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ABSTRACT 

Blind separation is an information theoretic prob- 
lem, and we have proposed an information theoretic 
'sigmoid-based' solution [2]. Here we elaborate on sev- 
eral aspects of that solution. Firstly, we argue that the 
separation matrix may be exactly found by maximis- 
ing the joint entropy of the random vector resulting 
from a linear transformation of the mixtures followed 
by sigmoidal non-linearities which are the cumulative 
density functions of the 'unknown' sources. Secondly, 
we present the learning rule for performing this max- 
imisation. Thirdly, we discuss the role of prior knowl- 
edge of the c.d.f.'s of the sources in customising the 
learning rule. We argue that sigmoid-based methods 
are better able to make use of this prior knowledge 
than cumulant-based methods, because the optimal 
non-linearity they should use is just an estimate of 
the source c.d.f. We also suggest that they may have 
the edge in terms of robustness and speed of conver- 
gence. Improvements in convergence speed have been 
facilitated by the introduction of pre-whitening of the 
mixture data. An example result demonstrating this 
is the perfect separation of ten artificially mixed audio 
signals in 10 seconds of workstation computing time 
(4 to  prewhiten and 6 to separate). 

Statistically independent sources propagating in a 
medium are subject to several forms of distortion 
and interference. They may be (1) mixed with other 
sources (2) mixed with time delayed versions of them- 
selves, and (3) time-delayed. The mixing may be lin- 
ear or non-linear. The inversion of these three forms of 
scrambling without any knowledge of their form may 
be called blznd szgnal processzng, or blznd zdentzficatzon. 
When the mixing is linear, we usually refer to (1) as 

the problem of blind separation [4], (2) as the problem 
of blind deconvolution, and (3) as the problem of blind 
time alignment. 

These problems are znformation theoretzc problems 
in the sense that we are dealing with the removal of sta- 
tistical dependencies introduced by the medium, and 
the correct measure of statistical dependency is mutual 
information (see below). In the most general informa- 
tion theoretic formalism, no special status is given to 
noise introduced by the medium or the sensors. It is 
regarded as another 'source' to  be separated out. It 
cannot be assumed to be characterised only by second- 
order statistics (gaussian). In fact, if we are lucky (and 
we usually are), it will not be gaussian, for it is the 
higher-order statistics which characterise a signal as 
independent and enable it to be separated out from 
others. 

In [2], an information theoretic approach was out- 
lined to  all three of the above problems. This paper is 
really a series of footnotes to [2], and should be read 
in conjunction with it if fuller details, or material of 
an introductory or tutorial nature are needed. Here 
we will concentrate on the blind separation problem 
in order to  show more clearly how it is solved by in- 
formation theory. 

A vector of sources s(t)  = [sl(t) ,  . . . , sN(t)] propa- 
gates in a medium and mixtures of them, x(t) = 
[xl(t) ,  . . . , xN(t)] = As(t) ' ,  are picked up by sensors. 
The mixing is linear and static, there are no time de- 
lays and there are the same number (N)  of sensors as 
sources so that the mixing matrix, A, is square. 

The important fact that distinguishes a source, s; ,  
from a mixture, xi, is that it is statistically indepen- 

'henceforth, for convenience, the time index will be consid- 
ered as implicit. 



dent from the other sources, s j .  Their joint probability 
density function (p.d.f.), measured across the time en- 
semble, factorises: 

Another way of saying this is that the mutual infor- 
mation between any two sources, i and j ,  is zero: 

where E[.]  denotes expected value across the time en- 
semble. Mixtures of sources will be statistically de- 
pendent on each other and the mutual information be- 
tween them, I(xi , xi) will in general be positive. Blind 
separation then consists in finding a matrix, W, so 
that the linear transformation u = W x  = WAS re- 
establishes the condition I(ui,  uj) = 0, for all i # j. 
This is the problem of Independent Component Anal- 
ysis (ICA) [4, 31 One solution to  this problem is that 
W is the inverse of A so that WA=I ,  the identity 
matrix. Any other solution matrix, W, can be shown 
to be a permutation and rescaling of this one. See 
Comon [3] for a fuller discussion of these matters. 

To make the ui independent, we need to operate on 
non-linearly transformed output variables, y; = g(ui), 
g() being a sigmoidal function.' The sigmoidal func- 
tion provides, through its Taylor series expansion, all 
the higher-order statistics necessary to establish inde- 
pendence. This assertion is justified through the fol- 
lowing theorem: 

Theorem. Independent Component Analysis (blind 
separation) can be performed exactly, by finding the 
maximum, with respect to W, of the joint entropy, 
H(y) ,  of an output vector, y,  which is the vector u ,  
except that each element is transformed by a sigmoidal 
function which is a c.d.f. of a sources which we are 
looking for. 

