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The backpropagation learning algorithm for feedforward networks 
(Rumelhart et al. 1986) has recently been generalized to recurrent net- 
works (Pineda 1989). The algorithm has been further generalized by 
Pearlmutter (1989) to recurrent networks that produce time-dependent 
trajectories. The latter method requires much more training time than 
the feedforward or static recurrent algorithms. Furthermore, the learn- 
ing can be unstable and the asymptotic accuracy unacceptable for some 
problems. In this note, we report a modification of the delta weight up- 
date rule that significantly improves both the performance and the speed 
of the original Pearlmutter learning algorithm. 

Our modified updating rule, a variation on that originally proposed 
by Jacobs (1988), allows adaptable independent learning rates for indi- 
vidual parameters in the algorithm. The update rule for the ith weight, 
wi, is given by the delta-bar-delta rule: 

with the change in learning rate ~ ~ ( t )  on each epoch given by 

if &(t - l)&(t) > 0 
if &(t - l)&(t) < 0 (1.2) 
otherwise 

where K~ are parameters for an additive increase, and $i are parameters 
for a multiplicative decrease in the learning rates ~ i ,  and 
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where E ( t )  is the total error for epoch t, and 

where f l i  are momentum parameters. 
Unlike the traditional delta rule that performs steepest descent on the 

local error surface, the error gradient vector {Si(t))  and the weight up- 
date vector {Awi) have different directions. This learning rule assures 
that the learning rate ~i will be incremented by ~i if the error deriva- 
tives of consecutive epochs have the same sign, which generally means 
a smooth local error surface. On the other hand, if the error derivatives 
keep on changing sign, the algorithm decreases the learning rates. This 
scheme achieves fast parameter estimation while avoiding most cases of 
catastrophic divergences. In addition to learning the weights, the time 
constants in dynamic algorithms can also be learned by applying the 
same procedure. 

One problem with the above adaptational method is that the learning 
rate increments, v;i, were too large during the late stages of learning when 
fine adjustments should be made. Scaling the increments to the squared 
error was found to give good performance: 

This introduces a global parameter, A, but one that could be broadcast to 
all weights in a parallel implementation. 

We simulated the figure "eight" presented in Pearlmutter (1989) using 
the modified delta-bar-delta updating rule, the result of which is shown 
in Figure la. This is a task for which hidden units are necessary because 
the trajectory crosses itself. According to the learning curve in Figure lb, 
the error decreased rapidly and the trajectory converged within 2000 
epochs to values that were better than that reported by Pearlmutter (1989) 
after 20,000 epochs.' 

We also solved the same problem using a standard conjugate gradi- 
ent algorithm to update the weights (Press et al. 1988). The conjugate 
gradient method converged very quickly, but always to local minima 
(Figure lc). It has the additional disadvantage in a parallel implementa- 
tion of requiring global information for the weight updates. 

We have successfully applied the above adaptational algorithm to 
other problems for which the original method was unstable and did not 
produce acceptable solutions. In most of these cases both the speed of 
learning and the final convergence were significantly improved (Lockery 
et al. 1990a,b). 

'We replicated this result, but the original algorithm was very sensitive to the choice 
of parameters and initial conditions. 
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Figure 1: (a) Output from a trained network (solid) plotted against the desired 
figure (markers) after 1672 learning epochs. Initial weights were randomly 
sampled from -1.0 to 1.0 and initial time constants from 1.0 to 3.0. An upper 
limit of 10 and a lower limit of 0.01 were put on the range of the time constants to 
reduce instabilities. About 75% of the simulation runs produced stable solutions 
and this example had better than average performance. (b,c) Learning curve of 
the same situation as in (a). Parameters used: g5 = 0.5, 19 = 0.1, X = 0.01, time 
step size At = 0.25. Final error E = 0.005. Average CPU time per epoch (on a 
MIPS M/120) was 0.07 sec. Notice the dramatic spiking after the first plateau. 
(c) Learning curve using a conjugate gradient method started with the same 
initial weights and time constants. Final error E = 1.7. Average CPU time per 
epoch was 2 sec. 
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