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We present a new approach to computing from image sequences the two-dimensional velocities of moving 
objects that are occluded and transparent. The new motion model does not attempt to provide an accurate 
representation of the velocity flow field at fine resolutions but coarsely segments an image into regions of co- 
herent motion, provides an estimate of velocity in each region, and actively selects the most reliable estimates. 
The model uses motion-energy filters in the first stage of processing and computes, in parallel, two different 
sets of retinotopically organized spatial arrays of unit responses: one set of units estimates the local velocity, 
and the second set selects from these local estimates those that support global velocities. Only the subset 
of local-velocity measurements that are the most reliable is included in estimation of the velocity of objects. 
The model is in agreement with many of the constraints imposed by the physiological response properties of 
cells in primate visual cortex, and its performance is similar to that of primates on motion transparency. 

1. INTRODUCTION 

In most computational models of motion processing, 
analysis of motion proceeds in two stages: in the first 
stage the local velocity a t  every point in the image is com- 
puted from a sequence of two-dimensional image frames, 
and this high-resolution representation of local velocity is 
referred to as the optical flow field.'-' At a later stage 
this information is analyzed and combined into a three- 
dimensional interpretation of motion in the visual scene. 
There are two conflicting demands that must be met in 
the computation of the optical flow field: first, signals 
from neighboring regions of the visual field need to be 
spatially integrated for noise and the aperture problem 
to be overcome; and second, sensitivity to small velocity 
differences across space should be preserved for segmen- 
tation of regions corresponding to different  object^.^ The 
goal of this paper is to provide a computational solution 
to the problem posed by these conflicting demands for 
occluding and transparent moving stimuli. 

The earliest cells in the primate visual system that have 
reliable direction and motion sensitivity are found in pri- 
mary visual cortex, area Vl.99'0 However, these cells do 
not detect true velocity but instead are directionally se- 
lective and are tuned to a limited range of spatiotemporal 

In addition, these cells exhibit marked 
orientation selectivity and spatially restricted receptive 
fields. As a result, these early local motion responses are 
sensitive not just to the velocity of a moving object but also 
to many other features of the object, such as its spatial- 
frequency profile and local edge orientation (Fig. 1). The 
sensitivity to local edge orientation is usually referred to 
as the aperture problem4~5~7~9: within a small region of 
space it is possible to measure locally only the velocity 
component that is parallel to the local intensity gradient 
(i.e., perpendicular to local edge orientation). 

In order to overcome these limitations and compute 
true local-velocity measurements, one must integrate mo- 

tion responses from cells with a variety of direction and 
spatiotemporal frequency t u n i n g ~ . ~ . ~  There is now con- 
siderable psychophysical evidence suggesting that motion 
integration can be affected by a variety of figural segmen- 
tation cues such a s  contrast, spatial frequency, binocular 
disparity, color, transparency, and o c ~ l u s i o n . ~ ~ ~ ' ~  This 
suggests that  biological visual systems integrate local 
motion measurements in a highly stimulus-dependent 
manner. The first area of the visual cortex in which mo- 
tion integration appears to occur is area MT.l4*l5 

Previous computational approaches to motion have 
attempted to combine local motion responses to produce 
precise local-velocity estimates a t  all points in an image: 
the optical flow field.2.3J6-19 This is, in general, an ill- 
posed problem. The local-velocity estimates are often 
noisy and in some regions are systematically incorrect, 
particularly in regions of constant intensity or near mo- 
tion boundaries. Therefore most of these models have 
relied on smoothness assumptions combined with tech- 
niques such as  relaxation labeling20-23 and finite-element 
regularization for estimation of optical fl0w.'~9'~ The goal 
of these models is to get an estimate that is as close as 
possible to the true optical flow, given the assumptions 
under which the model operates. Despite their sophis- 
tication, these approaches have difficulty with scenes 
involving partial occlusion and transparency. 

Rather than attempting to get a good estimate of the 
true optical flow a t  all image locations, the visual sys- 
tem may use a relatively simple and imperfect strategy 
for computing velocity that depends on estimating the va- 
lidity of local velocity estimates. There is psychophysi- 
cal evidence for an initial coarse velocity estimate that 
may be used for image s e g r e g a t i ~ n . ~ ~  One can obtain a 
coarse representation of object motion by relying on only 
the most valid subsets of local-velocity measurements. 
In this paper we present a model that uses this approach 
and apply i t  to images of moving objects that include oc- 
clusion and transparency. We optimized our model to es- 
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Fig. 1. (a) Aperture problem: only the velocity component or- 
thogonal to the edge of the bar, indicated by the heavy arrow, can 
be measured by any local-velocity mechan~sm restricted to this 
region of the image. However, any of the velocities indicated 
by the other arrows, all of which terminate on the velocity 
constraint line, would produce the same motion within this 
aperture. (b) Limited spatiotemporal tuning: velocity tuning 
of motion-energy filters defined in Eqs. (3)-(5) as a function of 
speed for a moving sine-wave grating. The tuning curves are 
normalized by the maximum responses and are plotted for five 
different spatial frequencies (7.6,5.1,3.4, 2.3, and 1.5 cycles/deg, 
with the highest spatial-frequency curve at the left and the lowest 
spatial-frequency curve at the right). If the speed tuning were 
xndependent of speed, the curves would have peaks at the same 
speed. The tuning curves become broader and shift to the right 
as the spatial frequency of the grating decreases, indicating that 
these filters do not respond to pure velocity. Cells in V1 exhibit 
similar limited spatiotemporal-tuning bandwidth. 

timate the velocity of visual targets by solving in parallel 
the problems of how to compute local-velocity estimates 
and which local velocity estimates to use. The optimized 
model yielded accurate velocity estimates from synthetic 
images containing multiple moving targets of varying 
size, luminance, and spatial-frequency profile. The prop- 
erties of the units in the model were consistent with the 
responses of neurons in area MT.25 

In Section 2 we present an overview of the model, de- 
scribing the stages of processing in the model in some 
detail. In Section 3 we introduce the statistical assump- 
tions underlying the model and derive the procedure for 
modifying the parameters in the model during training. 
Section 4 presents simulation results for the model on 
synthetic images containing a variety of segmentation and 
transparency phenomena. The discussion in Section 5 
places the model in the context of previous models of mo- 
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tion processing. A preliminary version of this model was 
described previously.26 

2. MODEL 
A. Overview 
The model is a feed-forward cascade of locally connected 
networks of processing units organized into two paral- 
lel processing pathways. The stages of the model form 
layers of units with a roughly retinotopic organization. 
Figure 2 schematically represents the activity in the 
model a t  one instant in time. 

Processing in the model is divided into three main 
stages, a s  described in more detail in the following sub- 
sections. In the first stage local motion energy is ex- 
tracted from all locations in the input image. There are 
36 motion-energy measurements for each image location 
that represent filters tuned to four different directions and 
nine different combinations of spatial and temporal fre- 
quency (only a few are shown in Fig. 2). In the second 
stage the local velocities and the validity of each veloc- 
ity estimate are computed in parallel. The local-velocity 
pathway combines information from motion-energy fil- 
ters tuned to different directions and spatial and tem- 
poral frequencies to find the plane or planes of maximal 
motion energy in spatial- and temporal-frequency space. 
This plane of maximal motion energy provides an es- 
timate of local v e l o ~ i t ~ . ~ . ~  The selection pathway esti- 
mates the local validity of each velocity estimate from the 
local motion-energy distribution on which that estimate 
was based and compares it with the motion-energy dis- 
tributions supporting this velocity in other regions of the 
image. In the final stage of the model, global estimates 
of the velocities of objects within the visual scene are 
formed by integration across subsets of the local-velocity 
estimates according to the relative confidence values as- 
signed by the selection pathway. 

The model computes evidence for particular velocities 
in an image rather than computing velocity directly. In 
the local-velocity pathway, velocity is represented as  a dis- 
tribution of activity over a set of units representing differ- 
ent directions and speeds of motion, and these activities 
represent the local evidence in favor of a particular veloc- 
ity. This local evidence is required to sum to 1, so that 

Local Velocity - 
Input 

Ef (64 x 64) 

9 frequencies 
4 directions 

+I 
Velocity 

Stage I Stage 2 Srage 3 

Fig. 2. Schematic diagram of the motion-processing model. 
Processing proceeds from left to right, with the local-velocity 
and selection stages operating in parallel. Shading within the 
boxes indicates different levels of activity at each stage. Arrows 
within motion-energy and local-velocity stages indicate local 
directions of motion-responding units. The responses shown are 
illustrative (see Figs. 10- 12 below for more-detailed examples). 
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each location in the image can provide strong evidence for 
only one velocity or weaker evidence for multiple veloci- 
ties. In a similar manner the selection pathway weights 
each region of an  image according to the amount of sup- 
port the region provides for a particular velocity relative 
to other regions of the image. The total amount of sup- 
port for each velocity across the entire image cannot ex- 
ceed 1, so the only way to produce strong global evidence 
for a particular velocity is for the selection pathway to 
focus all support for that velocity on regions of the image 
that provide strong evidence for that velocity. In this 
way the selection pathway coarsely segments an image 
into regions that support different velocities in a manner 
similar to that of the support maps proposed in Ref. 27. 
Note that this segmentation is not explicitly represented 
in the output of the model but is easily derived from sig- 
nals present in the selection pathway. 

In the final stage of the model the global evidence for 
a visual target moving a t  a particular velocity Vk(t) is 
computed as  a sum over the product of the outputs of the 
local velocity and selection pathways: 

where &(x, y, t )  is the local evidence for velocity k com- 
puted by the velocity pathway from region (x, y) a t  time 
t and Sk(x, y ,  t )  is the weight assigned by the selection 
pathway to that region. The motion-energy stage of the 
model was fixed; however, all later stages of the model 
were adaptive, and the weights were adjusted to optimize 
a measure of the overall performance of the model (see 
Section 3 below). The optimization procedure was an ex- 
tension of the mixture-of-experts 

B. Local Motion Energy 
The first stage of the model requires some localized 
mechanism for measuring motion parameters that is 
based on changes in intensity in an image over time. 
Two different classes of motion detectors have been 
proposed: spatiotemporal filters and feature matchers. 
The latter class of detector identifies abstract features 
in an image (such as corners or line conjunctions) and 
matches these features across successive frames of an 
image sequence. One can determine the velocity of the 
feature by dividing the (directed) distance that the fea- 
ture traveled by the time between frames. Although a 
feature-matching scheme may be involved in some as- 
pects of the long-range motion process,30 the responses of 
direction-selective cells in early visual areas seem much 
better characterized by spatiotemporal  filter^.^'-^^ 

Motion detectors based on spatiotemporal filters can 
themselves be divided into three broad categories. 
Correlation-based m e t h o d ~ ~ ~ , ~ ~  correlate a spatial re- 
sponse with a delayed and displaced version of the same 
spatial response. Motion-energy methods combine the 
(squared) responses of linear filters oriented in space- 
time.36,3' Gradient methods5.18 assume that intensity (&) 
is conserved across a sequence of frames (i.e., dQ/dt = 0). 
This assumption allows one to derive an expression that 
relates intensity changes over time (across frames) to 
intensity changes over space and to the velocity compo- 
nents of motion: 
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Physiological implementations of all three. types of spa- 
tiotemporal method have been proposed, but physiological 
e \ i iden~e~'-~l  suggests that responses in primary visual 
cortex best resemble the responses expected from vari- 
ous stages of a motion-energy model. As with neurons 
in primary visual cortex that are directionally selective, 
the limited spatiotemporal tuning of motion-energy units 
means that their optimal velocity (the velocity for maxi- 
mal response) changes as  the spatial-frequency content of 
the visual scene changes (see Fig. 1). 

