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Abstract

A number of current face recognition algorithms use face representations found by unsupervised
statistical methods. Typically these methods find a set of basis images and represent faces as a linear
combination of those images. Principal component analysis (PCA) is a popular example of such
methods. The basis images found by PCA depend only on pair-wise relationships between pixels
in the image database. In a task such as face recognition, in which important information may
be contained in the high-order relationships among pixels, it seems reasonable to expect that better
basis images may be found by methods sensitive to these high order statistics. Independent component
analysis (ICA), a generalization of PCA, is one such method. We used a version of ICA derived from
the principle of maximum information transfer through sigmoidal neurons [12]. ICA was performed
on face images in the FERET database under two different architectures, one which treated the
images as random variables and the pixels as outcomes, and a second which treated the pixels as
random variables and the images as outcomes. The first architecture found spatially local basis images
for the faces. The second architecture produced a factorial face code. Both ICA representations
were superior to representations based on principal component analysis for recognizing faces across
days and changes in expression. A computational neuroscience perspective on face modeling and
information maximization is discussed.

0.1 Introduction

Redundancy in the sensory input contains structural information about the environment. Horace
Barlow has argued that such redundancy provides knowledge [5] and that the role of the sensory
system is to develop factorial representations in which these dependencies are separated into in-
dependent components. Barlow argues that such representations are advantageous for encoding
complex objects that are characterized by high-order dependencies. Atick and Redlich have also
argued for such representations as a general coding strategy for the visual system [3].

Principal component analysis (PCA) is a popular unsupervised statistical method to find useful
image representations. Consider a set of n basis images each of which has n pixels. A standard basis
set consists of a single active pixel with intensity 1, where each basis image has a different active
pixel. Any given image with n pixels can be decomposed as a linear combination of the standard
basis images. In fact, the pixel values of an image can then be seen as the coordinates of that image
with respect to the standard basis. The goal in PCA is to find a “better” set of basis images so that
in this new basis, the image coordinates (the PCA coefficients) are uncorrelated, i.e., they cannot be
linearly predicted from each other. PCA can thus be seen as partially implementing Barlow’s ideas:
Dependencies that show up in the joint distribution of pixels are separated out into the marginal
distributions of PCA coefficients. However, PCA can only separate pairwise linear dependencies
between pixels. High order dependencies will still show in the joint distribution of PCA coefficients,
and thus will not be properly separated.

Some of the most successful representations for face recognition, such as eigenfaces [70], holons
[16], and ‘local feature analysis’ [59] are based on PCA. In a task such as face recognition, much of
the important information may be contained in the high-order relationships among the image pixels
and thus it is important to investigate whether generalizations of PCA which are sensitive to high-
order relationships, not just second-order relationships are advantageous. Independent component

1Based on ”Face recognition by independent component analysis”, by M.S. Bartlett, J.R. Movellan, & T.J. Se-
jnowski, which appeared in IEEE Transactions on Neural Networks 13(6) p. 1450-64, c©2002 IEEE.



analysis (ICA) [15] is one such generalization. A number of algorithms for performing ICA have been
proposed. See [36, 23] for reviews. Here we employ an algorithm developed by Bell and Sejnowski
[12, 13] from the point of view of optimal information transfer in neural networks with sigmoidal
transfer functions. This algorithm has proven successful for separating randomly mixed auditory
signals (the cocktail party problem), and for separating EEG signals [45], fMRI signals [46].

We performed ICA on the image set under two architectures. Architecture I treated the images as
random variables and the pixels as outcomes, whereas Architecture II treated the pixels as random
variables and the images as outcomes2 Matlab code for the ICA representations is available at
http://mplab.ucsd.edu/˜marni.

Face recognition performance was tested using the FERET database [61]. Face recognition per-
formances using the ICA representations were benchmarked by comparing them to performances
using principal component analysis, which is equivalent to the “eigenfaces” representation [70, 60].
The two ICA representations were then combined in a single classifier.

0.2 Independent component analysis

There are a number of algorithms for performing ICA [29, 15, 14, 12]. We chose the infomax
algorithm proposed by Bell and Sejnowski [12], which was derived from the principle of optimal
information transfer in neurons with sigmoidal transfer functions [34]. The algorithm is motivated
as follows: Let X be an n-dimensional random vector representing a distribution of inputs in the
environment. (Here bold-face capitals denote random variables whereas plain text capitals denote
matrices.) Let W be an n×n invertible matrix, U = WX and Y = f(U) an n-dimensional random
variable representing the outputs of n-neurons. Here each component of f = (f1, · · · , fn) is an
invertible squashing function, mapping real numbers into the [0, 1] interval. Typically the logistic
function is used

fi(u) =
1

1 + e−u
(1)

The U1, · · · ,Un variables are linear combinations of inputs and can be interpreted as presynaptic
activations of n-neurons. The Y1, · · · ,Yn variables can be interpreted as post-synaptic activation
rates and are bounded by the interval [0, 1]. The goal in Bell and Sejnowski’s algorithm is to
maximize the mutual information between the environment X and the output of the neural network
Y. This is achieved by performing gradient ascent on the entropy of the output with respect to the
weight matrix W . The gradient update rule for the weight matrix, W is as follows

∆W ∝ ∇W H(Y) = (W T )−1 + E(Y′XT ) (2)

where Y′
i = f

′′

i (Ui)/f ′
i(Ui), the ratio between the second and first partial derivatives of the acti-

vation function, T stands for transpose, E for expected value, H(Y) is the entropy of the random
vector Y, and ∇W H(Y) is the gradient of the entropy in matrix form, i.e., the cell in row i, column
j of this matrix is the derivative of H(Y) with respect to Wij . Computation of the matrix inverse
can be avoided by employing the natural gradient [1], which amounts to multiplying the absolute
gradient by W T W , resulting in the following learning rule [13]

∆W ∝ ∇W H(Y)W T W = W + E(Y′XT )W T W (3)

where I is the identity matrix. The logistic transfer function (1) gives Y′
i = (1 − 2Yi).

When there are multiple inputs and outputs, maximizing the joint entropy of the output Y

encourages the individual outputs to move towards statistical independence. When the form of
the nonlinear transfer function f is the same as the cumulative density functions of the underlying
independent components (up to scaling and translation) it can be shown that maximizing the joint
entropy of the outputs in Y also minimizes the mutual information between the individual outputs

2Preliminary versions of this work appear in [9, 7]. A longer discussion of unsupervised learning for face recognition
appears in the following book [6].



in U [49, 13]. In practice, the logistic transfer function has been found sufficient to separate mixtures
of natural signals with sparse distributions including sound sources [12].

