ethier et al., 2008). The decay of motor memory
is a continuous-time process, whereas error-based learning is a trial-based,
discrete-time process:

dx̃
dt

(t) = Ãx̃ (t) + B̃�ỹ (t) , (A.1)

where the error correction term is �ỹ(t) = ∑
k �ykδ(t − ktITI), which takes

nonzero values only at movement trials. tITI is an intertrial interval, and
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the kth trials occur at t = ktITI. Here we use a tilde notation to indicate
continuous-time variables. The matrices are defined as

Ã =
(

ã(f) 0

0 ã(s)

)
, B̃ =

(
b̃(f)

b̃(s)

)
. (A.2)

−ã(f) and −ã(s) are the reciprocals of decay time constants of fast and slow
systems, respectively. Here, by definition, 0 > ã(s) > ã(f) and b̃(f) > b̃(s) > 0.
By integrating equation A.1 over the time period [ktITI, (k + 1)tITI), we obtain
the discrete-time state-space model, equation 2.1. The matrices are equated
as

A =
(

a(f) 0

0 a(s)

)
=

(
eã(f)tISI 0

0 eã(s)tISI

)
,

B =
(

b(f)

b(s)

)
=

(
eã(f)tISI b̃(f)

eã(s)tISI b̃(s)

)
. (A.3)

Note that the learning coefficients in the discrete-time state-space model
(b(f) and b(s)) depend not only those in the continuous-time model (b̃(f) and
b̃(s)) but also the retention coefficients (ã(f) and ã(s)) and the intertrial interval
(tITI). We obtain the following expression of the ratio of the discrete-time
learning coefficients:

b(f)

b(s) = b̃(f)

b̃(s)
exp[(ã(f) − ã(s))tITI]. (A.4)

The exponential factor stems from the decay of the fast and slow processes
during the intertrial intervals; the weak retention factor of the fast system
reduces its learned gain, whereas the learned gain of the slow system is
maintained due to its strong retention. Since ã(f) − ã(s) < 0, the ratio of the
learning coefficients decays exponentially as the intertrial interval increases.
Thus, in order to best observe the contribution of the fast process in trial-
by-trial adaptation, the intertrial interval should be minimized (Joiner &
Smith, 2008).
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