The motion-energy model is based on the observation 
that image motion is characterized by orientation in 
space-time. An intensity edge moving a t  a constant 
velocity produces a line with a particular slope in space- 
time. Thus an  oriented space-time filter responds most 
strongly to intensity edges moving a t  a particular ve- 
locity. A single oriented space-time filter is, however, 
a less-than-ideal motion detector, because its output is 
phase sensitive. This means that the response of such 
a filter to a moving pattern depends on how that pattern 
lines up with the receptive field a t  each moment in time. 
Simply switching the polarity of the pattern (making 
dark regions bright and vice versa) will change the sign 
of the output of the filter. If a pattern such as a moving 
sine-wave grating passes through the receptive field, the 
output of the filter will tend to oscillate sinusoidally over 
time. Watson and A h ~ m a d a ~ ~  showed that these oscil- 
lations can be used in some cases to compute velocity. 
However, a phase-invariant response is physiologically 
more ~ l a u s i b l e . ~ ~  

Adelson and Bergen3= demonstrated a particularly 
simple way of constructing a phase-invariant motion de- 
tector by combining the squared outputs of a pair of spa- 
tiotemporal filters with the same orientation but whose 
receptive fields were 90" out of phase (a quadrature pair). 
Adelson and Bergen called the nonlinear filter constructed 
in this manner a motion-energy filter, and this is the type 
of filter used to provide the initial motion responses in 
our model. Several authors have suggested that the re- 
sponses of the oriented linear filters are similar to the 
responses of simple cells in visual cortex, whereas the 
outputs of the energy units are more similar to responses 
of complex ~ e l l s . ~ ~ * ~ ~ , ~ ~ , ~ ~ . ~ ~  

A convenient mathematical description of a quadra- 
ture pair of oriented space-time filters is sine-phase and 
cosine-phase Gabor  filter^.^^-^^ On e can calculate mo- 
tion energy by combining the squared outputs of sine and 
cosine Gabor filters with the same center frequency and 
spread function. Filters of this form were used in pre- 
vious models of velocity e x t r a c t i ~ n ~ * ~  and have the im- 
portant property that they have limited extent in both 
space-time and spatiotemporal frequency domains. Al- 
though a single motion-energy unit built with filters of 
this form is not velocity selective (see Fig. 11, a set of such 
units that tile the spatiotemporal frequency space can be 
used to extract the velocity of a pattern independent of 
its spatial-frequency content, a s  shown in Subsection 2.C 
below. 

The spatial receptive field of a Gabor filter is similar 
to the spatial receptive fields of simple cells in striate 
~ o r t e x ~ . ~ ~ ;  however, simple cells tend to have space-time 
responses that are unlike those of spatiotemporal Gabor 
filters. In addition, the temporal response of a Gabor 
signal is acausal and therefore difficult to realize physi- 
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cally. However, Adelson and Bergen3= demonstrated 
that space-time-oriented Gabor filters can be approxi- 
mated by summation of the responses of four space-time- 
separable filters with Gabor spatial responses and 
low-pass-filter temporal responses. Simple cell re- 
sponses in visual cortex can also be approximated as  
sums of similar space-time-separable filters.4s The use 
of sums of separable filters also has computational ad- 
vantages, because it reduces the number of operations 
required for performing the filter convolutions. 

The filters used in the model were implemented with 
pairs of spatial filters that have a Gabor spatial response: 

where (w,, w,) is the filter center frequency and (a,, a,) is 
the spread of the spatial Gaussian window. These filters 
were combined with bandpass temporal filters of the form 

where wt is the filter center frequency and k determines 
the tuning width, with higher values of k producing 
more narrowly tuned filters. By appropriate choices of 
a pair of Gabor filters and bandpass filters, quadrature 
pairs of spatiotemporally oriented filters with a bandpass 
spatiotemporal frequency response similar to that of a 
Gabor filter can be constructed. The construction of four 
such filters, forming a leftward tuned and a rightward 
tuned quadrature pair, is shown in Fig. 3 (see Adelson 
and Bergen36 for further details). 

In the implementation of the model, a sequence of 
64 x 64 pixel input frames with 256 gray levels per pixel 
location was first convolved with a difference of Gauss- 
i a n ~  filter (ul = 2 pixels, vz = 7 pixels). This filter 
was balanced to remove the dc component of the im- 
age and also provided smoothing and edge enhancement. 
This filter is a simplified model of retinal processing and 
provides a sequence of contrast images to be processed 
by the motion-energy filters. This sequence of contrast 
images was then convolved with 36 different motion- 
energy filters. 

These filters were tuned to four different directions 
of motion (up, down, left, and right). For each direc- 
tion of motion there were nine different filters re~resent-  
ing all possible combinations of three temporal and three 
spatial frequencies. These filters were implemented as  
16 x 16 x 16 kernels. The filter center frequency spac- 
ings were 1 octave spatially (0.25, 0.125, and 0.0625 
cycles/pixel) and 1.5 octaves temporally (0.5, 0.177, and 
0.0625 cycles/frame). The filters were designed so that 
there was an inverse relationship between the center fre- 
quency of the filter and its receptive-field size (filters 
tuned to lower spatial and temporal frequencies had re- 
ceptive fields with larger spatial and temporal extent). 
This relationship is similar to that found between the 
size and spatial-frequency tuning in the retina and visual 

c ~ r t e x . ~ ~ - ~ l  This type of relationship also permits the re- 
sponse of the family of filters to be approximated with use 
of a Gaussian pyramid.52 A single family of filters rep- 
resenting the three different temporal frequencies a t  the 
highest spatial frequency were applied to three levels of a 
Gaussian pyramid for computing the filter responses for 
each direction of motion. Since the images a t  the highest 
level of the pyramid are only 1/16 the size of the original 
images, this procedure represents a considerable compu- 
tational savings. 

The outputs of the motion-energy stage of the model 
were organized into a grid of 49 x 49 receptive-field loca- 
tions. (This grid is smaller than the 64 X 64 input image 
because of edge effects: filters centered near the edge of 
the image have part of their receptive field lying outside 
the image, and these motion-energy measurements are ig- 
nored.) For each of these receptive-field locations (which 
we will index with x  and y) there were 36 raw motion- 
energy measurements. The strength of these motion- 
energy measurements was a quadratic function of the 
local contrast in the image. Cortical cell responses have 
a limited dynamic range and appear to respond to relative 
rather than absolute c ~ n t r a s t . ~ ~ ~ ~ ~  Heeger4l suggested 
that primary visual cortical responses can be better mod- 
eled as the outputs of a normalized energy mechanism. 
In our model we adopt this suggestion and compute the 
output of the motion-energy stage a t  each receptive-field 
location by a soft-maximum n ~ r m a l i z a t i o n ~ ~ :  

where E,(x ,  y )  is one of the 36 Taw motion-energy mea- 
surements a t  location ( x ,  y )  and E , ( x ,  y )  is the correspond- 
ing normalized response, These normalized responses lie 
between 0 and 1 and are modulated by relative rather 
than absolute contrast. For strictly positive inputs the 
response of the soft maximum is quasi-linear and has 
saturation characteristics similar to those of the half- 
squared operators proposed by Heege~-,~l although the off- 
set and gain of the soft-maximum operation are different. 

C. Local Velocity 
The properties of units in the selection and local-velocity 
pathways were determined by the optimization procedure, 
which is described formally in Section 3 below. The 
properties of these units were also determined by the con- 
straints imposed by the architecture of the local-velocity 
and selection networks in the model.- The organization 
of the local-velocity pathway was based on principles es- 
tablished in previous models of velocity estimation. The 
spatiotemporal power spectrum of a rigidly translating 
scene lies on a plane in the frequency This 
is illustrated in Fig. 4(a), where for illustrative purposes 
we show only one spatial-frequency dimension. This 
plane is defined by 

where (w,, w,, w t )  are the spatial- and temporal- 
frequency components of the pattern and (v,, u,) its 
velocity components. This equation is a restatement of 
intensity conservation [Eq. (2)J and can be violated in 
scenes containing occlusion and transparency. Never- 
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Space 

Fig. 3. Space-time-oriented filters used in the motion-energy stage of the model. The column at  the left shows four filters constructed 
by multiplication of Eq. (3 )  or Eq. (4) by Eq. (5), with k = 3 and k = 5 .  The resulting filters are tuned in space and time but are oriented 
parallel to the space-time axes and are not directionally tuned. The four filters in the right-hand column are formed by addition of 
pairs of filters from the left-hand column, with the signs shown a t  the arrowheads. The resulting four filters are oriented in space-time. 
The top pair of filters a t  the right forms a nearly quadrature pair tuned to leftward motion, and the bottom pair a t  the right are the 
equivalent filters tuned to rightward motion. These are two of the quadrature pairs of filters used in the implementation of the model. 

theless, it provides a n  important  s ta r t ing  point for correspond to planes with different angles. To measure  
local-velocity estimation. All planes t h a t  obey Eq. (7) t h e  velocity of a n  object i t  is  sufficient t h a t  one determine 
must  pass  through t h e  origin, a n d  different velocities t h e  angles of this  plane. 
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Fig. 4. Distributed representation of a moving bar by a popu- 
lation of spatiotemporal Gabor filters. The axes are spatial 
frequency (w, )  and temporal frequency (w,). (a) The spatiotem- 
poral power spectrum of a rigidly translating scene lies on a plane 
in frequency space. Only a single spatial dimension is shown 
in this figure, so the planes representing scenes translating at 
velocities vl and v2 appear as the shaded bars. (b) A tiling of 
spatiotemporal frequency space with Gabor filters. Each circle 
represents a different Gabor filter, with the level of shading 
corresponding to the level of excitation of the filter. Filters 
whose centers are closest to the plane defined by v2 are the 
most strongly excited. The relative activations within this set 
of filters can be used to estimate the angle of the plane defined 
by v2 and hence the velocity of the bar. 

The power spectrum of a single space-time-oriented 
Gabor filter is a pair of elliptical Gaussian windows in 
the spatial-frequency domain, where the width of the win- 
dow is inverselv related to the width of the Gabor filter 
in the space-time domain. Several motion-energy fil- 
ters with different center frequencies can be used to tile 
the spatiotemporal frequency domain. Figure 4(b) shows 
one such tiling, where only a single spatial dimension and 
only one quadrant of the spatiotemporal frequency space 
are shown (so only one half of the power spectrum of each 
filter is shown). Each motion-energy filter samples the 
power spectrum of the scene in a small spatiotemporal 
band; to identify the slope of the power spectrum, one 
must compare the relative responses of the set of motion- 
energy filters (see Fig. 4). 

Heeger2 and Grzywacz and Yuille3 proposed methods 
for extracting velocity measurements from a set of motion- 
energy filters by use of the filter responses to estimate 
the slope of the plane of maximal power in the frequency 
domain. The approach adopted in our mode1 is closest to 
the "ridge" strategy proposed by Grzywacz and Yuille. In 
this scheme a set of velocitv-tuned units is used for each 
image location. Each of these units receives a weighted 
input from a number of motion-energy units with different 
center frequencies: 

I k l ( x ,  Y )  = 1 W k . w , . w y , w t ~ w , , w v , w t ( x ,  Y )  
WI.WY,WI 

(8) 

where 4' is the total input to a unit tuned to velocity 
k ,  & ( x ,  y )  was defined in Eq. (6),  and the weights are 
inversely proportional to the distance between the plane 
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motion-energy unit. Ikl will be largest for the velocity 
unit whose tuning most closely matches the plane of maxi- 
mal motion energy. Grzywacz and Yuille3 proposed a 
simple winner-take-all strategy to identify this unit. 

Our model adapts the general structure for velocity esti- 
mation used by Grzywacz and Yuille but without defining 
in advance the weights from the motion-energy measure- 
ments to each velocity-tuned unit. These weights are 
instead determined by the optimization procedure. HOW- 
ever, because we are using a structure similar to previous 
structures that were used to estimate velocity from mo- 
tion energy, we have an  a priori reason to believe that a 
set of weights can be found that will allow velocity to be 
estimated, a t  least locally, for rigid translational motions. 

In our model the local-velocity pathway was organized 
into a grid of 8 x 8 receptive-field locations, with separate 
velocity estimates calculated for each grid location. At 
each location there was a pool of 33 velocity-tuned units 
(Fig. 5). These units represented motion in eight differ- 
ent directions, with four different speeds for each direc- 
tion plus a central unit indicating no motion. The units 
were organized to form a log-polar representation of the 
local velocity a t  a given receptive-field location and were 
tuned to speeds of 0.25, 0.5, 1.0, and 2.0 pixels per frame 
in each direction. 