The algorithm is speeded up by including a “sphering” step prior to learning [13]. The row means
of X are subtracted, and then X is passed through the whitening matrix, Wz, which is twice the
inverse principal square root3 of the covariance matrix:

Wz = 2 ∗ (Cov(X))−
1

2 . (4)

This removes the first and the second-order statistics of the data; both the mean and covariances
are set to zero and the variances are equalized. When the inputs to ICA are the “sphered” data,
the full transform matrix WI is the product of the sphering matrix and the matrix learned by ICA,

WI = WWz. (5)

MacKay [44] and Pearlmutter [57] showed that the ICA algorithm converges to the maximum
likelihood estimate of W−1 for the following generative model of the data

X = W−1S (6)

where S = (S1, · · · ,Sn)′ is a vector of independent random variables, called the sources, with cu-
mulative distributions equal to fi, i.e., using logistic activation functions corresponds to assuming
logistic random sources and using the standard cumulative Gaussian distribution as activation func-
tions, corresponds to assuming Gaussian random sources. Thus W−1, the inverse of the weight
matrix in Bell and Sejnowski’s algorithm, can be interpreted as the source mixing matrix and the
U = WX variables can be interpreted as the maximum likelihood estimates of the sources that
generated the data.

0.2.1 ICA and other statistical techniques

ICA and PCA: Principal component analysis (PCA) can be derived as a special case of ICA
which uses Gaussian source models. In such case the mixing matrix W is unidentifiable in the
sense that there is an infinite number of equally good maximum likelihood solutions. Amongst all
possible maximum likelihood solutions, PCA chooses an orthogonal matrix which is optimal in the
following sense: (1) Regardless of the distribution of X, U1 is the linear combination of input that
allows optimal linear reconstruction of the input in the mean square sense; (2) For U1, · · ·Uk fixed,
Uk+1 allows optimal linear reconstruction among the class of linear combinations of X which are
uncorrelated with U1 · · ·Uk .

If the sources are Gaussian, the likelihood of the data depends only on first and second order
statistics (the covariance matrix). In PCA, the rows of W are in fact the eigenvectors of the
covariance matrix of the data. In shift invariant databases (e.g. databases of natural images) the
second-order statistics capture the amplitude spectrum of images but not their phase spectrum. The
high order statistics capture the phase spectrum [22, 13]. For a given sample of natural images we
can scramble their phase spectrum while maintaining their power spectrum. This will dramatically
alter the appearance of the images but will not change their second order statistics. The phase
spectrum, not the power spectrum, contains the structural information in images that drives human
perception. For example, a face image synthesized from the amplitude spectrum of face A and the
phase spectrum of face B will be perceived as an image of face B [54, 62]. The fact that PCA is only
sensitive to the power spectrum of images suggests that it might not be particularly well suited for
representing natural images.

The assumption of Gaussian sources implicit in PCA makes it inadequate when the true sources
are non-Gaussian. In particular it has been empirically observed that many natural signals, including
speech, natural images, and EEG are better described as linear combinations of sources with long
tail distributions [22, 12]. These sources are called “high-kurtosis”, “sparse”, or “super-Gaussian”
sources. Logistic random variables are a special case of sparse source models. When sparse source

3the unique square root for which every eigenvalue has nonnegative real part.
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Figure 1: Top: Example 3-D data distribution and corresponding principal component and inde-
pendent component axis. Each axis is a column of the mixing matrix W−1 found by PCA or ICA.
Note the PC axes are orthogonal while the IC axes are not. If only 2 components are allowed, ICA
chooses a different subspace than PCA. Bottom Left: Distribution of the first PCA coordinates of
the data. Bottom Right: Distribution of the first ICA coordinates of the data. Note that since the
ICA axis are non-orthogonal, relative distances between points are different in PCA than in ICA,
as are the angles between points.

models are appropriate, ICA has the following potential advantages over PCA: (1) It provides a
better probabilistic model of the data, which better identifies where the data concentrate in n-
dimensional space; (2) It uniquely identifies the mixing matrix W ; (3) It finds a not-necessarily
orthogonal basis which may reconstruct the data better than PCA in the presence of noise; (4) It is
sensitive to high order statistics in the data, not just the covariance matrix.

Figure 1 illustrates these points with an example. The figure shows samples from a 3-dimensional
distribution constructed by linearly mixing two high-kurtosis sources. The figure shows the basis
vectors found by PCA and by ICA on this problem. Since the three ICA basis vectors are non-
orthogonal, they change the relative distance between data points. This can be illustrated with
the following example. Consider the three points: x1 = (4, 0), x2 = (0, 10), x3 = (10, 10), and the
following nonorthogonal basis set: A = [1, 1; 0, 1]. The coordinates y under the new basis set are
defined by x = Ay and thus y = A−1x where A−1 = [1,−1; 0, 1]. Thus the coordinates under the
new basis set are y1 = (4, 0), y2 = (−10, 10), y3 = (0, 10). Note in the standard coordinate system
x1 is closer to x2 than to x3. However in the new coordinate system y1 is closer to y3 than to y2. In
the old coordinate system the angle between x1 and x3 is the same as the angle between x2 and x3.
However in the new coordinate system the angle between y1 and y3 is larger than the angle between
y2 and y3.

This change in metric may be potentially useful for classification algorithms, like nearest-neighbor,
that make decisions based on relative distances between points. The ICA basis illustrated in Fig-
ure 1 also alters the angles between data points, which affects similarity measures such as cosines.
Moreover if an undercomplete basis set is chosen, PCA and ICA may span different subspaces.
For example in Figure 1, when only two dimensions are selected, PCA and ICA choose different
sub-spaces.
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Figure 2: Two architectures for performing ICA on images. (a) Each pixel is plotted according to
the grayvalue it takes on over a set of face images. ICA in architecture I finds weight vectors in
the directions of statistical dependencies among the pixel locations. This defined a set of indepen-
dent basis images. (b) Here, each image is an observation in a high dimensional space where the
dimensions are the pixels. ICA in architecture II finds weight vectors in the directions of statistical
dependencies among the face images. This defined a factorial face code.

The metric induced by ICA is superior to PCA in the sense that it may provide a representation
more robust to the effect of noise [49]. It is therefore possible for ICA to be better than PCA for
reconstruction in noisy or limited precision environments. For example in the problem presented in
Figure 1 we found that if only 12 bits are allowed to represent the PCA and ICA coefficients, linear
reconstructions based on ICA are 3dB better than reconstructions based on PCA (the noise power
is reduced by more than half). A similar result was obtained for PCA and ICA subspaces. If only
4 bits are allowed to represent the first 2 PCA and ICA coefficients, ICA reconstructions are 3dB
better than PCA reconstructions. In some problems one can think of the actual inputs as noisy
versions of some canonical inputs. For example, variations in lighting and expressions can be seen
as noisy versions of the canonical image of a person. Having input representations which are robust
to noise may potentially give us representations that better reflect the data.

