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ABSTRACT. 

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive method for examining 
brain hemodynamics, and indirectlyf neural activity during performance of psychomotor tasks. 
Most analytical techniques being applied to MRI data require averaging over the full time course 
of an experiment to make inferences about spatial distributions of activity. However, the gross 
anatomy of the brain and the cerebral vasculature are fixed throughout an fMRI experiment, 
suggesting a meaningful interpretation to decomposing the measured signal into stationary maps 
of 3-dimensional activity that are variably activated through time. Here we use the statistical 
theory of Independent Components Analysis (ICA) to decompose the fMRI data sets from three 
normal subjects performing two triaIs of Stroop color-naming and control tasks into virtually 
spatially independent fh4RI "components". Each ICA component consists of a spatially 
stationary 3-dimensional component map and an associated time course of activation The ICA 
method extracted more than 140 components for each triaL In aII casesf ICA found one 
component with a corresponding time course closely matching the experimental block design. 
Time courses of other ICA components were transiently task-reIated, periodic, or slowly varying. 
The application of ICA to fMRI is the mathematical dual of its application to evoked related 
potential (ERP) and electroencephalographic (EEG) data. ICA can detect and separate non-task 
related signal components, movements, and other artifacts, as well as both transient and 
sustained task-related changes in fh4RI data, without a assumptions about their time course 
or distribution. Thus, considering the fMRI signd to be the sum of spafial mixtures appears to be 
a highly promising way to interpret the data from fMRI studies done in normal and clinical 
populations. 

T h e  Heart & Stroke Foundation of Ontario, the Office of Naval Research and the 
Howard Hughes Medical Institute supported this research. Part of this work was 
presented at the 4 P  annual meeting of the American Academy of Neurology, 
April, 1997. 
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1 Introduction 

Functional Magnetic Resonance Imaging (fMRI) is a technique for the non-invasive monitoring of 
brain activation based on the fact that cerebral neural activity and Iocal blood flow are coupled. 
Normally, an increase in the neuronal activity in a given area of the brain causes local dilatation 
of the cerebral vessels, increasing regional blood flow. The resultant increase in Iocal oxygenated 
hemoglobin is in excess of metabolic need, thus reducing the proportion of deoxyhemoglobin in 
the vessels. The different paramagnetic susceptibilities of oxygenated and deoxyhemoglobin 
provide the basis for the completely noninvasive BOLD (Blood Oxygenation Level Dependent) 
contrast techniques, most used in fMRI studies. fMRI's excellent spatial resolution (typically two 
to three mm), temporal resolution of about one second, coupled with the fact that the method 
allows repeated scans on a given subject make it a highly promising technique for observing 
higher brain function both in normal and neurological patient populations. Specifically, the 
a b i i  to monitor evolving cerebral function during brain development and recovery from 
pathological insults promises to be of great use to clinicians. 

Many current fMRI experiments use a block design in which the subject is instructed to 
sequentially perform experimental and control tasks in an alternating sequence of 20-40 second 
control and experimental blocks. The resultant time series recorded from each voxel are 
complicated mixtures of high and low frequency activity presenting a formidable challenge for 
analytical methods attempting to tease apart task-related changes in the time courses of 5,000 - 
25,000 voxek. 

Correlation techniques [I] are based on the assumption that task-related brain regions should 
show different fh4RI signal levels during task performance. A reference function, created by 
convolving the block design of the behavioral experiment with an estimate s f  the hemodynamic 
impuIse response function, is correlated with the time series recorded from each voxel. However, 
even in areas of activation, the task-related signal changes are typically small (C 5%), so other 
time-varying phenomena must produce the bulk of the measured signals. These phenomena can 
be conceptualized as multiple concurrent "component processes", each having a separate time 
course and spatial extent, and each producing simultaneous changes in the fh4RI signals of many 
voxels. If the non-task relevant component processes are monotonic, simple linear detrending [I] 
can be expeckd to enhance the accuracy of correlational analysis. However, the time courses of 
processes related to changes in arousal, task strategy, head position, machine artifact or other 
endogenous processes occurring during a trial may not resemble simple linear functions. 

More general ANOVA-like approaches [2] test the signal at every voxel using univariate 
measures (e.g., t-tests, or f-tests) under the null hypothesis that the values are distributed under a 
known probability distribution (typically Gaussian). Voxels in wxch the4signal difference 
between the task and control conditions exceeds a predefined level of significance are selected, 
resulting in a distributed spatial image giving anatomical areas of significant task-related 
activation differences. However, ANOVA-like methods are based on the tenuous assumptions 
that the observations are Gaussian distributed and the time courses of different factors affecting 
the variance of the fMRI signal can be reliably estimated in advance. 