Local 
Competition 

0 
H = ;r./: 

Local -Velocity Pool 
Fig. 5. Diagram showing the local-velocity pathway. (a) Local- 
velocity units are organized mto a retmotopic grid of 8 X 8 
receptive-field locations. Each local-velocity unit receives in- 
puts from a 9 X 9 block of motion-energy measurements from 
overlapping regions of the image. At each location there is a 
pool of 33 velocity-tuned units, only 9 of whlch are shown. These 
k i t s  compete with one another locally, as described in the text. 
cbl A pool of 33 velocity units organized to form a log-polar 
representation of velocity. All eight units lying on a circle are 

defined -by velocity uk and the center frequency of each tined to the same speed but to different directions of motion. 
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Each unit received as  input a weighted combination 
of the motion-energy responses from a local region of 
the input image [Eq. @)I. The velocity units a t  each 
receptive-field location received inputs from a 9 x 9 region 
of the motion-energy layer, so the velocity grid formed 
a much coarser representation of the visual scene than 
did the motion-energy stage of the model. Velocity units 
received inputs from all motion-energy units, with di- 
rectional preferences within +90° from the preferred di- 
rection of the velocity unit. On average, each velocity 
unit received -2100 motion-energy measurements as  in- 
put. The weights between the motion-energy units and 
the velocity-tuned units were trained to optimize a global 
measure of performance of the model, a s  is discussed in 
detail in Section 4 below. All the pools of velocity-tuned 
units shared a common set of weights, so in the final op- 
timized model the velocity computations a t  all locations 
in the image were identical. 

The velocity a t  a receptive-field location was repre- 
sented by the relative strengths of the inputs to each 
velocity-tuned unit. In the model, this relative strength 
was encoded directly into the activity of each velocity- 
tuned unit by use of a soft-maximum n ~ n l i n e a r i t y ~ ~ :  

where Ik(x, y)  is the final state of the unit representing 
velocity k and Ikl(x, y )  is the initial state of the unit. 
Note that the summation is performed over all the units 
in a velocity pool that share the same receptive-field lo- 
cation. The soft-maximum nonlinearity forces the total 
activity across a pool of velocity units to sum to 1. If 
one of the velocity units receives much stronger input 
than any of the others, its state will be very close to 1, 
whereas the states of all of the other units in the pool 
will be close to 0.  In this case, the soft-maximum non- 
linearity acts very much like winner-take-all competition. 
If, however, the motion-energy distribution is more am- 
biguous, activity may be distributed across several of the 
velocity units. This might occur, for example, in regions 
of transparent motion a t  which more than a single motion 
is present locally. The ability to represent ambiguous ve- 
locities is a major advantage for this type of distributed 
representation.j6 

The velocity computation in our model differed from 
the ridge strategy proposed by Grzywacz and Yuille3 in its 
use of a soft-maximum nonlinearity rather than a winner- 
take-all strategy and in its use of motion-energy informa- 
tion from several adjacent image locations. The weights 
in the trained model were approximately inversely propor- 
tional to the distance between the plane defined by a ve- 
locity v k  and the center frequencies of the motion-energy 
units, as in the model of Grzywacz and Yuille, producing 
fairly tightly tuned velocity units. In addition, the use 
of a coarser representation of visual space a t  the veloc- 
ity level is consistent with the smaller number of cells 
and larger receptive-field sizes found in MT compared 
with primary visual cortex. The soft-maximum nonlin- 
earity has a statistical interpretation that we exploit in 
Section 3 below when deriving rules for adapting the pa- 
rameters of the model. For now, the activity of each unit 
represents evidence for a particular velocity in an image 
region, and the soft-maximum nonlinearity enforces the 
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constraint that the total evidence across all velocities in 
each image region sum to 1. This ensures that any local 
image region can provide strong support for only a single 
velocity. 

D. Selection and Integration 
The final output of our model consisted of a pool of 33 
units, which represented velocity in the same manner as 
each pool of local-velocity units. If Ik(x, y)  is viewed as 
the local evidence for the kth velocity hypothesis vk, and 
Sh(x, y )  is viewed a s  the amount of support for this hy- 
pothesis assigned to region (x, y) ,  then the global evidence 
for this hypothesis is given by Eq. (1). This global evi- 
dence was encoded by the state of output unit k. The 
total amount of support for each output hypothesis was 
constrained to total 1 (as explained below). This con- 
straint prevented the model from producing strong global 
evidence for a hypothesis without strong local evidence 
anywhere in an image. 

The support assigned to each location for the different 
velocity hypotheses was computed by the units in the 
selection layer. The input to these units was computed 
as a weighted sum of the activity of a subset of the motion- 
energy units (similarly to the computation for the velocity 
units): 

where S,' is the total input to a unit that computes the 
support for velocity hypothesis k and ~ ( x ,  y )  was defined 
in Eq. (6). The weights to these units were initialized 
randomly, and their final values are determined by the 
optimization procedure. Unlike in the case of the local- 
velocity units, for which we had reason to believe from 
other models that a solution should be found by this 
method, we had no a priori expectation of an appropriate 
weight structure for these units. 

The selection units were organized into a grid of 8 x 
8 receptive-field locations in one-to-one correspondence 
with the local-velocity pools (Fig. 6). There were 33 se- 
lection units a t  each receptive-field location, representing 
the local support for each of the different global-velocity 
hypotheses. The selection units were spatially organized 
into 33 layers of units, with each layer representing the 
region of support for a different velocity hypothesis. Two 
of these selection layers are shown in Fig. 6. The top 
layer represents the support for the output unit for up- 
ward motion (top lollipop), and states of units in this 
selection layer weight the states of upward-motion units 
in each local-velocity pool (also on top). 

The constraint on the total amount of support for each 
hypothesis was enforced by use of global competition 
among all the units in each selection layer, which was 
implemented with a soft-maximum nonlinearity: 

where Ski(%, y )  is the net input to a selection unit in layer 
k [Eq. (1011 and Sk(x, y)  is the output state of that unit. 
Note that, unlike in the case of local-velocity competition, 
which occurred between units with different velocity tun- 
ing a t  the same location, the summation in this case was 
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Output 
(33 units) 

Fig. 6. Diagram showing the integration of the local velocity 
and selection-processing stages. The 49 X 49 pools of motion- 
energy filters feed the local-velocity and selection stages, which 
are integrated by the output units. An example of 9 of 33 
local-velocity units in one local-velocity pool is shown. Different 
shadings for units in the integration and output pools correspond 
to different directions of motion. Only 2 of the 33 selection 
layers are shown, and the backgrounds of these layers are shaded 
to match their corresponding local-velocity and output units. 
Units in the output pool receive inputs that are the product of 
activity in the local-velocity and selection stages. The receptive 
field of a n  output unit is the entire 64 X 64 pixel input array. 

performed for t h e  s a m e  velocity tun ing  over a l l  receptive- 
field locations. T h e  constraint  on  t h e  support  field for 
each ou tpu t  uni t ,  combined with t h e  fact t h a t  t h e  local- 
velocity un i t  s ta tes  could never  exceed 1, ensured  t h a t  t h e  
s ta tes  of t h e  ou tpu t  un i t s  were  constrained t o  be  between 
0 a n d  1 a n d  could be  interpreted as t h e  global evidence 
within t h e  image for each velocity, as s ta ted  above. T h e  
combination of global competition i n  t h e  selection layers 
a n d  local competition within t h e  velocity pools m e a n s  t h a t  
t h e  only way to produce s t rong  evidence for a particular 
global velocity is for t h e  corresponding selection network 
to focus al l  its support  on  regions t h a t  contain s t rong evi- 
dence for t h a t  velocity. T h e  intersection of two different 
types of constraint  is required for eligibility of a local- 
velocity est imate to  contribute to  t h e  ou tpu t  layer. 

T h e  activity of un i t s  i n  t h e  local-velocity s tage of our  
model w a s  compared with t h e  known global velocities 
within t h e  scene. Local-velocity est imates  t h a t  were 
close (compared with t h e  velocity est imates  from other  
regions) t o  one of t h e  global velocities were assigned re- 
sponsibility for t h a t  velocity. Regions t h a t  were assigned 
a lot of responsibility for a global velocity received a n  er-  
ror signal t h a t  caused t h e  velocity un i t s  i n  t h a t  region t o  
adjust  the i r  weights to  predict the  global velocity bet ter  
from the i r  cur ren t  input .  A t  t h e  s a m e  t ime  t h e  selec- 
tion un i t s  were optimized to predict t h e  responsibility 
t h a t  should be assigned t o  each local region. This  pro- 
cedure forced t h e  selection un i t s  t o  l ea rn  to'predict w h a t  
pat tern of local motion-energy features  permitted good 
local-velocity predictions.. 

During optimization t h e  selection un i t s  became sensi- 
tive to  regions t h a t  contained sufficient information t o  
disambiguate t h e  direction a n d  speed of t r u e  motion. I n  
earlier experiments  wi th  a one-dimensional version of t h e  
current  model t h e  weight pa t te rns  of selection uni ts  cor- 
responded to edge detectors i n  a one-dimensional motion- 
energy distribution. Selection uni ts  in  t h e  t rained 
two-dimensional model were also primarily detectors 
of motion discontinuities. They responded maximally 
i n  regions i n  which t h e  distribution of motion-energy 

measurements  corresponded to a border between differ- 
e n t  velocities; however, th i s  tuning w a s  r e s t r ~ c t e d  to a 
cer tain range  of orientations a n d  speeds. AS a result,  
selection un i t s  responded strongly only to  motion discon- 
tinuities t h a t  were consistent with motion at a particular 
speed a n d  direction (Fig. 7). For  example, selection uni ts  
were usually sensitive t o  regions containing motion en-  
ergy at several directions, since velocity predictions from 
these  regions were  less likely t o  suffer from t h e  aper tu re  
problem [Fig. 7(b), example 21. However, some pa t te rns  
containing several directions of motion, such  as those 

Fig. 7. Responses of a selection unit to motion discontinuities. 
(a) The responses of a selection unit tuned to rightward mo- 
tion to four different distributions of motion-energy inputs. (b) 
Motion-energy distributions for the four responses are shown 
schematically. In examples 1-3 a square is moving in the 
direction indicated by the large arrow against a stationary back- 
ground. In the last example, two squares, one semitransparent, 
move against a stationary background. In each example the 
circle indicates the receptive field of the selection unit, and the 
small arrows indicate the direction of local motion reported by 
the motion-energy units within this receptive field. In example 
1 the receptive field is centered over an edge moving to the 
right and sees a uniform distribution of rightward motion-energy 
responses producing a moderate response (0.48) from the unit. 
In contrast, the response to a similar motion in example 3 is much 
stronger (0.74), because in this case the receptive field covers 
a corner region that contains a discontinuity between a region 
of rightward motion-energy response and a region containing 
no motion-energy response. The strongest response from this 
selection unit (0.93) is from example 2, in which the receptive 
field encloses a discontinuity between two orthogonal sets of 
local measurements. Finally, in example 4, local responses cor- 
responding to two opposed motions (generated in this case by 
one transparent object moving in front of a second moving object) 
suppress the response of the selection unit. In this diagram the 
local response of a single selection unit was presented in isola- 
tion. The overall response of a selection unit is also determined 
by the responses of similarly tuned selection units in other image 
regions through competitive normalization. 



S. J. Nowlan and T. J. Sejnowski 

produced by two objects moving in opposing directions, 
will suppress the selection units [Fig. 7(b), example 41. 
Visual stimuli constructed so that there is a local balance 
between motion in opposing directions tend to cancel and 
are not seen as  t r a n ~ p a r e n t . ~ ~  

3. OBJECTIVE FUNCTION AND TKAIMNG 
A. Mathematical Model 
There are several assumptions that the statistical model 
embodies. First, motion in the visual scene is due to 
some finite number of motion processes, each of which 
may or may not be present in any particular scene. We 
are using the term process here in its statistical sense: 
a process is a means of generating a set of observations 
(in this case velocity measurements). A single process 
may correspond to a single moving object or to several 
objects all moving a t  the same velocity. If one of these 
processes is present in the scene, it may occupy not all 
regions of a scene but only some subset. A priori we 
do not know which subset of a scene any process will 
occupy, but we make the assumption that every region 
of the scene contains a t  least one motion process. One 
of the motion processes can be the null, or no-motion, 
process. We consider first a simple model that captures 
these constraints and gradually refine it. 