When the sources models are sparse, ICA is closely related to the so called non-orthogonal “rota-
tion” methods in PCA and Factor Analysis. The goal of these rotation methods is to find directions
with high concentrations of data, something very similar to what ICA does when the sources are
sparse. In such cases ICA can be seen as a theoretically sound, probabilistic method to find inter-
esting non-orthogonal “rotations”.

ICA and Cluster Analysis: Cluster analysis is a technique for finding regions in n-dimensional
space with large concentrations of data. These regions are called “clusters”. Typically the main
statistic of interest in cluster analysis is the center of those clusters. When the source models
are sparse, ICA finds directions along which significant concentrations of data points are observed.
Thus, when using sparse sources, ICA can be seen as a form of cluster analysis. However, the
emphasis in ICA is on finding optimal directions, rather than specific locations of high data density.
Figure 1 illustrates this point. Note how the data concentrates along the ICA solutions, not the
PCA solutions. Note also that in this case all the clusters have equal mean and thus are better
characterized by their orientation rather than their position in space.

It should be noted that ICA is a very general technique. When super-Gaussian sources are used,
ICA can be seen as doing something akin to non-orthogonal PCA and to cluster analysis, however
when the source models are sub-Gaussian, the relationship between these techniques is less clear.
See [37] for a discussion of ICA in the context of sub-Gaussian sources.



0.2.2 Two architectures for performing ICA on images:

Let X be a data matrix with nr rows and nc columns. We can think of each column of X as outcomes
(independent trials) of a random experiment. We think of the ith row of X as the specific value
taken by a random variable Xi across nc independent trials. This defines an empirical probability
distribution for X1, · · ·Xnr

in which each column of X is given probability mass 1/nc. Independence
is then defined with respect to such a distribution. For example, we say that rows i and j of X
are independent if it is not possible to predict the values taken by Xj across columns from the
corresponding values taken by Xi, i.e.,

P (Xi = u,Xj = v) = P (Xi = u)P (Xj = v), for all u, v ∈ R. (7)

where P is the empirical distribution as defined above.
Our goal in this paper is to find a good set of basis images to represent a database of faces. We

organize each image in the database as a long vector with as many dimensions as number of pixels
in the image. There are at least two ways in which ICA can be applied to this problem:

1. We can organize our database into a matrix X where each row vector is a different image. This
approach is illustrated in Figure 2a. In this approach images are random variables and pixels
are trials. In this approach it makes sense to talk about independence of images or functions
of images. Two images i and j are independent if when moving across pixels, it is not possible
to predict the value taken by the pixel on image j based on the value taken by the same pixel
on image i. A similar approach was used by Bell & Sejnowski for sound source separation
[12], for EEG analysis [45], and for fMRI [46]. The image synthesis model associated with this
approach is illustrated in the top row of Figure 3.

2. We can transpose X and organize our data so that images are in the columns of X . This
approach is illustrated in Figure 2b. In this approach pixels are random variables and images
are trials. Here it makes sense to talk about independence of pixels or functions of pixels. For
example, pixel i and j would be independent if when moving across the entire set of images
it is not possible to predict the value taken by pixel i based on the corresponding value taken
by pixel j on the same image. This approach was inspired by Bell & Sejnowski’s work on the
independent components of natural images [13]. The image synthesis model associated with
this approach is illustrated in the bottom row of Figure 3.

0.3 Image data

The face images employed for this research were a subset of the FERET face database [61]. The data
set contained images of 425 individuals. There were up to four frontal views of each individual: A
neutral expression and a change of expression from one session, and a neutral expression and change
of expression from a second session that occurred up to two years after the first. The algorithms
were trained on a single frontal view of each individual. The training set was comprised of 50%
neutral expression images and 50% change of expression images. The algorithms were tested for
recognition under three different conditions: same session, different expression; different day, same
expression; and different day, different expression (see Table 1).

Coordinates for eye and mouth locations were provided with the FERET database. These coor-
dinates were used to center the face images, and then crop and scale them to 60 × 50 pixels. Scaling
was based on the area of the triangle defined by the eyes and mouth. The luminance was normalized
by linearly rescaling each image to the interval [0, 255]. For the subsequent analyses, each image
was represented as a 3000 dimensional vector given by the luminance value at each pixel location.

0.4 Architecture I: Statistically independent basis images

As described earlier, the goal in this approach is to find a set of statistically independent basis images.
We organize the data matrix X so that the images are in rows and the pixels are in columns, i.e.,



Figure 3: Image synthesis models for the two architectures. The ICA model decomposes images
as X=AS, where A is a mixing matrix and S is a matrix of independent sources. In Architecture
I (top), S contains the basis images and A contains the coefficients, whereas in Architecture II
(bottom) S contains the coefficients and A contains the basis images for constructing each face
image in X.

Image Set Condition No. Images

Training Set Session I 50% neutral 50% expr 425
Test Set 1 Same Day Different Expression 421
Test Set 2 Different Day Same Expression 45
Test Set 3 Different Day Different Expression 43

Table 1: Image sets used for training and testing.

X has 425 rows and 3000 columns, and each image has zero mean.

In this approach, ICA finds a matrix W such that the rows of U = WX are as statistically
independent as possible. The source images estimated by the rows of U are then used as basis
images to represent faces. Face image representations consist of the coordinates of these images
with respect to the image basis defined by the rows of U , as shown in Figure 4. These coordinates

are contained in the mixing matrix A
∆
= W−1

I .

The number of independent components found by the ICA algorithm corresponds to the dimen-
sionality of the input. Since we had 425 images in the training set, the algorithm would attempt
to separate 425 independent components. Although we found in previous work that performance
improved with the number of components separated, 425 was intractable under our present memory
limitations. In order to have control over the number of independent components extracted by the
algorithm, instead of performing ICA on the nr original images, we performed ICA on a set of m
linear combinations of those images, where m < nr. Recall that the image synthesis model assumes
that the images in X are a linear combination of a set of unknown statistically independent sources.
The image synthesis model is unaffected by replacing the original images with some other linear
combination of the images.

Adopting a method that has been applied to independent component analysis of fMRI data
[46], we chose for these linear combinations the first m principal component eigenvectors of the
image set. Principal component analysis on the image set in which the pixel locations are treated as
observations and each face image a measure, gives the linear combination of the parameters (images)
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Figure 4: The independent basis image representation consisted of the coefficients, b, for the linear
combination of independent basis images, u, that comprised each face image x.

that accounts for the maximum variability in the observations (pixels). The use of PCA vectors in
the input did not throw away the high-order relationships. These relationships still existed in the
data but were not separated.