In practice, we will often assume that all the sources 
have the same c.d.f. and use the same sigmoidal func- 
tion for each element of u .  To prove this theorem, we 
develop the following six points: 

Point 1. Independent variables cannot become de- 
pendent by passing each one through a sigmoid. Thus 
if I (u i ,  uj)  = 0 and y=g(u), g() being invertible, then 
I(yi , yj) = 0. Since g-l is also invertible, the converse 
also holds. 

2a sigmoidal function is defined somewhat generally here as 
an invertible twice-differentiable function mapping the real line 
into some interval, often the unit interval: R -+ [O,  11. 

Point 2. The entropy, H(y), of a sigmoidally trans- 
formed variable has its maximum value (of zero) when 
the sigmoid function is the cumulative density func- 
tion (c.d.f.) of the u-variable. Proof: H(y) is maxi- 
mum when fy(y)=l (the uniform distribution). Thus 
by the relation: 

we have dyldu = f,(u) which means y = F u ( ~ ) ,  the 
cumulative density. 

Point 3. The joint entropy, H(yl ,  yz), of two sig- 
moidally transformed variables has its maximum value 
(of zero) when yl and yz are independent and the sig- 
moid function in each is the c.d.f. of ul and uz respec- 
tively. This is a clear consequence of Point 2 and the 
relation: 

The N-variable joint entropy, H(y) ,  is similarly max- 
imal when each fy, (yi) term is maximum and all the 
I(yi, yj) are zero. 

Point 4. When two independent non-gaussian vari- 
ables, ui and uj are linearly combined, the p.d.f. of the 
resulting variable has a different shape from either of 
fu,(ui) or f,,(uj). In general, the p.d.f. becomes more 
gausszan, a trend ultimately enshrined in the Central 
Limit Theorem. Gaussian variables are the only ones 
which retain the form of their p.d.f. under linear com- 
bination. 

Point 5. Consider the joint entropy, H(y) ,  of 
N sigmoidally transformed variables, where the sig- 
moid functions are the c.d.f.'s of N independent non- 
gaussian sources (ie: yi = Fs,(ui))  This has its 
maximal value when ui = si, in other words when 
the sources are separated! Any mixing of sources, 
ui = Cj s3, will both: 

0 introduce statistical dependencies between the 
U'S, moving I(ui ,  uj) away from zero (and hence 
also I(yi, yj) - see Point I) ,  and 

decrease the individual entropy terms, H(yi), 
through deviation of fy,(yi) from 1. 

This latter fact is born out by Points 2 and 4 above. 
Taken together, this shows that under the special con- 
dition that yi = F,,(ui), the joint entropy H(y)  is 
maximal when the individual entropies, H(yi), are 
maximal and the mutual informations, I(yi,  yj) are 
minimal, conditions only satisfied by the separation 
solution, ui = si. 



Point 6. Therefore we can do blind separation by 
maximising the joint entropy, H(y) ,  of an output 
which has been transformed by sigmoids which are the 
c.d.f.'s of the sources we are looking for. 

Maximisation of H(y)  is not difficult using standard 
stochastic gradient techniques common in neural net- 
works work and elsewhere. Here we shall give a terse 
presentation. Full details and a more intuitive account 
are given in Bell & Sejnowski 1994. We utilise the mul- 
tivariate version of Eq.3 [7]: 

where I JI denotes the absolute value of the determi- 
nant of the jacobian matrix: 

This relation enables us to write the joint entropy as: 

In gradient ascent, we change our W matrix over time 
proportional to the entropy gradient: 

In stochastic gradient we remove the expected value 
operator and the derived rule is: 

where y = [ y ~  . . the elements of which are: 

When the sigmoids are the source c.d.f.'s [yi = F,, (u; )] 
then this has the interesting form: 

Often, however, we will use a standard sigmoid func- 
tion. For example, for the 'logistic' function, y = 
(1 + exp(-u))-l, we derive ij = 1 - 2y, and for the 
hyperbolic tangent function, y = tanh(u), we derive 
y = -2y. 

If the mixtures are not zero-mean, then it may be de- 
sirable to  simultaneously train a vector of bias weights, 
w, (so that u = W x  + w). The rule for this is: 

The learning rule Eq.9 converges, meaning (AW)  = 0, 
when I = -(9uT). The off-diagonal elements must be 

zero, and in general they expand to form a condition 
involving an infinite number of higher-order statistics. 
In the case which we argued above leads to indepen- 
dence, [yi = Fsi(u;)], this condition is, for i # j: 

These results in this section may be derived within 
other superficially different formalisms (maximum 
likelihood, Kullback-Liebler distances etc) without al- 
tering their essential content. 