Let Vk be a binary random variable that takes on the 
value 1 if the kth-velocity process is present in an image 
and has the value 0 otherwise. We assume that the 
presence of a particular velocity process is independent of 
the presence of any other process. This is a reasonable 
assumption if velocity processes correspond to different 
objects moving independently in the scene. We divide 
the visual scene into a finite number of regions indexed 
by ( x ,  y) and define the set of regions in which process k is 
present as  Support (Vk). Support (Vk) may be an empty 
set. We now define the probability that velocity process 
Vh is present in a visual scene as 

where P[Vk = 1 I v(x, y ) ]  is the probability that process 
k is present, given the local velocity measured in region 
( x ,  y). Equation (12) simply states that we compute the 
probability that process k is present by summing the 
evidence for that process from all regions of the image, 
where the evidence is weighted by the probability that 
process k is present in the region. A major dif'ficulty 
with the simple model just described is that each Vk 
can take on only the value 0 or 1, so the model can 
represent only a discrete set of velocities. I t  would be 
preferable to represent a continuous range of velocities. 
One way to accomplish this is to assume that each output 
unit actually represents a Gaussian bump centered at 
a velocity vo(k). The bump can easily be normalized so 
that a velocity exactly equal to uo(k) produces a maximal 
activity of 1, with activity smoothly decreasing as the 
Euclidean distance between the velocity represented and 
uo(k) increases. The state of a single unit of this sort 
cannot uniquely represent velocity [any state less than 1 
could correspond to any velocity lying on a circle centered 
a t  uo(k)]; however, the states of a set of such units form a 
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distributed representation of a range of velocities (Fig. 8). 
The same representation is used for each pool of velocity 
units and for the final output of the model. 

For this continuous representation it makes more sense 
to think of V as a continuously valued variable, and we are 
interested in P[V = uo(k)] or, more precisely, P(uo - E 5 

V 5 uo + 6). For notational convenience we use the form 
P[V = uo(k)]. Equation (12) then becomes 

In order for Eq. (13) to be a proper probability statement, 
some additional conditions must be met. First, 

and P[V = uo(k)] 2 0 everywhere. In addition, we would 
like to enforce the condition that a t  least one velocity 
process occur in each region of the image, by letting 

where we are using the shorthand notation for P[V = 

uo(k)] defined above. 
In order to enforce these constraints we define the dis- 

tributed representation for a velocity 0 as 

where ak is the activity of unit k (in either the set of 
global-output units or one of the local-velocity pools). We 
accommodated the presence of multiple velocity processes 
globally by additively combining the distributed represen- 
tation of each process, clipping output unit values a t  1. 
This additivity means that there is a limit on how similar 

Fig. 8. Distributed representation of velocity. The velocity 
vector L. is uniquely encoded by the activities of the four units 
represented by the small shaded circles. The center of each 
circle is located a t  the direction and speed of motion that produces 
maximum response from the corresponding unit. The activity 
of each unit decreases with distance from the center of the unit 
as exp(-ri2), and this activity is shown by the density of shading 
in each unit. The darker the shading, the more active a unit, 
which in this case implies that ra < r l  < rz < rq. The larger 
circles around these four units intersect a t  only one location, the 
tip of the velocity vector v. 
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the velocities of two processes can be with the two pro- 
cesses still being distinguishable from a single process a t  
the average velocity of the two. 

Once these local probability constraints have been en- 
forced, Eq. (13) is valid as  long as  

This statement requires that the support for each global- 
velocity process be itself a probability distribution. 

Let Ik(x ,  y )  denote the state of local-velocity unit k a t  
location (x ,  y) and vk denote the continuous-valued state 
of output unit k. The presence of a particular global ve- 
locity D corresponds to a particular set of values for each of 
the output units, and, similarly, the presence of the same 
velocity in a particular region of the image corresponds 
to a set of values for all the units in a particular local- 
velocity pool. We are interested in P[V  = O I v(x ,  y ) ] ,  but 
we would like to express it in terms of &(x, y )  and uk. 
We accomplish this by adopting a Gaussian error model 
and comparing the local and the global values of corre- 
sponding units: 

where vk is assumed to be the value that a global unit 
takes on under the distributed representation of ir. This 
scheme is easily extended to account for the presence of 
several different global motions, because it merely cor- 
responds to a different set of values in the distributed 
output representation. 

If we define 

then each layer of selection units defines a conditional 
probability distribution. We can combine this distribu- 
tion with the distributions already defined for Ik(x ,  y ) .  
These probability distributions depend on both the 
weights in the selection and velocity pathways and the 
motion-energy measurements in each region of the visual 
scene. If we let ME(x ,  y )  denote the set of motion-energy 
measurements from region ( x ,  y )  of the image and ME 
denote the set of motion-energy measurements from all 
regions of the image, we can restate Eq. (13) more for- 
mally as 

P(V = D 1 W I ,  ws, ME) 

where w, denotes the set of adjustable weights in the 
local-velocity pathway, ws is the set of selection weights, 
and vk are the output unit states used to represent D. 
Since we have a fixed number of output units, Eq. (19) 
is valid whether we have just one motion process or a 
set of motion processes present, except that the values vk 
change. 

The model was trained on sequences of frames from 
visual scenes for which the global motions of processes 

present in the scene were known. Let ME,,, denote the 
set of motion-energy measurements associated with frame 
t of sequence c, and let vCt denote the set of motion pro- 
cesses present in this frame. We seek a set of parame- 
ters so that the model performs well on the training data 
and generalizes to other scenes. A common method is 
to maximize the conditional log likelihood of our training 
data. If we assume that scenes in the training set are 
independent of one another and that the frames within 
each sequence are also independent, then the conditional 
likelihood of the training data is 

where P(vCvt I ME,,,, wr, ws) is defined as  in Eq. (19). 
We search for a set of parameters WI, ws that maxi- 
mize this expression (or, equivalently, the log of this 
expression). The second assumption is clearly not valid, 
since sequential frames are, in fact, highly correlated; 
however, the main concern is with the conditional inde- 
pendence of P(v, , ,  I MEcrt)  and P ( V , , ~ + ~  I Since 
ME,,, is a function of several preceding frames as  well 
a s  of the current frame, this conditional-independence 
assumption is more reasonable. Technically, we are 
making a Markov-order assumption and assuming that 
P(vCst  I ME,,,, v , , , -~)  = P(vCst  ( MEcst), in other words, that 
knowing v , , ~ - ~  gives us no more information than know- 
ing ME,,, . 

Combining results from Eqs. (13) and (18)-(20), we 
need to maximize the expression 

where K, is the Gaussian normalization constant. We 
adjusted the weights of the local-velocity and selection 
pathways by using a gradient-ascent procedure to find a 
local maximum of this likelihood function. The constant 
u was set to the value 0.25 for all simulations. This 
value was a compromise based on the spacings between 
the velocity tuning of the units in the log-polar velocity 
representation. 

Some insight into the nature of this objective function 
can be gained by consideration of its gradient with respect 
to the net input to units in the local-velocity [Eq. (a)] 
and selection [Eq. (lo)] pathways. Define the weighted 
evidence for output vk from region (5 y )  as  

The total evidence for vk from all regions of the image is 
then 

and the relative evidence for vk from region (I, y )  is 

The weighted evidence depends on both how well the 
local-velocity prediction from region ( x ,  y )  matches vk 
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and how much support for u k  is assigned to region (x, y ) .  
If we assume that initially support is assigned uniformly 
over the entire image, this weighted evidence is domi- 
nated by the match between vk and the local-velocity 
prediction. The total evidence is simply the sum of 
the weighted evidence from all regions and is equiva- 
lent to the expression in Eq. (19) under our continuous- 
probability model. The relative evidence is simply the 
proportion of the total evidence coming from region (x, y) ,  
and this relative evidence plays a prominent role in the 
gradient of our objective function. If support is initially 
assigned uniformly over the image, this relative evidence 
is a measure of how good the prediction for vk from region 
(x, y )  is in comparison with the predictions from all other 
regions of the image. 

The derivative of the log likelihood with respect to the 
input to a unit in the selection pathway is 

This derivative becomes zero only when Sk(x, y )  exactly 
matches the relative evidence for vk from region (x, y ) :  

This means that during training the selection-pathway 
weights are adjusted so that  support is assigned to the 
regions that relative to other regions provide the best 
evidence for each candidate velocity. 

The derivative of the log likelihood with respect to the 
input to the local-velocity units has a slightly more com- 
plex form: 

a log L 1 = x 7 h ( x ,  Y )  { ~ [ ( x ,  Y )  1 vkl[vk - Ik(x, Y ) ]  
aIkl(x, Y )  , , 

The term inside the braces on the first line of Eq. (26) 
is zero when I ~ ( x ,  y )  matches v k .  This is expected, since 
Ik(x, y) was intended to be a local prediction for vk. Note, 
however, that this error term is weighted by the relative 
evidence, so Ik(x, y )  is forced to predict v k  only if it al- 
ready is a better predictor for vk than predictions from 
other regions of the image. The term on the second line 
of Eq. (26) appears because of the constraint in Eq. (14). 
This term is essentially the same error term that appears 
inside the brace on the first line of Eq. (261, but summed 
over all the other candidate velocities in the local-velocity 
pool, and i t  serves to balance the error from all the local 
candidate velocities in proportion to the relative evidence 
for each candidate in this local region. The first term 
on the right-hand side, Ik(x, Y) .  scales the rest of the ex- 
pression down when Zk(x, y )  is close to zero (meaning that 
there is little evidence from the motion-energy measure- 
ments for the velocity that this unit represents). 

B. Architecture and Training 
The model described above corresponds to regions of vi- 
sual cortex responsible for processing moving stimuli in 
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a small patch of the visual field. There were 86,436 
units in the motion-energy stage of the model and a fur- 
ther 4,224 units in the local-velocity and selection stages. 
Only the weights in the local-velocity and selection path- 
ways of the model, which included approximately 8.8 x 
lo6 adjustable parameters, were adaptive. However, as 
discussed in Section 2, units a t  each receptive-field loca- 
tion in both the local-velocity and the selection pathways 
share common sets of weights, so the total number of free 
parameters in the model was reduced to 138,600. 

The system was trained by use of 500 image sequences 
containing 64 frames each (giving a total of 32,000 train- 
ing cases). We used a conjugate gradient optimization 
procedure to adjust the weights in both the selection 
and the local-velocity pathways to find a (local) mini- 
mum of Eq. (21). We generated the training image se- 
quences by randomly selecting one or two visual targets 
for each sequence and moving these targets through ran- 
domly selected trajectories (see Section 4 for some ex- 
amples). The targets were rectangular patches that 
varied in size, texture, and intensity. Several examples 
of training inputs are shown in Fig. 9. The training set 
contained examples of both transparent [Figs. 9(b) and 
9(e)] and occluding [Figs. 9(d), 9(f ), and 9(g)l interactions 
between pairs of objects. 

Target widths and heights ranged from 4 to 20 pixels, 
and targets contained randomly oriented textures with 
spatial-frequency content from 0.05 to 0.3 cycle/pixel and 
128 different gray levels. We formed textures by combin- 
ing square-wave gratings of varying phase and frequency, 
and targets typically contained multiple spatial frequen- 
cies. All the motion trajectories began with the objects 
stationary, and then one or both objects were rapidly ac- 
celerated to constant velocities that were maintained for 
the remainder of the trajectory. Targets moved in one of 
eight possible directions, a t  speeds ranging from 0 to 1.75 
pixelslframe. In training sequences containing multiple 
targets, the targets were permitted to overlap (targets 
were assigned to different depth planes a t  random), and 
the upper target was treated as opaque in some cases 
and as partially transparent in other cases. We selected 
target sizes, textures, and velocities a t  random, using 
a uniform distribution for all parameters and selection 
without replacement for multiple targets. The initial po- 
sitions of the targets were also selected randomly but were 
constrained to lie within the central two thirds of the in- 
put window. The system was trained until the response 
of the system on the training sequences deviated by less 
than 1% on average from the desired response. 

During both training and testing the evaluation of the 
model was divided into two phases. In the first phase 
the motion-energy filters were convolved with a sequence 
of images, and in the second phase the outputs of the se- 
lection and local-velocity units and the final output of the 
model were computed. Because the motion-energy stage 
of the model was not adaptive, only the second phase of 
evaluation had to be performed repeatedly during opti- 
mization of the model parameters. All simulations were 
performed with use of 128 nodes of an Intel ipsc hyper- 
cube operating in parallel. Computation of the Gauss- 
ian pyramid and of all 36 motion-energy convolutions 
required - 19.2 s for a sequence of 64 images 
(0.3 slimage). A set of 500 sequences of 64 frames would 
require 160 min to process. Evaluation of the local- 
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Fig. 9. Nine examples of images from the set of image sequences used to train the model. In each example the arrows indicate 
the direction of movement of the object in the scene, and the length of the arrows represents the object's speed. (b), (el, (g), 
Examples of transparent interactions between two objects, in which the lower object is partially visible through the upper object. 
These transparent interactions are computed on the basis of the transmittance and reflectivity of the objects in the scene. (d), (f) ,  
Examples of nontransparent interactions, in which the nearer object completely occludes the object behind it. These examples span 
the range of object sizes and relative contrasts used in the training set. 

velocity and selection pathways on the same 64-image 
sequence required - 32 s, and the combined forward 
evaluation and computation of the gradient for all pa- 
rameters during the learning phase required 80 s per 
64-frame sequence. One pass through a set of 500 image 
sequences during training required slightly over 11 h, 
and convergence of the optimization procedure required 
20 passes through the training set. The training of the 
entire model took approximately 10 days. 