Let Pm denote the matrix containing the first m principal component axes in its columns. We
performed ICA on P T

m, producing a matrix of m independent source images in the rows of U . In this
implementation, the coefficients, b, for the linear combination of basis images in U that comprised
the face images in X were determined as follows:

The principal component representation of the set of zero-mean images in X based on Pm is
defined as Rm = XPm. A minimum squared error approximation of X is obtained by X̂ = RmP T

m.
The ICA algorithm produced a matrix WI = WWZ such that

WIP
T
m = U

P T
m = W−1

I U. (8)

Therefore

X̂ = RmP T
m

X̂ = RmW−1
I U. (9)

where WZ was the sphering matrix defined in Equation 4. Hence the rows of Rm W−1
I contained

the coefficients for the linear combination of statistically independent sources U that comprised
X̂, where X̂ was a minimum squared error approximation of X , just as in PCA. The independent
component representation of the face images based on the set of m statistically independent feature
images, U was therefore given by the rows of the matrix

B = RmW−1
I . (10)

A representation for test images was obtained by using the principal component representation
based on the training images to obtain Rtest = XtestPm, and then computing

Btest = RtestW
−1
I . (11)

Note that the PCA step is not required for the ICA representation of faces. It was employed
to serve two purposes: (1) To reduce the number of sources to a tractable number, and (2) To
provide a convenient method for calculating representations of test images. Without the PCA step,
B = W−1

I and Btest = Xtest(U)†. Btest can be obtained without calculating a pseudo-inverse
by normalizing the length of the rows of U , thereby making U approximately orthonormal, and
calculating Btest = Xtest UT . However, if ICA did not remove all of the second-order dependencies
then U will not be precisely orthonormal.

The principal component axes of the Training Set were found by calculating the eigenvectors of
the pixelwise covariance matrix over the set of face images. Independent component analysis was
then performed on the first m = 200 of these eigenvectors, where the first 200 principal components



accounted for over 98% of the variance in the images.4 The 1× 3000 eigenvectors in P200 comprised
the rows of the 200×3000 input matrix X . The input matrix X was sphered5 according to Equation 4,
and the weights, W , were updated according to Equation 3 for 1900 iterations. The learning rate
was initialized at 0.0005 and annealed down to 0.0001. Training took 90 minutes on a Dec Alpha
2100a. Following training, a set of statistically independent source images were contained in the
rows of the output matrix U .

Figure 4 shows a sample of basis images (i.e. rows of U) learned in this architecture. These images
can be interpreted as follows: Each row of the mixing matrix W found by ICA represents a cluster
of pixels that have similar behavior across images. Each row of the U matrix tell us how close each
pixel is to the cluster i identified by ICA. Since we use a sparse independent source model, these
basis images are expected to be sparse and independent. Sparseness in this case means that the
basis images will have a large number of pixels close to zero and a few pixels with large positive or
negative values. Note that the ICA images are also local (regions with non-zero pixels are nearby).
This is because a majority of the statistical dependencies are in spatially proximal pixel locations.
A set of principal component basis images (PCA axes), are shown in Figure 5 for comparison.

Figure 5: First 5 principal component axes of the image set (columns of P ).

0.4.1 Face recognition performance: Architecture I

Face recognition performance was evaluated for the coefficient vectors b by the nearest neighbor
algorithm, using cosines as the similarity measure. Coefficient vectors in each test set were assigned
the class label of the coefficient vector in the training set that was most similar as evaluated by the
cosine of the angle between them:

c =
btest · btrain

‖ btest ‖‖ btrain ‖
. (12)

Face recognition performance for the principal component representation was evaluated by an
identical procedure, using the principal component coefficients contained in the rows of R200.

In experiments to date, ICA performs significantly better using cosines rather than Euclidean
distance as the similarity measure, whereas PCA performs the same for both. A cosine similarity
measure is equivalent to length-normalizing the vectors prior to measuring Euclidean distance when
doing nearest neighbor.

d2(x, y) =‖ x ‖2 + ‖ y ‖2 −2x · y

=‖ x ‖2 + ‖ y ‖2 −2 ‖ x ‖‖ y ‖ cos(α). (13)

Thus if ‖ x ‖=‖ y ‖= 1, minyd2(x, y) = maxycos(α).

Such normalization is consistent with neural models of primary visual cortex [27]. Cosine simi-
larity measures were previously found to be effective for computational models of language [28] and
face processing [55].

Figure 6 gives face recognition performance with both the ICA and the PCA based representations.
Recognition performance is also shown for the PCA based representation using the first 20 principal
component vectors, which was the eigenface representation used by Pentland, Moghaddam and

4In pilot work, we found that face recognition performance improved with the number of components separated.
We chose 200 components as the largest number to separate within our processing limitations.

5Although PCA already removed the covariances in the data, the variances were not equalized. We therefore
retained the sphering step.
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Figure 6: Percent correct face recognition for the ICA representation using 200 independent compo-
nents, the PCA representation using 200 principal components, and the PCA representation using
20 principal components. Groups are performances for Test Set 1, Test Set 2, and Test Set 3. Error
bars are one standard deviation of the estimate of the success rate for a Bernoulli distribution.

Starner [60]. Best performance for PCA was obtained using 200 coefficients. Excluding the first 1,
2, or 3 principal components did not improve PCA performance, nor did selecting intermediate ranges
of components from 20 through 200. There was a trend for the ICA representation to give superior
face recognition performance to the PCA representation with 200 components. The difference in
performance was statistically significant for Test Set 3 (Z = 1.94, p = 0.05). The difference in
performance between the ICA representation and the eigenface representation with 20 components
was statistically significant over all three test sets (Z = 2.5, p < 0.05) for Test sets 1 and 2, and
(Z = 2.4, p < 0.05) for Test Set 3.

Recognition performance using different numbers of independent components was also examined
by performing ICA on 20 to 200 image mixtures in steps of 20. Best performance was obtained by
separating 200 independent components. In general, the more independent components were sepa-
rated, the better the recognition performance. The basis images also became increasingly spatially
local as the number of separated components increased.

0.4.2 Subspace selection

When all 200 components were retained, then PCA and ICA were working in the same subspace.
However, as illustrated in Figure 1, when subsets of axes are selected, then ICA chooses a different
subspace from PCA. The full benefit of ICA may not be tapped until ICA-defined subspaces are
explored.