A. Pre-whitening and Convergence Speed. 

Convergence speed using just the algorithm of Eq.9 
and Eq.12 can be very slow, taking many hours to 
separate 10 signals, as reported in [2]. However, if we 
pre-process our training data to remove first and sec- 
ond order statistics, the speedups can be enormous. 
This process, called pre-whitening, or spherzng, sub- 
tracts the means and decorrelates the inputs, giving 
each unit variance. The use of this method in con- 
junction with blind separation methods very similar 
to  ours has been pioneered by Karhunen et a1 [5].3 

The speedups achievable by prewhitening make pos- 
sible the processing of very high dimensional data in 
reasonable time. For example, we are now performing 
experiments on natural images with input arrays as 
large a s  N=256. Convergence times on such data are 
comparable t o  those which, without prewhitening, we 
experienced for N=10. 

In pre-whitening, after mean-subtraction, we multi- 
ply our data  by a matrix V to make the covariance 
matrix of our data into the identity matrix: 

x + V ( x  - (x)) after which (xxT) = I (14) 

But which V should we choose, since there are many 
ways to decorrelate? Principal Component Analysis 
(PCA) is one way, choosing axes according to the di- 
rections of greatest variance in the data. We would 
like, however, to decorrelate in a way which makes 
subsequent ICA training speedier. One method which 
seems to  works well in our simulations is to set V as 
follows: 

v = 2J* (15) 

which actually makes (xxT) = 41. The interesting 
thing about this solution is that is exactly a scaled ver- 
sion (by a factor of 2 d )  of that which can be derived 
analytically by maximising entropy through a layer of 
outputs passed through the erf (or cumulative gaus- 
sian) non-linearity.4 If y = erf(u) = erf(Wx), then 

3We are very grateful to Kari Torkkola for drawing their 
results to our attention. 

4This fact was utilised by Baram & Roth [I], who proposed 
using the erf solution as a weight initialisation scheme for train- 
ing these networks with the tanh function. 



Eq.10 evaluates as y = -2u (see [2]) and the learning 
rule, as in Eq.9, evaluates to: 

This stabilises, at  W = ( ~ ( x x ~ ) ) - ~ / '  when 2(uuT) = 
I, showing that it has exactly the property we required 
in Eq.14, as a decorrelated input to further entropy- 
maximisation network. 

We  night call the stable solution to Eq.16, the 
'Gaussian Component Analysis' solution (or GCA, to  
distinguish it from ICA and PCA), since it is the decor- 
related solution which gives the most gaussianly dis- 
tributed outputs. 

B. Results. 

The power of these methods is demonstrated by the 
fact that we have been able to  separate ten audio sig- 
nals to  an average signal-to-noise ratio of 26dB in two 
passes through the data, one to  prewhiten the input 
and one to separate. This result was achieved as fol- 
lows (more details in [2]). 

Ten speech or music samples, sampled a t  8kHz and 
lasting six seconds were mixed together by a matrix 
of random values between 0 and 1. The time in- 
dex of the data was permuted to  make the sample 
stationary in time. The mean vector and covariance 
matrix of the data were computed and the data was 
then prewhitened using Eq.15. The W matrix was 
initialised t o  the identity matrix and then trained us- 
ing Eq.9 with the logistic sigmoid non-linearity. Be- 
cause of the relative computational expense of the W- 
inversion, W was updated in 'batch' mode, meaning 
the AW's  were accumulated, in this case over 30 data 
vector presentations, and then the weight update took 
place. The learning rate (the proportionality constant 
in Eq.9) was 0.001. The simulations were performed 
using efficient vectorised MATLAB code on a Sparc-20 
workstation. 

Separation of these signals was effectively a real- 
time process, taking 4 seconds for the prewhitening 
pass and 6 seconds for the single separation pass. Fur- 
ther passes through the data, with an annealed (re- 
duced) learning rate, were able to raise the signal-to- 
noise ratio to 36dB. 