The performance of the trained system was tested with 
a separate set of 50 test-image sequences. These se- 
quences contained 10 novel visual targets with different 
random combinations of width, height, texture, intensity, 
and trajectories generated in the same manner as  for the 
training sequences. The responses on this test set re- 
mained within 2.5% of the desired response, with the 
largest errors occurring a t  the highest velocities. Several 
of these test sequences were designed so that targets con- 
tained edges oriented obliquely to the direction of motion, 
demonstrating the ability of the model to deal with as- 
pects of the aperture problem. In addition, only small, 
transient increases in error were observed when two mov- 
ing objects intersected, whether these objects were opaque 
or partially transparent. 

The log-polar representation of velocity a t  both the out- 
put and the local-velocity stages of the model may ac- 
count for the fact that larger errors were observed a t  
higher velocities. Because the nominal velocities repre- 
sented were spaced farther apart for units representing 
higher velocities, the same absolute difference in activity 
level translated into a larger difference in represented ve- 
locity. The error metric used in training did not take into 
account the effect of the log-polar velocity representation. 

4. RESULTS 

We show first, by considering several examples of image 
sequences, how the local-velocity estimation and selec- 
tion pathways work in parallel. The first three examples 
were part of the test sequence described in Section 3 
and are qualitatively similar to the sequences used for 
training the model. In the figures for these examples, 
(Figs. 10- 12) we show one frame of an input to the model 
and a representation of the local-velocity estimates and 
how these estimates are grouped by the selection path- 
way. Local-velocity estimates are shown in these figures 
by arrows, with the direction of motion indicated by the 
direction of the arrow and the speed by the length of the 
arrow. Velocity estimates that fall below the detection 
threshold (see below) are indicated by short horizontal 
lines with no arrowheads. Selected velocity estimates 
are surrounded by dashed or soli-d boxes. The activity 
of the later stages would be based not on just this one in- 
put frame but also on several preceding frames. For all 
examples, velocities of objects will be given in polar coor- 
dinates, with 0" defined as  rightward motion and angles 
measured in a counterclockwise direction. 

The use of the distributed representation of velocity 
in both the output and the local-velocity stages of the 
model means that one must be careful in interpreting the 
output of the model. The ideal response to a motion of 
0.5 pixellframe to the right is an activity of 1.0 in the 
single unit representing this velocity, and the ideal re- 
sponse to a motion of 0.75 pixellframe to the right cor- 
responds to an activity of 0.37 in two units (representing 
velocities of 0.5 and 1.0 pixel/frame to the right). The 
output representation is designed so that a single veloc- 
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ity corresponds to activity in a t  most four units simul- 
taneously, and these units would correspond to nearest 
neighbors according to Fig. 5(b). When there is more 
than a single motion in a scene, the ideal response is com- 
puted by linear superposition. Thus a scene containing 
motions of 0.5 pixeljframe upward and 0.5 pixellframe to 
the right has an ideal response with an  activity of 1.0 in 
two different units. 

In order to determine whether a particular motion was 
seen by the model, we compared the output of the model 
with the ideal response for some particular velocity. To 
do this efficiently we used a simple thresholding pro- 
cedure, in which units had to be within 75% of their 
ideal values to be considered active. We could quickly 
determine the minimum threshold that is consistent with 
any ideal responses in which a unit could participate, by 
examining the activations of a unit and all its nearest 
neighbors. Units that fell below this threshold were im- 
mediately discarded from further consideration, and units 
that were above threshold were then interpreted in terms 
of superpositions of ideal responses. 

A. Single Objects 
Consider first a square object of uniform intensity mov- 
ing a t  0.5 pixellframe with a heading of 45" [denoted by 

Fig. 10. Local-velocity and selection responses to a moving 
square. (a)  The square object of uniform intensity moves at  
0.5 p~xel/frame a t  a heading of 45", as indicated by the arrow. 
Intersections of grid lines correspond to locations of centers of 
local-velocity and selection-receptive fields. (b) Representation 
of the outputs of the local-velocity and selection stages of the 
model for the input shown in (a). The arrows a t  grid points 
represent the outputs of the local-velocity pool a t  the respective 
receptive-field locations. Regions enclosed by dashed lines cor- 
respond to local-velocity measurements selected for integration 
at  the output stage. 
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(0.5, 45")l. Figure 10(a) shows the mput stmulus.  and 
the grid superimposed upon this stimulus Indicates the 
coarseness of the representation of this space a t  the local- 
velocity and selection stages of the model. Figure 10(b) 
shows the local-velocity estimates that were above thresh- 
old for this input. Each velocity estimate is represented 
by an arrow indicating the magnitude and direction of 
the estimate. In addition, dashed boxes enclose the es- 
timates that make the main contribution to the calcula- 
tion of overall velocity of the object. The contribution of 
each velocity estimate to the overall velocity 1s the prod- 
uct of the activity of that velocity unit and the activity of 
the corresponding selection unit, and both of these must 
be large for a n  estimate to contribute to the overall out- 
put of the model. Only a single global motion is present 
in this scene, and only the support for this motion 1s 
illustrated. 

This simple example reveals some important aspects of 
processing in the model. The central region of the object 
contains no contrast variations, so, even though this re- 
gion is moving along with the rest of the object, velocity 
estimates centered in this region show no velocity. Simi- 
larly, the velocity estimates near the center of the object's 
edges see only contrast edges of a single orientation. As 
a result, these estimates can represent only the compo- 
nent of motion that is orthogonal to these edges. The 
only local-velocity estimates that reflect the true motion 
of the object are those estimates from regions near the 
four corners of the object. In these regions the presence 
of edges a t  two orientations is sufficient to disambiguate 
the true velocity. By examining the patterns of activity 
in the local-velocity and selection networks, we can see 
how these regions were selected. 

Consider the calculation of global evidence for three 
idealized hypotheses40.35, 09, (0.5, 45"), and (0.35, 
9O0korresponding to the true motion in the scene and 
the rightward and upward components of that motion. 
For convenience, consider the contributions of the veloc- 
ity and selection units from only the nine receptive-field 
locations labeled with arrows in Fig. 10(b), and assume 
that units explicitly representing these particular veloc- 
ity hypotheses exist in the model (the activities that we 
report for these idealized units are interpolated from real 
unit activities in the model). For the receptive-field loca- 
tions corresponding to the four corners of the object, the 
velocity unit representing (0.5, 45") had activity of 0.9, 
and the units representing (0.35, 0") and (0.35, 90") each 
had activity 0.05. (Values have been rounded to two sig- 
nificant digits for convenience.) For the receptive-field 
locations in the centers of the two vertical edges, the ve- 
locity unit representing (0.35, 0") had activity 0.95, and 
units for (0.35,90°) and (0.5,45") were both essentially a t  
zero activity. Similarly, a t  the centers of the two hori- 
zontal edges, the velocity unit representing (0.35, 90") 
had activity 0.95, and the velocity units for the other hy- 
potheses had practically no activity. The velocity units 
of all three idealized hypotheses in the central receptive- 
field location had zero activity; this region will not be 
considered further, a s  it can make no contribution to the 
global activity. 

Now consider the selection-unit activities for the hy- 
pothesis (0.5, 45"). The four corner receptive-field loca- 
tions had selection activity of 0.25, and all other locations 
had selection activity of zero. The global evidence for 
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(0.5, 45") is simply the sum of the velocity-unit responses 
from the four corners, each weighted equally: 

The ideal response for (0.5, 0") corresponds to an activa- 
tion of 1.0 in the appropriate unit, so the response for 
this hypothesis is well above its threshold value of 0.75. 
The selection activity for the hypothesis (0.35, 0") was 
distributed across six receptive-field locations: the four 
corner regions and the middles of the two vertical edges. 
The selection activity in each of the corner locations was 
0.2, and in the middle of the edges it was 0.1. This bias 
in favor of the corner regions was due to the sensitivity 
of selection units to velocity discontinuities that was dis- 
cussed above. This is a sensible bias, and, if the motion 
in the scene really were to the right, the corner regions 
would provide unambiguous evidence of this motion. As 
a result of this distribution of selection activities, quite a 
bit of the support for the hypothesis (0.35,0°) was concen- 
trated in regions in which there was little local evidence 
for this velocity, and as  a result the global evidence be- 
came quite weak: 

This global evidence actually maps into activity levels of 
0.15 for the unit representing (0.25, 0") and 0.13 for the 
unit representing (0.25, 0"). The corresponding thresh- 
olds for these two units are 0.5 and 0.4, respectively, so 
both of these units had activity well below threshold for 
this hypothesis. The calculation of support for the hy- 
pothesis (0.35, 90") was nearly identical, with the centers 
of the horizontal edges replacing the centers of the verti- 
cal edges in contributing to the global evidence of 0.23. 

It  is apparent in this first example that the computa- 
tion of global velocity even in the simplest case, which is 
dominated by velocity estimates from the corners of the 
object, is the result of fairly complex interaction between 
velocity and selection-unit activities. The weighted com- 
bination of velocity estimates provides a good overall es- 
timate of the true velocity of the object. The activity of 
the selection units indirectly segments the scene into a re- 
gion of coherent motion; however, it is important to note 
that the region is disjoint in this case and does not cor- 
respond to the entire object. The segmentation would be 
the same if the original scene contained only the corners 
of the object rather than the entire object. For the ob- 
ject to be perceived as  a single object, some other process 
would be required to fill in the region corresponding to 
the object (much the way a Kanisza triangle can be filled 
in on the basis only of the presence of its corners). This 
other process could use texture, color, or intensity cues 
to fill in this surface. and we make no a t t e m ~ t  to model 
such a process.58 

The second example was also a single object moving 
a t  (0.5, 45") (Fig. 11). In this example, however, the ob- 
ject did not have uniform intensity but was instead filled 
with a pseudorandom texture. As a result, all regions 
of the object contained both local contrast variations and 
edges a t  several different orientations. The local-velocity 
estimates from all regions of the object were largely in 
agreement in this case: the velocity unit with maximal 
response in all 16 receptive-field locations enclosed by the 
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dashed box in Fig. l l (b )  corresponded to (0.5, 45"), with 
the activity in this unit ranging between 0.68 and 0.92. 
The distribution of selection-unit activities for the veloc- 
ity hypothesis (0.5,45") was also much more uniform over 
these 16 receptive-field locations, since most receptive- 
field locations contained local regions of motion discon- 
tinuity that were due to the textured pattern within the 
receptive field. There was still a slight bias in favor of 
the true corners of the object, which received selection- 
unit activities near 0.08, with interior regions of the ob- 
ject having selection activities ranging between 0.05 and 
0.06. The global evidence for the velocity (0.5, 45") in 
this case was 0.93, and the evidence for the two compo- 
nent velocities (0.35, 0") and (0.35, 90") was 0.25 and 0.2, 
respectively. Thus, although the pattern of selection for 
this example was quite different from that of the first ex- 
ample, the final global evidences were quite similar. In 
the second example the segmentation performed by the 
model corresponded well with what would be identified 
as a single moving object. 

The velocity estimates for the object were similar in the 
first two examples, yet the output of the selection stage of 
the model was quite different. In the first example the 
region of support for the object velocity was concentrated 
over a quite-small portion of the object, and a large weight 
was assigned to each selected velocity measurement. In 
the second example the region of support encompassed the 
entire object, with much less weight assigned to any one 
velocity measurement. Although it is intuitively more 

Fig 11. Local-velocity and selection responses to a movmg tex- 
tured object. (a) The input to the model is a square object 
wlth a pseudorandom intensity moving a t  0.5 pixellframe a t  a 
headlng of 45", as Indicated by the arrow. (b) The outputs of all 
local-veloc~ty pools are in close agreement, and the entlre object 
reeon IS selected (indicated by the dashed box). 
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Fig. 12. Local-velocity and selection responses to partially oc- 
cluding objects. (a) The input to the model consists of two 
objects moving in opposite directions (one to the right at 0.25 
pixel/frame and the second to the left at 0.5 pixellframe). Each 
arrow indicates the direction and speed of motion of the object. 
(b) The dashed outlines indicate the region of motion selected 
for the rightward-moving object, and the solid outline indicates a 
separate region of support for the motion of the leftward-moving 
object. The local-velocity estimates in the region of overlap are 
ambiguous, showing two directions of motion simultaneously. 

appealing, the segmentation in the second example was 
no better than that in  the first for estimating the veloc- 
ity of the object. I t  could be argued that, because the re- 
gion of support for the second object was spread over more 
measurements, i t  was more tolerant to noise in individual 
measurements. However, noise is a problem only if it is 
injected a t  the velocity-estimation stage. Noise injected 
into the image a t  earlier stages produces local contrast 
variations in the image. These contrast variations serve 
much the same role as the texture in the second exam- 
ple, causing the region of support to spread over more of 
the portion of the image covered by the object. As local- 
velocity estimates become noisier, there is generally a cor- 
responding spread in the region of support, which reduces 
sensitivity to the noise. 