Face recognition performances for the PCA and ICA representations were next compared by
selecting subsets of the 200 components by class discriminability. Let x be the overall mean of a
coefficient bk across all faces, and xj be the mean for person j. For both the PCA and ICA repre-
sentations, we calculated the ratio of between-class to within-class variability, r, for each coefficient:

r =
σbetween

σwithin

(14)

where σbetween =
∑

j(xj−x)2 is the variance of the j class means, and σwithin =
∑

j

∑

i(xij−xj)
2

is the sum of the variances within each class.
The class discriminability analysis was carried out using the 43 subjects for which four frontal view

images were available. The ratios r were calculated separately for each test set, excluding the test
images from the analysis. Both the PCA and ICA coefficients were then ordered by the magnitude
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Figure 7: Selection of components by class discriminability. Left: Discriminability of the ICA
coefficients (solid lines) and discriminability of the PCA components (dotted lines) for the three
test cases. Components were sorted by the magnitude of r. Right: Improvement in face recognition
performance for the ICA and PCA representations using subsets of components selected by the class
discriminability r. The improvement is indicated by the gray segments at the top of the bars.

of r. Figure 7 (Top) compares the discriminability of the ICA coefficients to the PCA coefficients.
The ICA coefficients consistently had greater class discriminability than the PCA coefficients.

Face classification performance was compared using the k most discriminable components of
each representation. Figure 7 (Bottom) shows the best classification performance obtained for the
PCA and ICA representations, which was with the 60 most discriminable components for the ICA
representation, and the 140 most discriminable components for the PCA representation. Selecting
subsets of coefficients by class discriminability improved the performance of the ICA representation,
but had little effect on the performance of the PCA representation. The ICA representation again
outperformed the PCA representation. The difference in recognition performance between the ICA
and PCA representations was significant for Test Set 2 and Test Set 3, the two conditions that
required recognition of images collected on a different day from the training set (Z = 2.9, p <
.05; Z = 3.4, p < .01), respectively. The class discriminability analysis selected subsets of bases
from the PCA and ICA representations under the same criterion. Here, the ICA-defined subspace
encoded more information about facial identity than PCA-defined subspace.

0.5 Architecture II: A factorial face code

The goal in Architecture I was to use ICA to find a set of spatially independent basis images. Al-
though the basis images obtained in that architecture are approximately independent, the coefficients
that code each face are not necessarily independent. Architecture II uses ICA to find a representa-
tion in which the coefficients used to code images are statistically independent, i.e. a factorial face
code. Barlow and Atick have discussed advantages of factorial codes for encoding complex objects
that are characterized by high-order combinations of features [5, 2]. These include fact that the
probability of any combination of features can be obtained from their marginal probabilities.

To achieve this goal we organize the data matrix X so that rows represent different pixels and
columns represent different images. (See Figure 2 Right.) This corresponds to treating the columns

of A
∆
= W−1

I as a set of basis images. (See Figure ??.) The ICA representations are in columns of
U = WIX . Each column of U contains the coefficients of the basis images in A for reconstructing
each image in X (Figure 8). ICA attempts to make the outputs, U , as independent as possible.
Hence U is a factorial code for the face images.
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Figure 8: The factorial code representation consisted of the independent coefficients, u, for the linear
combination of basis images in A that comprised each face image x.

The representational code for test images is obtained by

WIXtest = Utest (15)

where Xtest is the zero-mean6 matrix of test images, and WI is the weight matrix found by performing
ICA on the training images.

In order to reduce the dimensionality of the input, instead of performing ICA directly on the
3000 image pixels, ICA was performed on the first 200 PCA coefficients of the face images. The first
200 principal components accounted for over 98% of the variance in the images. These coefficients,
R200

T , comprised the columns of the input data matrix, where each coefficient had zero mean. The
Architecture II representation for the training images was therefore contained in the columns of U ,
where

WIR200
T = U. (16)

The ICA weight matrix WI was 200 × 200, resulting in 200 coefficients in U for each face image,
consisting of the outputs of each of the ICA filters.7 The architecture II representation for test
images was obtained in the columns of Utest as follows:

WIRtest
T = Utest. (17)

The basis images for this representation consisted of the columns of A
∆
= W−1

I . A sample of the
basis images is shown in Figure 8, where the principal component reconstruction P200A was used to
visualize them. In this approach each column of the mixing matrix W−1 found by ICA attempts to
get close to a cluster of images that look similar across pixels. Thus this approach tends to generate
basis images that look more face-like than the basis images generated by PCA, in that the bases
found by ICA will average only images that look alike. Unlike the ICA output, U , the algorithm
does not force the columns of A to be either sparse or independent. Indeed the basis images in A
have more global properties than the basis images in the ICA output of Architecture I shown in
Figure ??.

0.5.1 Face recognition performance: Architecture II

Face recognition performance was again evaluated by the nearest neighbor procedure using cosines
as the similarity measure. Figure 9 compares the face recognition performance using the ICA
factorial code representation obtained with Architecture II to the independent basis representation
obtained with Architecture I and to the PCA representation, each with 200 coefficients. Again, there
was a trend for the ICA-factorial representation (ICA2) to outperform the PCA representation for
recognizing faces across days. The difference in performance for Test Set 2 is significant (Z = 2.7, p <
0.01). There was no significant difference in the performances of the two ICA representations.

6Here, each pixel has zero mean.
7An image filter f(x) is defined as f(x) = w · x.
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Figure 9: Left: Recognition performance of the factorial code ICA representation (ICA2) using
all 200 coefficients, compared to the ICA independent basis representation (ICA1), and the PCA
representation, also with 200 coefficients. Right: Improvement in recognition performance of the
two ICA representations and the PCA representation by selecting subsets of components by class
discriminability. Gray extensions show improvement over recognition performance using all 200
coefficients.

Class discriminability of the 200 ICA factorial coefficients was calculated according to Equation 14.
Unlike the coefficients in the independent basis representation, the ICA-factorial coefficients did not
differ substantially from each other according to discriminability r. Selection of subsets of compo-
nents for the representation by class discriminability had little effect on the recognition performance
using the ICA-factorial representation (see Figure 9 right). The difference in performance be-
tween ICA1 and ICA2 for Test Set 3 following the discriminability analysis just misses significance
(Z = 1.88, p = 0.06).

In this implementation, we separated 200 components using 425 samples, which was a bare
minimum. Test images were not used to learn the independent components, and thus our recognition
results were not due to overlearning. Nevertheless, in order to determine whether the findings were
an artifact due to small sample size, recognition performances were also tested after separating
85 rather than 200 components, and hence estimating fewer weight parameters. The same overall
pattern of results was obtained when 85 components were separated. Both ICA representations
significantly outperformed the PCA representation on Test Sets 2 and 3. With 85 independent
components, ICA1 obtained 87%, 62%, 58% correct performance, respectively on Test Sets 1, 2,
and 3, ICA2 obtained 85%, 76%, and 56% correct performance, whereas PCA obtained 85%, 56%
and 44% correct, respectively. Again, as found for 200 separated components, selection of subsets
of components by class discriminability improved the performance of ICA1 to 86%, 78%, and 65%,
respectively, and had little effect on the performances with the PCA and ICA2 representations. This
suggests that the results were not simply an artifact due to small sample size.