Another drawback of the ANOVA-based and conelationd measures is that they typically require 
grouping or averaging over several task/control blocks. This reduces their mpitivity for 
detecting transient task-related changes in the fMRI signal, and makes them k i t i v e  to 
significant changes not time locked to the task block design. 
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Principal Component Analysis (PCA) has been proposed as a way to look for structure in 
functional imaging data [3]. However, if task-related fMRI changes are only a small part of the 
total signal v h c e ,  finding the orthogonal eigenimages capturing the greatest variance in the 
data may give little information about task-related activations or other processes of interest 
producing the observed signals. 

Here we describe a new technique for the analysis of fh4RI data based on the statistical 
method of Independent Component Analysis (I-) [4]. 

2 Independent Component Analysis 

We propose that the brain regions that combine to form the signals recorded during an fMRI 
experiment may be represented by independent components, each associated with a single time 
course of enhancement and/or suppression and a component map. We suppose the component 
maps, each specified by a spatial distribution of fixed values (one at each voxd), are spatially 
independent. This means that i€ p(Ck) specifies the probability distribution of the voxel values Ck 
in the k" component map, then the joint probability distribution of aJl n components factorizes: 

n 

p(c& c 4  .-, cn) = p(ck) 
k=l 

We further assume that there are relatively few highIy active voxels in each map, and that 
the observed fh4RI signals are the sum of the contributions of the individual component 
processes. With these assumptions, the fMRI signals recorded during the performance of 
psychomotor tasks can be decomposed into a number of component maps and their associated 
component activation waveforms. 

The Independent Component Analysis (ICA) algorithm of Bell & Sejnowski [4] is an 
iterative unsupervised learning algorithm, that can perform blind separation of input data into 
the linear sum of time-varying modulations of maximally independent component maps. The 
ICA algorithm uses 'infomad to iteratively determine the unknown unmixing matrix W from 
which the component maps and time courses of activation can be computed. 

The matrix of component maps is given by multiplying the observed data matrix by W, 
C = W X  (I) 

where Xis the fMRI signal data matrix, W is the unmixjng matrix, and C is the matrix of 
component map voxel values. Note that W is a square matrix of full  rank so its inverse, W, is 
well defined. 

The columns of the inverse weight: matrix, W-1, give the time course of modulations of the 
individual maps. We constrain W to be square, so the number of independent components 
extracted is the same as the number of time points in the data. 

To find and display voxels contributing significantly to a particular component map, the 
values in each map can be scaled to z-score.. Voxels whose absolute z-scores are greater than 
some threshold (e.g., 2) can be considered to be the 'active' voxels for that component. Negative z 
scores indicate voxels whose BOLD signals are modulated opposite to the time course of activation 
of that component 

21 The ICA Algorithm 
Given the assumptions that component processes can be represented by differentially 

activated sparse and independent maps whose linear sum equals the observed data, an unmixing 
matrix W can be determined using the ICA algorithm [4]. 
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Specifically, the algorithm initializes W to the identity matrix (I), then iteratively attempts 
to maximke HQ, where, 
y = g(C); C = WX, and go is a Specified nonlinear function. Here, X is a 'sphered' version of the 
data matrix defined by, & = PX, where P = 2<XrXyW-  
In our computations, we use the logistic function for go: g(G) = (1 + exp(G1)-1 

The elements of W are updated using small batches of data vectors drawn randomly 

from (23) without substitution, according to, AW=f ?!@ .)w = E (1 +c) W 
( a w l  where E is 

the learning rate and the vector j is defined as: 3, = - The WrW term avoids 

matrix inversion and speeds convergence. During training, the learning rate is reduced 
gradually until the weight matrix W stops changing appreciably. 

3. Methods 
A total of three normal subject volunteers participated in two 6-minute trials of a Stroop 

color-naming task 
BOLD signal brain activity was scanned in a 1.5T GE Signa MRI system. Eight-to-ten (5 

rnrn thick, 1 mm inter-slice gap) 64 x 64 echo planar, gradient recalled (TR = 2500ms, T E 4  ms) 
axial images with a 24 cm field of view were collected for each trial. For each slice, 146 images 
were colkted at 25-s sampling intervals. Stimuli were presented one at a time by overhead 
projector onto a meen placed at the foot of the magnet In control blocks, the subjects were 
simply required to covertly name the color of a displayed rectangle (red, blue or green). During 
experimental Stroop-task blocks, subjects were required to name the color of the script used to 
print a color name. For example, when the word "red" was presented in blue script, the subject 
was to think (but not speak) the word "blue." Each trial involved four cycles consisting of a 40-s 
control block and a 40-s experimental block, followed by a final 44-s control block. The six- 
minute trial was repeated about 15 minutes after its initial presentation. 

For each time point in a trial, temporally smoothed BOLD signals from all brain voxels 
were placed into subsequent rows of a data matrix. The mean of each row was then subtracted. 
The ICA algorithm was applied separately to data from two 6-minute trials for each subject. 

4. Results 
Some maps contained multi-focal groupings of active voxels, while others (usually explaining a 
small amount of variance of the original data) had diffuse or "speckled" spatial distributions. 