B. Occluding Objects 
The third example included two objects moving in opposite 
directions (Fig. 12). One object was striped horizontally 
and moved a t  a velocity of (0.25, 0"). The second was 
striped vertically and moved a t  (0.5,180°). The leftward- 
moving object was on top of the rightward-moving ob- 
ject (i.e., closer to the observer) and was composed of a 
material that reflects but does not transmit light. As a 
result, in regions where the two objects overlapped, the 
second object occluded the first object totally, and the 

intensity in these regions was the intensity of the sec- 
ond object. The local-velocity estimates and the regions 
contributing strongly to the global velocity are shown in 
Fig. 12(b). Regions contributing to rightward motion are 
denoted with dashed outlines, and those contributing to 
leftward motion are denoted with solid outlines. (Recall 
that separate regions of support are computed for differ- 
ent candidate global velocities.) 

In this example the region of overlap of the two objects 
is marked with double arrow heads to indicate that the 
activity in the local-velocity pool was not concentrated in 
a single unit but was distributed bimodally, with activity 
peaks corresponding to two opposing directions of motion. 
For example, the velocity pool of the receptive field a t  the 
top-right corner of the lower object has a net activity of 
0.3 for velocity (0.25, 0") and of 0.4 for velocity (0.5, 180"). 
In addition, the activities of the selection units for both 
(0.25, 0") and (0.5, 180") were relatively weak (0.02 and 
0.013, respectively). As a result, this ambiguous motion 
region made little contribution to the overall evidence for 
either motion in the scene. The global evidence for (0.25, 
0") in this scene was 0.86, and the evidence for (0.5, 180") 
was 0.91. 

Note also that for the leftward-moving object there 
were contributions to the global-velocity estimate from all 
regions of the object, whereas these contributions were 
concentrated a t  the leading and trailing edges of the 
rightward-moving object. This difference was due to the 
effects of local edge orientation in the two objects. For 
the leftward-moving object the contrast stripes were ori- 
ented perpendicular to the direction of motion, providing 
strong local motion signals over most of the region covered 
by the object. The selection-unit activity still tended to 
be concentrated on the top and bottom edges of the ob- 
ject, because these were the regions with motion disconti- 
nuities (between regions of rightward motion and regions 
of no motion). However, because these edge regions were 
only - 1.5 times as strong as  the center regions, the center 
regions still made a significant contribution to the over- 
all global motion estimate. For the rightward-moving 
object the contrast stripes were oriented parallel to the 
direction of motion, and motion-energy detectors near the 
center of these stripes experienced no contrast variation 
and hence failed to respond to the motion of the object. 
As a result, strong local motion signals for rightward mo- 
tion were found only along the leading and trailing edges 
of this object. The selection activity for rightward motion 
was concentrated near the three corners of the rightward- 
moving object (if we ignore the one ambiguous corner), 
because of the presence of motion discontinuities in these 
regions. However, since the discontinuities here were 
again only between regions of rightward and zero motion, 
these corners were weighted only - 1.5 times as strongly 
as the middles of the leading and trailing edges. 

Comparison of the first and third examples illustrates 
some of the complexity that may arise from the in- 
teractions between the local-velocity and the selection 
networks in the model. In the first example, velocity 
measurements near the centers of object edges did not 
make a significant contribution to the evidence for the 
overall motion of the object. In contrast, for both mov- 
ing objects in the third example, regions near the centers 
of the leading and trailing edges of the objects did make a 
significant contribution to the evidence for overall motion 
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Pattern motlon 

Fig. 13. Construction of plaid patterns. (a), (b) Two superim- 
posed drifting gratings. When either grating is presented alone, 
its direction of motion is reliably reported (arrows). (c) The two 
moving gratings in (a) and (b) are superimposed. They cohere, 
and the pattern appears to move in a direction different from the 
direction of motion of either component grating (upward arrow). 

of the object. This difference was due to the multiplica- 
tive interaction between selection and velocity units and 
the different way in which competition was organized 
in the two pathways. In both examples, corners were 
selected most strongly, although the presence of two or- 
thogonal motion directions caused the corner regions 
to be selected somewhat more strongly in the first ex- 
ample. However, in the third example there were far 
more regions that supported the global motion of each 
object, and as  a result the competition across locations 
in the selection pathway produced a relatively diffuse 
distribution of selection activity. In the first example 
there were only four locations supporting the global mo- 
tion of the object, so each of these received considerably 
more weight. This difference in selection activity can 
still account only for part of the difference in the two 
examples. The local-velocity distributions in the corner 
regions were also very different between the two ex- 
amples. In the first example the local-velocity distribu- 
tions in corner regions were very different from those near 
the center of object edges, whereas in the third example 
the velocity distributions in the centers and a t  the corners 
of leading and trailing edges were nearly identical. I t  is 
the multiplicative combination of these two effects that 
accounts for the dramatic difference in the overall result 
obtained in these two examples. 

C .  Transparent Plaids 
In addition to testing visual stimuli similar to those in 
the training set, we tested the model with a variety of 
stimuli that have been used in psychophysical studies of 
human motion perception. These simulations, and the 
corresponding psychophysical and physiological results, 
are discussed in detail in a companion paper.25 Here 
we only briefly summarize some of the results, focusing 
primarily on the ability of the model to deal with more 
complex cases of transparency and occlusion. Many 
computational motion models have difficulty with trans- 
parency, which is common in natural scenes. Trans- 
parency occurs whenever two different motion vectors 
appear simultaneously a t  some location in the visual 
scene, and it can occur whenever transparent or partially 
transparent objects pass in front of each other. 

A well-studied class of psychophysical stimuli for trans- 
parency is the plaid pattern.7J2-59 These stimuli consist 
of two independently moving gratings that are superim- 
posed (Fig. 13). When human observers are presented 
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with only one of the gratings [Figs. 13(a) and 13(b)l they 
always reliably report the motion of the grating in the 
direction perpendicular to their orientation. When two 
gratings are superimposed [Fig. 13(c)], rather than see- 
ing the two independent motions of the gratings, most 
observers see the two gratings cohere and form a single 
pattern moving in a direction different from that of either 
of the component gratings. However, under certain con- 
ditions, rather than fusing the two gratings into a single 
coherent motion, a human observer reliably reports see- 
ing both motions simultaneously, a s  if one grating were 
sliding above or below the second. This perceptual state 
is called motion transparency, since one grating appears 
to be partially transparent, allowing the second grating 
to be seen through it. 

Any computational model that integrates or averages 
over large homogeneous regions tends to combine the mo- 
tion of the two component gratings into a coherent per- 
cept, especially if the components have similar spatial 
frequencies. However, Stoner et aZ.12 showed that hu- 
man observers can see transparent motion even when the 
components of a plaid have identical spatial frequencies. 
This tendency to see transparent motion can be affected 
by simply an  alteration in the luminance of the region of 
intersection of the two gratings. Our model is capable 
of qualitatively duplicating these results; when the lu- 
minance of the intersection region is altered, the model 
either will report a single velocity corresponding to the 
pattern motion or will report the velocity of both compo- 
nents of the pattern i n d e p e n d e n t l ~ . ~ ~  In addition, nonco- 
herent motion is seen by the model over a broader range 
of luminance when the angle between the gratings is 
135" rather than only 90". This result agrees with psy- 
chophysical results obtained with human subjects.12 

The coherence of plaid patterns can also be affected 
by the spatial frequencies of the two  component^.^^*^^ If 
the component frequencies are different by more than an 
octave, human observers see two separate motions rather 
than a single coherent motion. We explored this effect in 
the model by using a plaid pattern in which the luminance 
of both gratings was held constant (Fig. 14) and in which 
the frequency of one component was held fixed while the 
frequency of the second component was varied systemati- 
cally. To measure the coherence of the response of the 
model, we defined a measure of the percent of the response 
corresponding to component motion: 

where PC stands for percent component motion, I p  indi- 
cates the ideal response to pattern motion, u p  indicates 
the actual amount of pattern response, Ic indicates the 
ideal response to component mot~on, and ac indicates the 
actual response to component motion. 

Since up ,  Z p ,  ac ,  and Zc are strictly positive and less 
than 1 and ac 5 Zc and u p  5 Z p ,  PC lies between 0 
and 100. We computed the ideal component response 
by presenting the gratings to the model independently 
and adding together all the responses of the output units 
above a threshold of 10133 to get a single scalar value. 
This threshold was approximately 10 times the resting 
state of the output units and was calculated by the 
technique described above for estimating thresholds for 
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Nan-coherent Coherent Non-coherent 
Fig. 14. Coherence of plaid patterns as a function of the spatial 
frequency of component gratings. The input to the model con- 
sisted of two component gratings, and the spatial frequency of 
one of the gratings was varied. (a) Percent of pattern motion 
in the output of the model as a function of the ratio of the 
spatial frequencies of the two component gratings. When the 
component spatial frequencies differed by an octave or more, 
the model always reported the two component motions rather 
than the pattern motion. (b) Examples of two noncoherent 
plaid patterns and one coherent plaid pattern. In the leftmost 
pattern the variable grating has one half the spatial frequency of 
the fixed grating. In the rightmost pattern the variable grating 
has twice the spatial frequency of the fixed grating. These 
patterns mark the boundaries at which the model fails to detect 
coherent pattern motion. 

output responses. We computed the actual component 
response by adding together the activity in all the out- 
put units that were above threshold in the ideal case 
(typically near four units). The ideal pattern was a pat- 
tern of intersecting bars (with intersection regions having 
the same luminance as the bars) that looked like a plaid 
pattern when it was viewed statically. The entire pat- 
tern was moved in the intersection-of-constraints direc- 
tion of the original plaid stimuli. We computed the ideal 
pattern response by adding together the activity of all 
the output units above threshold, and we computed the 
actual pattern response by adding together the activity 
in the output units that had been above threshold in the 
ideal pattern response (typically near two units). 

PC is not the most direct measure of the response of 
the model, but it captures two important effects that are 
present in the psychophysical experiments with which we 
wish to comoare the model. First, the PC measure takes 
into'account the effects of random variation; units in the 
model are noise free, so the response to any particular 
input pattern is deterministic. A simpler winner-take- 
all strategy based on the strength of the output of units 
tuned to component motion versus the output of units 
tuned to pattern motion would always pick the larger re- 
sponse even when the two responses were nearly identical 
in value. In the presence of random variation, however, 
when the two responses are nearly equal in value we 
would expect each response to win roughly half the time. 
Similarly, when the pattern and component responses are 
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nearly equal, PC is near 50%. The psychophysical ex- 
periments are also choice experiments: the subject 
makes a perceptual judgment between two categories 
on the basis of their similarity to the ideal categories. 
Similarly, the PC measure compares the actual responses 
with ideal responses in order to decide which category 
is most similar. This is especially important for these 
plaid stimuli, because we did not train the model with 
similar stimuli and therefore had no a priori expectation 
of what the model response corresponding to these stim- 
uli should be. For example, the activity of units in the 
ideal pattern response is generally weaker than that of 
the component response, so simply using unit response 
values would lead to misleading results. 

When the two component gratings had the same 
spatial frequency, the output of the model was coherent 
pattern motion. When the difference in the ratio of the 
component spatial frequencies was 1 octave or greater, 
the output of the model was component motion rather 
than coherent motion, as  shown in Fig. 14. This is sim- 
ilar to human performance on the same stimuli. The 
failure of human observers to see coherence in plaids 
with significantly different spatial-frequency components 
has been used as  an argument in favor of the independent 
processing of spatial-frequency channels in early stages 
of the human visual system. The failure of the model to 
report coherent motion in plaids can also be traced to a 
failure to integrate across very different spatial frequen- 
cies in the local-velocity stage of the model. The range of 
spatial frequencies for which plaid patterns would cohere 
corresponds very well to the range of frequencies over 
which an  individual local-velocity unit responds. 