0.5.2 Combined ICA recognition system

The similarity spaces in the two ICA representations were not identical. While the the two systems
tended to make errors on the same images, they did not assign the same incorrect identity. In [10] we
showed that an effective reliability criterion is to accept identifications only when the two systems
give the same answer. Under this criterion, accuracy improved to 100%, 100%, and 97% for the
three test sets.

Another way to combine the two systems is to define a new similarity measure as the sum of the
similarities under Architecture I and Architecture II. In [10] we showed that this combined classifier
improved performance to 91.0% ,88.9%, and 81.0% for the three test cases, which significantly



outperformed PCA in all three conditions (Z = 2.7, p < 0.01; Z = 3.7, p < .001; Z = 3.7; p < .001).

0.6 Examination of the ICA Representations

0.6.1 Mutual information

A measure of the statistical dependencies of the face representations was obtained by calculating
the mean mutual information between pairs of 50 basis images. Mutual information was calculated
as

I(U1,U2) = H(U1) + H(U2) − H(U1,U2) (18)

where H(Ui) = −E (log(PUi
(Ui))).
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Figure 10: Pairwise mutual information. LEFT: Mean mutual information between basis images.
Mutual information was measured between pairs of graylevel images, principal component images,
and independent basis images obtained by Architecture I. RIGHT: Mean mutual Information be-
tween coding variables. Mutual information was measured between pairs of image pixels in graylevel
images, PCA coefficients, and ICA coefficients obtained by Architecture II.

Figure 10 (left) compares the mutual information between basis images for the original graylevel
images, the principal component basis images, and the ICA basis images obtained in Architecture I.
Principal component images are uncorrelated, but there are remaining high order dependencies. The
information maximization algorithm decreased these residual dependencies by more than 50%. The
remaining dependence may be due to a mismatch between the logistic transfer function employed
in the learning rule and the cumulative density function of the independent sources, the presence of
sub-Gaussian sources, or the large number of free parameters to be estimated relative to the number
of training images.

Figure 10 (right) compares the mutual information between the coding variables in the ICA fac-
torial representation obtained with Architecture II, the PCA representation, and graylevel images.
For graylevel images, mutual information was calculated between pairs of pixel locations. For the
PCA representation, mutual information was calculated between pairs of principal component coef-
ficients, and for the ICA factorial representation, mutual information was calculated between pairs
of coefficients, u. Again, there were considerable high-order dependencies remaining in the PCA
representation that were reduced by more than 50% by the information maximization algorithm.
The ICA representations obtained in these simulations are most accurately described not as “inde-
pendent,” but as “redundancy reduced,” where the redundancy is less than half that in the principal
component representation.

0.6.2 Sparseness

Field [22] has argued that sparse distributed representations are advantageous for coding visual
stimuli. Sparse representations are characterized by highly kurtotic response distributions, in which
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Figure 11: Kurtosis (sparseness) of ICA and PCA representations.

a large concentration of values are near zero, with rare occurrences of large positive or negative values
in the tails. In such a code, the redundancy of the input is transformed into the redundancy of the
response patterns of the the individual outputs. Maximizing sparseness without loss of information
is equivalent to the minimum entropy codes discussed by Barlow [5].8

Given the relationship between sparse codes and minimum entropy, the advantages for sparse
codes as outlined by Field [22] mirror the arguments for independence presented by Barlow [5].
Codes that minimize the number of active neurons can be useful in the detection of suspicious
coincidences. Because a nonzero response of each unit is relatively rare, high-order relations become
increasingly rare, and therefore more informative when they are present in the stimulus. Field
contrasts this with a compact code such as principal components, in which a few units have a
relatively high probability of response, and therefore high-order combinations among this group are
relatively common. In a sparse distributed code, different objects are represented by which units are
active, rather than by how much they are active. These representations have an added advantage in
signal-to-noise, since one need only determine which units are active without regard to the precise
level of activity. An additional advantage of sparse coding for face representations is storage in
associative memory systems. Networks with sparse inputs can store more memories and provide
more effective retrieval with partial information [56, 11].

The probability densities for the values of the coefficients of the two ICA representations and
the PCA representation are shown in Figure 11. The sparseness of the face representations were
examined by measuring the kurtosis of the distributions. Kurtosis is defined as the ratio of the
fourth moment of the distribution to the square of the second moment, normalized to zero for the
Gaussian distribution by subtracting 3:

kurtosis =

∑

i(bi − b)4
(
∑

i(bi − b)2
)2

− 3. (19)

The kurtosis of the PCA representation was measured for the principal component coefficients.
The principal components of the face images had a kurtosis of 0.28. The coefficients, b, of the
independent basis representation from Architecture I had a kurtosis of 1.25. Although the basis
images in Architecture I had a sparse distribution of grayvalues, the face coefficients with respect to
this basis were not sparse. In contrast, the coefficients, u, of the ICA factorial code representation
from Architecture II were highly kurtotic, at 102.9.

8Information maximization is consistent with minimum entropy coding. By maximizing the joint entropy of the
output, the entropies of the individual outputs tend to be minimized.



0.7 Local basis images versus factorial codes

Figure 12: Face recognition performance with a larger image set from Draper et al.(2003). Architec-
ture II outperformed Architecture I for identity recognition, whereas Architecture I outperformed
Architecture II for an expression recognition task. Draper and colleagues attributed the findings to
local versus global processing demands.

Draper and colleagues [20] conducted a comparison of ICA and PCA on a substantially larger set
of FERET face images consisting of 1196 individuals. Performances were compared for L1 and L2
norms as well as cosines and mahalanobis distance. This study supported the findings presented here,
namely that ICA outperformed PCA, and this advantage emerged when cosines, but not Euclidean
distance, was used as the similarity measure for ICA. This study included a change in lighting
condition which we had not previously tested. ICA with architecture II obtained 51% accuracy on
192 probes with changes in lighting, compared to the best PCA performance (with Mahalanobis
distance) of 40% correct.

An interesting finding to emerge from the Draper study is that the ICA representation with
Architecture II outperformed Architecture I for identity recognition. See Figure 12. According
to arguments by Barlow, Atick, and Field [5, 2, 22], the representation defined by Architecture II
is a more optimal representation than the Architecture I representation given its sparse, factorial
properties. Although Sections 0.4 and 0.5 showed no significant difference in recognition performance
for the two architectures, Architecture II had fewer training samples to estimate the same number
of free parameters as Architecture I due to the difference in the way the input data was defined.
Figure 10 shows that the residual dependencies in the ICA-factorial representation were higher than
in the Architecture I representation. In [6] we predicted that The ICA-factorial representation may
prove to have a greater advantage given a much larger training set of images. Indeed, this prediction
was born out in the Draper study [20].