41 Sustained, task-related components 
In a l l  trials, exactly one ICA component out of 140 had a time course highly correlated (r = 0.6-0.8) 
with the task-block design of the behavioral experiment, but explaining < 1% variance of the data 
(Figure 1). Maps of active voxels for these task-related components contained ifreas of activation 
similar to those detected by standard comelation methods (not shown). Figure 2 superimposes 
the four 80-s task cycles of the square-wave ICA component in each of the Stroop trials. The fine 
temporal structure of the activation was stereotyped within subjects. The right side of the figure 
shows the mean of the 8 ICA component task activations in the two trials from each subject, 
superimposed on the expeckd response (one cycle of the reference function used in the 
correlational analysis). Note that the mean time courses (right column) for each subject were not 
reliably estimated by the reference function, suggesting the true hernodynamic activation during 
Stroop task performance was not constant, but tended to decline during the c o w  of the 
experimental blocks. All three subjects showed greater activation near the beginningkf the trial. 
Subjects also differed in the rise-time of activation. 
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Figure 1. One of the components had a temporal course that was task-related throughout 
the entire behavioral experiment. The volume rendered brain image depicts the active areas 
( I z I > 2) in the component map of this component for subject 2, trial 1. The activation time 
&&e fir  this component during the 6-min trial is depicted on the right. 
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Figme 2: The time courses of the sustained task-related component for each trial of each 
subject was detrended, separated into the four task/control block pairs, and superimposed. 
Note the stereotyped activation within subjects. 
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4.2 Other components 
The other 140 or more components for each trial could be grouped empirically into several 
broad classes, according to heir spatio-temporal slruclure. Some components appeared to bc 
time-locked to the task block design during part of their time courses. Such transient task- 
related activity may not be detected by a correlational analysis that averaged over all the task 
cycles in a trial. In most trials, there were also slowly varying components. Possibly, the gradual 
signal changes detected by ICA might reflect temperature or other drift effects in the fh4RI 
recording apparatus. Several components had oscillating time courses with periods near 14 and 
40 seconds. Quasi-periodic fMRI signal fluctuations might be caused by aliased cardiac (-l/sec) 
and respiratory (-1/4 sec) rhythms [5]. Some components either had abrupt changes in their 
time course (Figure 3) and/or ring-like spatial distributions, suggesting they represented 
sudden or slow head movements. Simulations we performed (not shown) tended to support 
this hypothesis. The smallest ICA components had diffuse or "noisy" spatial and temporal 
patterns and most probably represented noise in the data. 

Figure 3. Some components had abrupt time courses and spatial distributions with regions 
of positive z-values abutting regions of negative z-values. We interpreted these to be the 
result of head movements during the brial. 
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5 Discussion 

These results indicate that the ICA method can reliably separate sustained and transient task- 
related and non-task related physiological phenomena as well as machine and movement 
artifacts that are mixed together in observed fMRI signals. The ICA method can be viewed as a 
version of the "general linear model" [2] currently used in functional neuroimaging and given by, 

X=GP+e  
where X is a data ma&, and G is the "design matrix" specifying the time courses of all the 
factors hypothesized to be present in the observed data (eg., the task reference function, a linear 
trendD etc.), p is a matrix of map voxel values for each hypothesized factor, and e is a matrix of 
noise or residual modeling errors. In contrast, the ICA method extracts intrinsic spatially 
independent components of the observed data and determines expliatly their time courses, rather 
than relying on a priuri hypotheses as to what they should be. 

There are several questions about the ICA decomposition of fMRI data that still need to be 
addressed: As yet, we do not know what proportion of a given component is physiological signal 
or identifiable artifact, and what is noise. Methods for testing the statistically reliability of ICA 
component time courses and areas of activation need to be developed. 

The ICA algorithm is equally or more sensitive than correlation in finding task-related 
activations, and can potentially separate artifad, as well as other signifrant phenomena in the 
data using only minimal assumptions about the spatiotemporal structure of the sign&. Thus, 
ICA appears to provide a powerful method for exploratory analysis of fMRI data obtained from 
both clinical and normal subject populations. 
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k voxei 

Figtm 4. Most voxels analy-~ed were active in one to six ICA components 
(i.e., with map values 1 z 1 > 2). The figure shows one voxel in a posterior visual 
association area that participates strongly (z = 5.0) in the sustained task-related 
component (lower right) as well as in two other larger (ie explaining a larger 
amount of the variance) and one smaller component. 

Figure 4 demonstrates that a single voxel could partidpate siszufIcantly in several ICA 
components of more than one of the types listed above. The time course of the BOLD signal of 
the voxel highlighted in the center image is shown below it. This voxel was highly weighted 
(2=5.0) in the sustained task-related component (lower right), but was also active in three other 
components of various types, two of which explained a greater percentage of the original 
variance of the data. Calculations showed that most voxels were active in 1-6 components. 