Plaid-pattern coherence may also be affected by the 
relative contrast of the two component gratings.' As the 
contrast difference between the two component gratings 
increases, human subjects have a stronger tendency to 
see transparent rather than coherent motion. We have 
also replicated these experiments on the model. The ini- 
tial plaid configuration was reliably seen as coherent by 
the model when the two component gratings had equal 
contrast; the contrast of one of the two gratings was then 
varied, and the model's response was assayed with the 
PC measure defined above. As the ratio of the contrast 
of the two components was increased, the PC measure in- 
creased, until for a sufficiently large contrast ratio the 
model always reliably reported only component motion 
(Fig. 15). The model was somewhat sensitive to relative 
(but not absolute) contrast, so the lower-contrast compo- 
nent tended to produce a weaker- output than did the 
higher-contrast component, but both responses were well 
above threshold for a broad range of contrasts. Because 
the model was exposed during training to scenes with ob- 
jects of different contrast, the selection units learned to 
compensate a t  least partially for relative contrast differ- 
ences in a scene: lower-contrast objects have more con- 
centrated support, which provides a larger multiplier for 
the outputs of the local-velocity pathway. 

D. Dynamic Random-Dot Stimuli 
The primate visual system is sensitive to coherent motion 
in the presence of a background of dynamic noise. This 
sensitivity has been studied with use of dynamic random- 
dot displays. Newsome and PareG1 have shown that 
rhesus monkeys are able to identify reliably the direc- 
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Coherent Non-coherent 

Fig. 15. Coherence of plaid patterns as a function of the con- 
trast ratio of component gratings. The input to the model 
consisted of two component gratings, and the contrast of one of 
the gratings was varied. (a) Percent of pattern motion in the 
output of the model as a function of the ratio of the contrasts 
of the two component gratings. When the component contrasts 
differed by more than 1 octave, the model always reported the 
two component motions rather than the pattern motion. (b) 
Examples of the boundary between coherent and noncoherent 
plaid patterns. In the pattern at the left, the ratio of component 
contrasts is 1.3, and this pattern was coherent 83% of the time. 
In the pattern at the right, the ratio of component contrasts 
is 2.5, and this pattern resulted in noncoherent output 94% of 
the time. 

tion of motion in a field of randomly moving dots when 
fewer than 5% of the dots in the field move in a coherent 
direction. 

We used identical dynamic random-dot displays to ex- 
amine the sensitivity of our model to coherent motion 
against a background of dynamic noise.25 With the se- 
lection layer functioning, the model was able to identify 
the direction of coherent motion reliably with 4% of the 
dots in the field moving coherently. However, with the 
selection pathway disabled, the same level of performance 
needed 18% of the dots in the field in order to move co- 
herently. The selection layer greatly improved the sen- 
sitivity of the model to coherent motion in the presence 
of dynamic noise. 

The improvement in sensitivity to coherent motion was 
due to the role of the selection units in finding regions 
of the image for which motion estimates are most re- 
liable (Fig. 16). The selection layer tended strongly to 
select only regions containing several pairs of dots that 
supported the same motion. These regions tended to con- 
tain a higher proportion of coherently moving dots than 
occur on average within the entire image, so averag- 
ing only over these regions greatly improved the overall 
signal-to-noise ratio. In the example shown, the signal 
in the coherent direction was 1.8 times as  strong as the 
motion signal in any other direction when it was aver- 
aged over the entire image. However, when averaged 
over only the selected regions, the signal in the coher- 

ent direction was 7.5 times as strong as the signal in any 
other direction. 

E. Barber Pole 
The ability of the model to integrate over only selected 
regions of an image can improve the model's response in 
noisy environments, but it can also lead to biased results 
when the selected regions contain misleading information. 
A n  example of such a failure of the model appears in the 
barber-pole illusion (Fig. 17). The black bands move to 
the right and are viewed though a vertical rectangular 
aperture. As each band reaches the edge of the aperture, 
it disappears and is replaced by a new band on the left- 
hand side. This is equivalent to having the black stripe 
continuously wrapped around a cylinder spinning to the 
right. However, the same display could also be produced 
by vertical movement of the bands or by movement a t  any 
angle except parallel to the bands (because of the aperture 
problem). 

As shown in Fig. 17(b), diagonal motion upward and to 
the right was observed in the middles of the bands, as a 
result of the aperture effect. However, a t  the ends of the 
bands the local velocity was strongly upward, as a result 

Fig. 16. Local-velocity and selection responses to a dynamic 
random-dot display. (a) One frame of the input to the model 
consisting of approximately 250 randomly placed dots. Most of 
the dots were replaced in random locations in the next frame; 
however, a subset of the dots (darkened) was moved a fixed 
displacement to the right in the next frame. (b) The dashed 
squares surround regions that 'were selected for integration in 
this frame. Arrows within the regions indicate the direction of 
the local-velocity estimate for the region. The selected reeons 
had denser-than-average numbers of coherently moving dots, 
and averaging over only these selected regions greatly improved 
the signal-to-noise ratio compared with averaging over the 
entire field. 
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the need for fine directional integration and effect~vely 
smoothing curved contours. The support in the model 
is concentrated among three directional hypotheses: up- 
rightward, rightward, and down-rightward [Fig. 18(b)J. 
The strongest support is for the rightward hypothesis, 
which corresponds to the final output of the model. The 
regions near the centers of the leading and trailing edges 
of the circle are more strongly selected than the regions 
closer to the top and bottom of the circle, because these 
middle regions contain fairly strong motion signals for 
several directions of motion, whereas the edge regions 
contain a t  best signals for one direction of motion and 
for no motion [compare Fig. 7(b), examples 2 and 31. 

5. DISCUSSION 

A. Limitations 
The model of motion processing presented here handles 
many visual stimuli, including transparency, size and con- 
trast variation, and some special cases such as  the barber- 
pole illusion. However, some aspects of visual perception 

Fig. 17. Local-velocity and selection responses to the barber- 
pole illusion. (a) The input to the model was a set of diagonal 
stripes that move at 1 pixel/frame to the right (indicated by 
arrows). When elements of the stripes reach the right-hand 
edge of the pole they disappear and are replaced on the left-hand 
side so that the diagonal stripes are maintained at a constant size 
and angle. (b) Only the regions corresponding to the edges of the 
pole were selected for integration at the output stage (indicated 
by dashed lines). In these regions the changes in location of 
contrast edges are locally consistent with upward motion even 
though the true motion in the scene was rightward. 

of the edge effects. The model selected the regions cor- 
responding to the edges of the poles more strongly and 
as a result reported upward motion in the output units. 
Although the upward motion reported by the model is 
an incorrect bias, it nonetheless corresponds to what hu- 
mans normally perceive when presented with the same 
stimulus. 

F. Circle 
The model was originally trained exclusively with rectan- 
gular objects, and an interesting question was whether 
the model could generalize correctly to the motion of 
curved surfaces. We explored this issue by showing the 
model examples of circles undergoing simple translational 
motion (Fig. 18). This circle has been antialiased in an 
attempt to reduce the effects of the fairly coarse Input 
representation used by the model, but pixellation effects 
along the edges of the circle are apparent. 

The model does indeed produce a correct response to 
translations of circles. In general, the proper integra- 
tion of motion signals along a curved boundary is a 
challenging problem.62 The coarse representation of di- 
rection and the broad directional tuning of units in the 
local-velocity and selection pathways actually simplifies 
the processing of curved contours considerably, obviating 

Fig. 18. Local-velocity and selection responses to a translating 
circle. (a) The input to the model is an antialiased circle that 
moves to the right at 1 pixellframe. Although the input is 
antialiased, pixellation effects are clearly visible around the 
edges of the circle and are caused by the low resolution of 
the input grid. (b) The regions selected most strongly for in- 
tegration correspond to the leading and trailing edges of the 
circle (enclosed by dashed lines). Although at the resolution 
of the integration and selection layers all regions around the 
edge of the circle contain motion signals distributed over several 
directions, the directions and velocities of these motions are 
similar enough to be averaged by the integration pool, and the 
resulting integration-pool activity corresponds to motion in one 
dominant direction, as shown by the arrows along the edges of 
the circle. 
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are not captured by the current model. Perhaps the most 
significant limitation of the current model is that it does 
not deal well with temporal integration of motion in the 
computation of velocity. There is clear evidence that the 
human visual system uses temporal i n t e g r a t i ~ n ~ ~  in its 
velocity computation. There are a number of non- 
Fourier motion s t i m ~ l i ' ~ , ~ ~ * ~ ~  that require some form of 
temporal integration in order to see the motion in these 
stimuli. We synthesized some of these stimuli, and the 
model does indeed fail to match the psychophysical re- 
sponses of humans to these stimuli. The model would 
also fail to replicate the experiments by Watamaniuk and 
M c K ~ ~ , ~ ~  which showed that human subjects can detect 
the motion of a single dot in the midst of a random-dot 
cinematogram if the dot has a fixed, repeatable trajectory. 
The detection of such a weak signal in a field of dynamic 
noise would be nearly impossible without some form of 
temporal integration. I t  should be possible to extend the 
current model to perform both spatial and temporal selec- 
tion and integration, and this is an  important direction 
for future research. 

The current model is also limited in its ability to 
interpret nonrigid motions, or flow fields associated 
with nontranslational three-dimensional motions. For 
csample, we presented spinning, nontranslating stimuli 
to the model and found that the model has difficulty inter- 
preting this type of motion field. Similar problems were 
seen with the radial motion fields created by approaching 
or receding objects and by nonrigid stimuli such as those 
used by Nakayama and S i l~erman .~ '  Some of these dif- 
ficulties can be traced to the final output stage of the 
model, which has only one set of units to represent the 
entire visual field. This lack of spatial resolution makes 
it inherently difficult for the model to represent some of 
these more-complex motion fields. One interesting di- 
rection for future development would be to extend the 
model so that the final output representation retained 
spatial information and could represent different motions 
in different regions of the retinal image. This extension 
might help the model to deal better with the motion fields 
produced by nonrigid and nontranslational motions. 

B. Relation to Other Models 
Many traditional computational vision models have been 
strongly influenced by the assumption that the purpose 
of the visual system is to create a veridical representa- 
tion of the visual scene in the real In the mo- 
tion domain this implies first that the observer create an 
accurate representation of the local two-dimensional ve- 
locity a t  all points in the input image and then use this 
optical flow field to infer the three-dimensional motion in 
the visual scene. 

The selection model of motion processing differs from 
most previous models in that it does not assume that the 
flow field is spatially continuous; rather it assumes that 
the early stages of motion processing coarsely segment 
an image into regions of coherent motion and provide 
an estimate of the two-dimensional velocity for each of 
these regions.24 Although this representation does not 
contain as  much information as a true flow field, it may be 
adequate for the majority of visual tasks, such as tracking 
and segmentation, in conjunction with other cues that 
require motion information. The coarse representation 
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of coherent motion is easier to compute and is more robust 
to noise than a fine representation of flow fields. 

The coarse representation of coherent motion does 
make some types of computation more difficult. In par- 
ticular, a s  noted above, the complex flow fields created 
by certain types of nontranslational three-dimensional 
motions and nonrigid motions are represented more 
easily by a fine representation of optical flow. However, 
our coarse representation permits the rapid and effective 
computation of the velocities of multiple objects under 
a wide variety of conditions and is adequate for many 
tasks faced by a navigating creature. In this respect our 
model is related in spirit to active perception/animate 
vision, which attempts to represent only that information 
needed for the task a t  hand.m-70 Advantages that our 
model enjoys include a natural way to include attention, 
avoidance of smoothing across boundaries, and partial 
segmentation by robust velocity features. 

All models of motion processing make assumptions that 
can lead to systematic errors when these assumptions 
are violated. The local-motion computation used in our 
model is very similar to that  used in previous models2s3 
and relies on assumptions of rigid translation that are 
often violated in real scenes. Many previous models have 
tried to deal with these types of systematic error by try- 
ing to fix or fill in bad estimates, using information from 
surrounding estimates. An important example of this 
type of approach is the use of smoothing or regulariza- 
tion techniques to integrate information from larger re- 
gions of an image and remove systematic errors caused 
by problems such as  the aperture e f f e ~ t . ~ ~ * " * ~ ~  A com- 
mon problem with these regularization techniques is that 
they assume that all data in a region of integration are ho- 
mogeneous. When this assumption is violated, the tech- 
niques can oversmooth the data, producing poor overall 
results. Such oversmoothing is particularly severe near 
object boundaries (for example, the boundary between a 
moving object and a stationary background). Smoothing 
across such boundaries blends data from two nonhomoge- 
neous regions and tends to blur object boundaries as well 
a s  producing poor velocity estimates near the boundaries. 