When the task was changed to recognition of facial expressions, however, Draper et al found that
the ICA representation from Architecture I outperformed the ICA representation from Architecture
II. The advantage for Architecture I only emerged, however, following subspace selection using the
class variability ratios defined in Section 0.4.2. The task was to recognize 6 facial actions, which are
individual facial movements approximately corresponding to individual facial muscles. Draper et al
attributed their pattern of results to differences in local versus global processing requirements of the
two tasks. Architecture I defines local face features whereas Architecture II defines more configural
face features. A large body of literature in human face processing points to the importance of
configural information for identity recognition, whereas the facial expression recognition task in this
study may have greater emphasis on local information. This speaks to the issue of separate basis
sets for expression and identity. The neuroscience community has been interested in this distinction,



as there is evidence for separate processing of identity and expression in the brain (e.g. [30].) Here
we obtain better recognition performance when we define different basis sets for identity versus
expression. In the two basis sets we switch what is treated as an observation versus what is treated
as an independent variable for the purposes of information maximization.

0.8 Discussion

Much of the information that perceptually distinguishes faces may be contained in the higher order
statistics of the images. The basis images developed by PCA depend only on second order images
statistics and thus it is desirable to find generalizations of PCA that are sensitive to higher order
image statistics. In this paper we explore one such generalization: Bell and Sejnowski’s Infomax
ICA algorithm. We explored two different architectures for developing image representations of
faces using ICA. Architecture I treated images as random variables and pixels as random trials.
This architecture was related to the one used by Bell & Sejnowski to separate mixtures of auditory
signals into independent sound sources. Under this architecture, ICA found a basis set of statistically
independent images. The images in this basis set were sparse and localized in space, resembling facial
features. Architecture II treated pixels as random variables and images as random trials. Under
this architecture the image coefficients were approximately independent, resulting in a factorial face
code.

Both ICA representations outperformed the ”eigenface” representation [70], which was based on
principal component analysis, for recognizing images of faces sampled on a different day from the
training images. A classifier that combined the two ICA representations outperformed eigenfaces
on all test sets. Since ICA allows the basis images to be non-orthogonal, the angles and distances
between images differ between ICA and PCA. Moreover, when subsets of axes are selected, ICA
defines a different subspace than PCA. We found that when selecting axes according to the criterion
of class discriminability, ICA-defined subspaces encoded more information about facial identity than
PCA-defined subspaces. Moreover, with a larger training set, the factorial representation of Archi-
tecture II emerged with higher identity recognition performance than Architecture I [20], consistent
with theories of the effectiveness of sparse, factorial representations for coding complex visual objects
[5, 2, 22].

As discussed in Section 0.2.1, ICA representations are better optimized for transmitting informa-
tion in the presence of noise than PCA, and thus they may be more robust to variations such as
lighting conditions, changes in hair, make-up, and facial expression which can be considered forms
of noise with respect to the main source of information in our face database: the person’s identity.
The robust recognition across different days is particularly encouraging, since most applications of
automated face recognition contain the noise inherent to identifying images collected on a different
day from the sample images. Draper and colleagues [20], tested a specific form of noise, lighting vari-
ation in the FERET dataset, and found a considerable advantage of ICA Architecture II over PCA
for robustness to changes in lighting. The Draper study also supported our finding of a substantial
advantage of ICA II over PCA for images collected weeks apart. A key challenge in translating
any face recognition method into a real-world system is noise. The approach presented here would
benefit from a more systematic exploration of tolerance to noise, including the effect of noise at
different spatial scales. Moreover it was recently shown that shallower transfer functions than the
ones learned by information maximization, proportional to the cube root of the cumulative pdf,
optimize information transmission in the presence of noise since error magnification depends on the
slope of the transfer function [71]. Thus another avenue of research is to explore face representations
based on the optimization function in [71].

A number of research groups have independently tested the ICA representations presented here
and in [9, 10]. Liu and Wechsler [42], and Yuen and Lai [76] both supported the finding that ICA
outperformed PCA. Moghaddam [48] and Yang [75] employed Euclidean distance as the similarity
measure instead of cosines and tested Architecture I only. No differences are expected with Euclidean
distance in Architecture I, and consistent with our findings, no significant difference was found.
Draper and colleagues [20] conducted a thorough comparison of ICA and PCA using four similarity
measures, and supported the findings that ICA outperformed PCA, and this advantage emerged



when cosines, but not Euclidean distance, was used as the similarity measure for ICA. Class-specific
projections of the ICA face codes using Fisher’s linear discriminant has recently been shown to be
effective for face recognition as well [32]. ICA was also shown to be effective for facial expression
recognition. The ICA representation outperformed more than eight other image representations on
a task of facial expression recognition, equaled only by Gabor wavelet decomposition [19, 8], with
which it has relationships discussed below.

In this paper, the number of sources was controlled by reducing the dimensionality of the data
through principal component analysis prior to performing ICA. There are two limitations to this
approach [68]. The first is the reverse dimensionality problem. It may not be possible to linearly
separate the independent sources in smaller subspaces. Since we retained 200 dimensions, this may
not have been a serious limitation of this implementation. Secondly, it may not be desirable to throw
away subspaces of the data with low power such as the higher principal components. Although low in
power, these subspaces may contain independent components, and the property of the data we seek
is independence, not amplitude. Techniques have been proposed for separating sources on projection
planes without discarding any independent components of the data [68]. Techniques for estimating
the number of independent components in a dataset have also been proposed [33, 47].

The information maximization algorithm employed to perform independent component analysis
in this work assumed that the underlying “causes” of the pixel graylevels in face images had a
super-Gaussian (peaky) response distribution. Many natural signals, such as sound sources, have
been shown to have a super-Gaussian distribution [12]. We employed a logistic source model which
has shown in practice to be sufficient to separate natural signals with super-Gaussian distributions
[12]. The underlying “causes” of the pixel graylevels in the face images are unknown, and it is
possible that better results could have been obtained with other source models. In particular, any
sub-Gaussian sources would have remained mixed. Methods for separating sub-Gaussian sources
through information maximization have been developed [37]. A future direction of this research is
to examine sub-Gaussian components of face images.

The information maximization algorithm employed in this work also assumed that the pixel
values in face images were generated from a linear mixing process. This linear approximation has
been shown to hold true for the effect of lighting on face images [24]. Other influences, such as
changes in pose and expression may be linearly approximated only to a limited extent. Nonlinear
independent component analysis in the absence of prior constraints is an ill-conditioned problem, but
some progress has been made by assuming a linear mixing process followed by parametric nonlinear
functions [38, 74]. An algorithm for nonlinear ICA based on kernel methods has also recently been
presented [4]. Kernel methods have already shown to improve face recognition performance with
PCA and Fisherfaces [75], and promising results have recently been presented for face recognition
with kernel-ICA [43].