IV. DISCUSSION. 

A. Prior information and approximation. 

Separation methods, although they seem to be com- 
pletely unsupervised, do actually involve prior as- 
sumptions - they are model-dependent. I11 princi- 
ple, to separate independent signals requires an infi- 
nite amount of prior information. This can be seen in 
the factorisation condition alone, which is a condition 

on functions, not variables: 

There are two main ways of parameterising these func- 
tions. In cumulant-based methods [3], to fully repre- 
sent the above statistical condition we would need to 
evaluate all higher-order moments up to infinity, an 
impossible task. In sigmoid-based rnethods based on 
our entropy maximisation algorithm, we would need 
to know the exact form of the p.d.f.'s of the sources. 
These forms of knowledge amount to the same thing (a 
p.d.f. can be transformed to a characteristic function, 
which provides the moments 171). Since in general, our 
knowledge will be incomplete, the question becomes 
which basis (cumulants or p.d.f.'s) will we choose in 
order to  perform our approximations? 

Before arguing for p.d.f.'s over cumulants, it is worth 
noting what approximations are typically made in 
practice. In the case of cumulant methods, usually 
moments are evaluated only up to fourth order 131. In 
the case of sigmoid methods, we usually use the 'logis- 
tic' sigmoid, y = (1 + exp(-u))-l, or, for equivalent 
effect, the tanh function 121. Clearly, both approxi- 
mations may produce networks that fail to separate 
certain signals. It is an interesting and difficult the- 
oretical problem to show under what conditions this 
may occur. Based on analyses by Moreau & Macchi 
[GI and on empirical results in 121, the current under- 
standing seems to  be that both methods are successful 
when the p.d.f.'s of the sources are super-gaussian - 
when their kurtosis is greater than zero. However, 
more work has to be done to  understand these issues. 

B. Advantages of sigmoid methods. 

Nonetheless, we believe that there are several advan- 
tages that sigmoid-based methods have over cumulant- 
based methods. 

1. Per formance .  Incorporating the pre-whitening 
techniques described in Section 3.2, sigmoid- 
based methods are capable of separating 10 au- 
dio signals in about 6 seconds on a workstation. 
Furthermore, they have not yet been observed 
to converge to an incorrect solution on digitally 
mixed data. Convergence speed is now high 
enough that we have been able to start dealing 
(in other domains) with very high dimensional 
data sets with on the order of several hundred 
inputs. 

2. Sigmoid customisat ion.  Sigmoid methods 
approximate the source p.d.f. before deriving 
the information theoretic rule of Eq.9, whereas 
cumulant methods expand the mutual infor- 
mation, and then truncate the expansion. In 



choosing the former path ('approximate then 
derive'), we are able to customise our sigmoid 
function before deriving the exact form of the 
y; terms in Eq.10, and thus preserve all higher- 
order statistics in the process. This is a much 
more attractive course of action than trying to 
decide which higher-order cumulants must be 
given more weight in a p.d.f.-dependent cumu- 
lant method. In sigmoid methods, we can give 
the sigmoid function any shape as long as it is 
bounded and monotonic, and each has a very 
natural interpretation as a (possibly scaled and 
shifted) c.d.f. of the source which we are at- 
tempting to separate. In many cases, we will be 
able to  directly sample this c.d.f. in some pre- 
training phase, as when we measure a typical 
signal in the absence of interference. Then we 
can build a lookup table based on the sampled 
c.d.f. and use it as our sigmoid function. In this 
case, for the operation of the algorithm in Eq.8, 
the only thing that actually has to be stored is 
the lookup table values of y, which must be cal- 
culated from the sampled c.d.f. and Eq.10. 

In practice, it will very often not be necessary to 
use lookup tables because of the next point. 

3. Robustness. All simulations we have per- 
formed on audio signals have converged correctly 
despite the fact that the logistic sigmoid (or the 
hyperbolic tangent) function which we use, is 
not a good fit for the c.d.f.'s of audio signals, 
which are typically more kurtotic [2], (or 'super- 
gaussian'). In this case we cannot make the 
arguments of Section 2, about the H(yi) terms 
having the same maxima as the minima of the 
I(yi,  yj) terms. In fact, it is clear that we may 
achieve higher H(yi) terms with linear combina- 
tions of super-gaussian sources, since they will 
better 'fit' the gradient of the logistic function. 
Nonetheless, (see Eq.4), the mutual information 
introduced by such combinations is apparently 
great enough, in the case of audio signals, to 
make such combinations disadvantageous for the 
overall entropy maximisation. The limits of this 
robustness must, of course, be more assiduously 
tested. 
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In conclusion, we have demonstrated rigorously how 
an information theoretic approach solves the problem 
of blind separation, as well as showing how conver- 
gence may be accelerated greatly. We believe that 
these factors, together with the potential for customis- 
ing the algorithm for different data, make our ap- 
proach an attractive one. 