One way around the problem of oversmoothing is to seg- 
ment an image into homogeneous motion regions while 
the estimation of smooth image motion is being deter- 
mined. The most popular paradigm for doing joint regu- 
larization and segmentation has employed line processes 
in conjunction with some sort of grid-based regularization 

although alternative techniques have been 
proposed.71 Line processes are Boolean fields that are 
usually set when the squared difference between two ad- 
jacent velocity estimates exceeds some threshold. Once 
a line process is set, smoothing or averaging across the 
locations joined by the line process is not permitted. 
Line processes can be successfully combined with regu- 
larization to produce good estimates of optical flow when 
boundaries between objects are quite smooth and simple. 
However, in natural scenes involving partial occlusion 
and transparency, smoothing must often be performed 
across noncontiguous regions with ill-defined boundaries. 
In these situations line-process techniques can perform 
very poorly.27 

In contrast to most previous models of motion pro- 
cessing, rather than attempting to fix bad estimates, our 
model adopts the strategy of trying to ignore bad esti- 
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mates and concentrating only on good ones. Regular- 
ization methods begin with the assumption that nearby 
velocity measurements are similar unless there is explicit 
evidence to the contrary. Our model assumes instead 
that local-velocity measurements are spatially indepen- 
dent but that all the velocity measurements in the visual 
scene are generated from a small number of motion pro- 
cesses (which normally correspond to distinct objects in 
the visual scene). In particular, if a velocity estimate dif- 
fers from surrounding estimates, it may be assigned to a 
different process than are the surrounding estimates, but 
no attempt is made to regress this estimate toward the 
surrounding estimates, a s  would occur with most smooth- 
ing techniques. By assigning to a particular process only 
a subset of local-velocity measurements and then inte- 
grating all the velocity measurements for that process, 
we come up with a fairly robust estimate of the velocity of 
that process. Within the statistical literature, assigning 
measurements to different processes is referred to as  com- 
puting regions of support for a process and is a standard 
approach for robust e s t i r n a t i ~ n . ~ ~  The selection pathway 
in our model can be regarded as  a feed-forward mecha- 
nism for computing regions of support for robust velocity 
estimates. 

Our model was especially constructed to handle mo- 
tion transparency. Other recent models have also dealt 
explicitly with transparent objects, and certain aspects 
of these models have much in common with our model. 
Jasinchi et ~ 1 . ~ ~  proposed a three-stage model in which 
local-velocity components, normal to contours (and feature 
velocities), are computed, and then each of these local- 
velocity components contributes to a two-dimensional 
velocity space. Separate velocity histograms are com- 
puted for each region, on the basis of the number of votes 
that each bin in the velocity space receives. For two 
motion patterns one perceives motion coherence, trans- 
parency, or a mixture of both types of motion, depending 
on whether the velocity histogram is unimodal, bimodal, 
or trimodal, respectively. Similarly, in our model, trans- 
parency and mixed percepts are indicated by the presence 
of multiple activity peaks in the pool of output units. 
In addition, the local-velocity spaces used by Jasinchi 
et al. accumulate evidence for particular velocities in a 
small region, much the way local-velocity units in our 
model accumulate the local evidence for specific veloci- 
ties from small regions. A major difference between the 
two models is that multimodality is actually suppressed 
at  the local-velocity level in our model and appears pri- 
marily only a t  the output level of the model. Thus we 
represent transparent phenomena a t  a much coarser 
resolution. One advantage of the finer representation of 
transparency used by Jasinchi et al. is the ability to model 
the effect of contour curvature on transparency, an effect 
that we do not model. 

Another recent motion-transparency model, by Smith 
and G r ~ y w a c z , ~ ~  uses highly local computations, and, like 
the model of Jasinchi et is capable of representing 
transparency a t  a local level. This model was designed 
explicitly with plaid patterns in mind and is less general 
than our model or that of Jasinchi et al. The earlier 
stages of the Smith-Grzywacz model are very similar 
to the early stages of our model, both using normalized 
motion-energy responses from local regions in order to 
make the models less sensitive to intensity or contrast 
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scaling. The local-velocity computation in this model is 
based on a weighted sum of the motion-energy responses, 
followed by a winner-take-all strategy, and is again very 
similar to the local-velocity calculation in our model. The 
interesting feature of the Smith-Grzywacz model is that 
certain regions, corresponding to regions with the motion- 
energy gradient above a certain threshold, are selectively 
excluded from the summation process. This mechanism 
is related to the selection mechanism that occurs in our 
model, although here the selection process is operating a t  
the motion-energy level instead of a t  the velocity level as 
in our model. I t  is interesting to note that, in an ear- 
lier one-dimensional version of our model, the selection 
units learned to become detectors of large gradients in the 
motion-energy distribution. This phenomenon is similar 
to the selection criterion used by Smith and Grzywacz 
to prevent the accumulation of certain motion-energy 
measurements. 

C.  Segmentation 
One important limitation of the current model is that the 
final output stage of the model has no spatial resolution. 
However, this final output stage can be regarded as an 
artifice necessary for training the model; the interesting 
representations exist a t  the level of the selection and local- 
velocity networks. The selection network provides a 
partial solution to the problem of image segmentation. 
Logically, units in the selection network can be divided 
into layers, with each layer representing essentially a dif- 
ferent velocity. Each of these layers is organized retino- 
topically, and by examining which units are active in 
one of these layers we can determine in which regions 
of the image there are signals that support a particu- 
lar velocity. In this sense we can segment the original 
input scene coarsely into regions that support different 
velocities. 

Most previous models for segregating figure from 
ground have implicitly assumed that objects were spa- 
tially continuous, and the first step was to find a bounding 
contour. In many scenes the initial estimate of a contour 
is incomplete, and smoothing or regularization is used to 
complete the contour. Our approach to segmentation 
does not make this assumption: the selection network 
may group information that is spatially separated by 
intervening objects. This can be an advantage in situ- 
ations involving partial occlusion and transparency, in 
which boundaries may be ill defined. However, the se- 
lection network provides a t  best only a partial solution to 
object segmentation. As Fig. 10 illustrates, the regions 
selected may correspond to only a portion of an  object. In 
addition, the selection network will tend to group distinct 
objects moving a t  the same velocity. 

Some process in addition to the selection network would 
be necessary for true object segmentation to be performed. 
We suggest that this process may operate by combining 
information from multiple cues and modalities, the sig- 
nals from the selection network providing one source of 
cues. In some cases a mechanism for completing a par- 
tial contour may still be necessary, but in many cases sig- 
nals from several modalities, such as  color, texture, and 
motion, may provide sufficient information for completion 
of an object contour. In such cases attempts to complete 
a contour based on information from a single modality 
would be computationally wasteful. 
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D. Attention 
The proposed model suggests a way to integrate percep- 
tion and attention. The active mechanism in the model 
for selecting subsets of unit responses over which to in- 
tegrate performs a preattentive segregation of the motion 
pathway. The same mechanism could be used to attend 
to motion actively in restricted regions of the visual field 
by a top-down bias of the selection network. This is less 
invasive than a direct bias to the local-velocity units. An 
additional advantage of this active mechanism is that it 
could be used a t  all levels of cortical representation, a t  
early as  well a s  a t  later stages of processing. Selection 
may be a fundamental aspect of cortical organization that 
could provide a unification of preattentive vision with 
attention. 

The specific mechanism that we have proposed for the 
selection pathway is closely related to mechanisms pro- 
posed in attentional models. The type of renormalization 
nonlinearity appearing in Eqs. (5), (8), and (9) can be im- 
plemented by iteration of the following state equation for 
a finite period: 

where x ,  is the net input and y, the output of a unit.77 
This equation is easily implemented in a network with 
inhibitory lateral interactions and has been proposed as  
a mechanism for many attentional phen~mena.~~-~"e 
time course of evolution of this equation appears to match 
many aspects of visual search,77 suggesting a further link 
between the selection process proposed in our model and 
more-classical attentional models. 

E. Selection 
Identifying regions of support is a form of outlier rejec- 
tion. Imagine that samples from some function are con- 
taminated by noise, including some severe systematic 
errors. Such severely contaminated points are referred 
to as outliers and can be considered the result of some 
other process entirely. (In the motion-processing do- 
main, severely contaminated estimates of velocity could 
come from regions of constant intensity or from regions 
containing contrast variations a t  just a single orienta- 
tion.) The problem is to estimate the function from the 
samples without contamination from the outliers. One 
way that one can do this is first to estimate the func- 
tion by using all the data points and then to see which 
samples are far away from their estimated functional 
values. Samples that are too far from their estimated 
values can be thrown out, and then the function can be 
reestimated with use of the remaining data. After a 
few iterations no more points exceed the threshold, and 
the process yields a final estimate of the function. The 
success of this technique depends on picking the correct 
threshold for deciding which data to throw out. 

This iterative technique is a form of M estimation. The 
samples that are used in the final estimate of the function 
are the support for that  function. M estimation has been 
proposed for solving a variety of problems in computer 

The function being estimated is often re- 
ferred to as a hypothesis, since i t  is an  attempt to explain 
all the data within its support. Clearly, M estimators are 
highly sensitive to the rejection threshold that is used. 
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In addition, if too many of the original samples come 
from a contaminating or outlier process, the M estima- 
tor tends to break down and converge on a contaminated 
e~ t imate .~ '  In a visual scene containing many movlng 
objects, the number of velocity measurements from a par- 
ticular object may be a very small proportion of the total 
number of measurements in the scene, so breakdown of 
the estimator can be a severe problem. 

To overcome some of these difficulties, Darrell and 
PentlandZ7 suggested an  approach in which multiple hy- 
potheses competed to include samples within their regions 
of support. In their model each hypothesis corresponded 
to an  object in the visual scene, and, because the num- 
ber of objects was not known a priori, a complex relaxa- 
tion scheme was proposed for computing both the optimal 
number of hypotheses (or planes of motion) and the ve- 
locity of each plane. Local-velocity estimates were first 
assigned to a large number of hypotheses, and an over- 
all velocity was estimated for each hypothesis. A point 
could be excluded from the region of support of a hypothe- 
sis either because it deviated too much from the predicted 
velocity of the hypothesis or because it could be explained 
better by another hypothesis. If the estimated velocities 
of two hypotheses began to converge, those hypotheses 
could be merged into a single larger hypothesis. Assign- 
ment of velocity estimates to hypotheses and merging of 
hypotheses were repeated until the relaxation procedure 
converged. 

The method of assigning support in our model is simi- 
lar to that proposed by Darrell and PentlandZ7 in that 
multiple hypotheses compete to include local-velocity 
estimates in their regions of support. However, our 
approach is conceptually simpler and differs from their 
model in two important respects. In our model the hy- 
potheses correspond not to distinct objects but rather 
to distinct velocities, and the number of hypotheses is 
always fured. In addition, our decision to include a par- 
ticular local-velocity estimate in the region of support 
for a hypothesis is not based directly on the difference 
between the local estimate and the hypothesis velocity. 
Instead, the selection pathway computes this assignment 
of support in a noniterative fashion on the basis of the 
same set of motion-energy measurements that are used 
to compute the local-velocity estimate. However, as we 
noted in Section 3, the assignment of support computed 
by the selection pathway is based indirectly on the dif- 
ference between the local-velocity estimate and all the 
candidate global velocities. 

F. Conclusion 
In almost all the examples of moving objects that we have 
tested, the regions of support for each object were a small 
fraction of all the local-velocity measurements available. 
This sparse representation has several advantages In 
addition to improving robustness. The reduced repre- 
sentation is more compact than the local-velocity repre- 
sentation and can be used as  the input to further levels 
of processing that represent nonuniform velocity fields. 
The selected regions tend to be located a t  corners and 
a t  terminators that are natural segmentation boundaries 
for complex objects, such as  articulated limbs. Finally, 
sparseness could allow hyperacuity judgments to be made 
in distributed representations." 
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We intend to report i n  future papers on extensions 
of t h e  selection model to  t h e  cueing of invariant  motion 
stimuli13 including non-Fourier m o t i ~ n ~ ~ , ~ ~  a n d  to nonuni- 
form velocity flow fields.67 T h e  same approach can  also 
be applied to  other  problems i n  vision, such as stereop- 
sis, in which similar problems ar ise  with occlusion a n d  
transparency. 
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