Unlike principal component analysis, independent component analysis using Architecture I found
a spatially local face representation. Local feature analysis (LFA) [59] also finds local basis images
for faces, but using second-order statistics. The LFA basis images are found by performing whitening
(Equation 4) on the principal component axes, followed by a rotation to topographic correspondence
with pixel location. The LFA kernels are not sensitive to the high-order dependencies in the face
image ensemble, and in tests to date, recognition performance with LFA kernels has not significantly
improved upon PCA [19]. Interestingly, downsampling methods based on sequential information
maximization significantly improve performance with LFA [58].

ICA outputs using Architecture I were sparse in space (within image across pixels) while the
ICA outputs using Architecture II were sparse across images. Hence Architecture I produced lo-
cal basis images, but the face codes were not sparse, while Architecture II produced sparse face
codes, but with holistic basis images. A representation that has recently appeared in the literature,
non-negative matrix factorization (NMF) [35], produced local basis images and sparse face codes.9

While this representation is interesting from a theoretical perspective, it has not yet proven useful
for recognition. Another innovative face representation employs products of experts in restricted
Boltzmann machines (RBMs). This representation also finds local features when non-negative weight

9Although the NMF codes were sparse, they were not a minimum entropy code (an independent code) as the
objective function did not maximize sparseness while preserving information.



constraints are employed [69]. In experiments to date, RBM’s outperformed PCA for recognizing
faces across changes in expression or addition/removal of glasses, but performed more poorly for
recognizing faces across different days. It is an open question as to whether sparseness and local
features are desirable objectives for face recognition in and of themselves. Here, these properties
emerged from an objective of independence.

Capturing more likelihood may be a good principle for generating unsupervised representations
which can be later used for classification. As mentioned in Section 0.2, PCA and ICA can be derived
as generative models of the data, where PCA uses Gaussian sources, and ICA typically uses sparse
sources. It has been shown that for many natural signals, ICA is a better model in that it assigns
higher likelihood to the data than PCA [39]. The ICA basis dimensions presented here may have
captured more likelihood of the face images than PCA, which provides a possible explanation for
the superior performance of ICA in this study.

Desirable filters may be those that are adapted to the patterns of interest and capture interesting
structure [40]. The more the dependencies that are encoded, the more structure that is learned.
Information theory provides a means for capturing interesting structure. Information maximization
leads to an efficient code of the environment, resulting in more learned structure. Such mechanisms
predict neural codes in both vision [52, 13, 72] and audition [39]. The research presented here
found that face representations in which high order dependencies are separated into individual
coefficients gave superior recognition performance to representations which only separate second
order redundancies.

The principle of independence may have relevance to face and object representations in the brain.
Horace Barlow [5] and Joseph Atick [2] have argued for redundancy reduction as a general coding
strategy in the brain. This notion is supported by the findings of Bell and Sejnowski [13] that image
bases that produce independent outputs from natural scenes are local, oriented, spatially opponent
filters similar to the response properties of V1 simple cells. Olshausen and Field [53, 52] obtained a
similar result with a sparseness objective, where there is a close information theoretic relationship
between sparseness and independence [5, 13]. Conversely, it has also been shown that Gabor filters,
which model the responses of V1 simple cells, give outputs that are sparse and independent10 when
convolved with natural scenes but not when convolved with random noise [21, 22, 66]. (See [6] for
a discussion).

0.9 Face modeling and information maximization: A compu-

tational neuroscience perspective

Dependency coding and information maximization appear to be central principles in neural coding
early in the visual system. Neural systems with limited dynamic range can increase the information
that the response gives about the signal by placing the more steeply sloped portions of the transfer
function in the regions of highest density, and shallower slopes at regions of low density. The
function that maximizes information transfer is the one that matches the cumulative probability
density of the input. There is a large body of evidence that neural codes in vision and other sensory
modalities match the statistical structure of the environment, and hence maximize information about
environmental signals to a degree. See [67] for a review. These principles may be relevant to how
we think about higher visual processes such as face recognition as well.

Here we examine algorithms for face recognition by computer from a perspective of information
maximization. Principal component solutions can be learned in neural networks with simple Hebbian
learning rules [51]. Hebbian learning is a model for long-term potentiation in neurons, in which
weights are increased when the input and output are simultaneously active. The weight update rule
is typically formulated as the product of the input and the output activations. This simple rule learns
the covariance structure of the input (i.e. the second-order relations). In the case of a single output
unit, Hebbian learning maximizes the information transfer between the input and the output [41].
For multiple inputs and outputs, however, Hebbian learning doesn’t maximize information transfer

10when response normalization is included. There is a large body of evidence for response normalization in visual
cortical neurons.



unless all of the signal distributions are Gaussian. In other words, the eigenface representation
performs information maximization in the case where the input distributions are Gaussian.

Independent component analysis performs information maximization for a more general set of
input distributions. (See [18] for a reference text and [6] for a review). The information maximization
learning algorithm employed here was developed from the principle of optimal information transfer
in neurons with sigmoidal transfer functions. Inspection of the learning rule in Equation 2 shows that
it contains a Hebbian learning term, but it is between the input and the gradient of the output. (In
the case of the natural gradient learning rule in Equation 3 it is between the input and the natural
gradient of the output.) Here we showed that face representations derived from ICA gave better
recognition performance than face representations based on PCA. This suggests that information
maximization in early processing is an effective strategy for face recognition by computer.

A number of perceptual studies support the relevance of dependency encoding to human face
perception. Perceptual effects such as other-race effects are consistent with information maximization
coding. For example, face discrimination is superior for same-race than other-race faces [63], which
is consistent with a perceptual transfer function that is steeper for faces in the high-density portion
of the distribution in an individual’s perceptual experience (ie. same-race faces). Face adaptation
studies (e.g. [31, 50, 73]) are consistent with information maximization on short time scales. For
example, after adapting to a distorted face, a neutral face appears distorted in the opposite direction.
Adaptation alters the probability density on short time scales, and the aftereffect is consistent with
a perceptual transfer function that has adjusted to match the new cumulative probability density.
Adaptation to a nondistorted face does not make distorted faces appear more distorted, which is
consistent with an infomax account, because adapting to a neutral face would not shift the population
mean. There is also support from neurophysiology for information maximization principles in face
coding. The response distributions of IT face cells are sparse and there is very little redundancy
between cells [64, 65].

Unsupervised learning of 2nd order dependencies (PCA) successfully models a number of aspects
of human face perception including similarity, typicality, recognition accuracy, and other-race effects
(e.g. [17, 26, 55]. Moreover, one study found that ICA better accounts for human judgments of
facial similarity than PCA, supporting the idea that the more dependencies are encoded, the better
the model of human perception for some tasks [25]. The extent to which information maximization
principles account for perceptual learning and adaptation aftereffects in human face perception is
an open question and an area of active research.
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