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Abstract

The energy paradigm, exemplified by Hopfield networks, offers a principled frame-
work for memory in neural systems by interpreting dynamics as descent on an
energy surface. While powerful for static associative memories, it falls short in
modeling sequential memory, where transitions between memories are essential.
We introduce the Exponential Dynamic Energy Network (EDEN), a novel architec-
ture that extends the energy paradigm to temporal domains by evolving the energy
function over multiple timescales. EDEN combines a static high-capacity energy
network with a slow, asymmetrically interacting modulatory population, enabling
robust and controlled memory transitions. We formally derive short-timescale
energy functions that govern local dynamics and use them to analytically compute
memory escape times, revealing a phase transition between static and dynamic
regimes. The analysis of capacity, defined as the number of memories that can
be stored with minimal error rate as a function of the dimensions of the state
space (number of feature neurons), for EDEN shows that it achieves exponential
sequence memory capacity O(γN ), outperforming the linear capacity O(N) of
conventional models. Furthermore, EDEN’s dynamics resemble the activity of
time and ramping cells observed in the human brain during episodic memory tasks,
grounding its biological relevance. By unifying static and sequential memory
within a dynamic energy framework, EDEN offers a scalable and interpretable
model for high-capacity temporal memory in both artificial and biological systems.

1 Introduction

Memory is a crucial element of cognition that is essential for learning, reasoning, and decision-making.
Understanding and replicating the human ability to store and recall information is a long-term chal-
lenge in both biological and artificial intelligence (AI). The energy paradigm, introduced by Hopfield
and Amari 40 years ago, revolutionized memory modeling by characterizing the dynamical behavior
of neural networks using an energy landscape [1, 2]. According to the energy paradigm, a stimulus
instantiates a network state on an energy landscape. The neurons then interact with each other such
that the state travels down the landscape until a minimum is reached. This minimum state is defined
as the memory of the network. The energy approach to memory modeling represented a significant
advancement of our scientific understanding of memory by offering an intuitive understanding of
network dynamics, with added theoretical guarantees of stability. The disadvantage was that the
number of memories that can be reliably stored was only a small fraction of the number of neurons
[3, 4, 5] and scaled linearly with the increase in neurons. This limited the applicability of energy
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Figure 1: Schematic Model and Energy Landscape Behavior of Dynamic Energy Networks:
A. The dynamic energy network, EDEN, has asymmetrically interacting slow neurons providing
information about the next memory in the sequence to the two fast neural populations. B. Static
energy-based networks are used as models of human associative memory where a single memory
associated with a provided stimulus is recalled. EDEN, without the slow population, is a static energy
network that retrieves a single memory from a collection of stored memories. The system’s state (vi),
represented by the blue ball, descends the energy surface until a stable memory (energy minimum
at state “2") is reached. After retrieval, the state of the system does not change and stays at “2". C.
Dynamic energy networks enable associative sequence memory, where the associated memory along
with its sequential neighbors are recalled. In EDEN, the energy surface changes in response to the
state of the system, causing the minima of the energy surface to change over time (from “2" to “3"),
resulting in transitions between memories.

networks despite their theoretical advantages. Further, the dynamics on the energy surface guaranteed
a single final memory, precluding any temporal behavior in the memories. Further research in im-
proving these networks proceeded in two independent directions. In one direction, researchers sought
to develop techniques to improve the limited memory capacity of the original neural network by
proposing modifications to how neurons interact in the network. In the second direction, researchers
sought to create alternative formulations to energy function such that sequences and temporal aspects
of memory can also be modeled with similar theoretical guarantees.

Improving capacity has been central to the development of memory models. In the context of Hopfield
networks, capacity is defined as the maximum number of memories that can be stored with minimal
errors as a function of the number of dimensions in its state space (the number of visible neurons).
Earlier studies revealed that the limited capacity of the classic Hopfield network was due to significant
crosstalk between the memories resulting in energy functions with many spurious minima. A major
breakthrough in capacity came with the introduction of higher order terms in the energy function that
separated the contribution of each memory to the energy minimum [6, 7, 8, 9, 10, 11, 12] resulting
in polynomial capacity scaling and dense networks - networks that store more memories than the
number of neurons [13]. Further studies introduced exponential terms, greatly increasing memory
capacity and enabling practical applications [14, 13]. Currently, energy networks are used in AI with
applications in large-scale natural language processing [15, 16], computer vision [17], and lifelong-
learning systems [18, 19] as reliable external memory storage. Further, the self-attention mechanism
in transformer architectures have been shown to be functionally equivalent to the exponential memory
capacity network providing insights into their mysterious capabilities [20, 21]. The success story
of high-capacity static energy networks demonstrates how utilizing the energy paradigm benefits
advancement and practical applications.
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Despite these advancements in the energy paradigm, state-of-the-art networks are still restricted
to retrieving single memories from a collection of stored memories. Reconciling the single stable
memory states in the energy paradigm with the dynamic states required for modeling sequences
remains a significant challenge [22, 23, 24, 25]. Over the years, there have been several solutions
proposed for the challenge. One proposal introduced networks combining symmetric interactions,
asymmetric interactions, and delay signals to produce temporal behavior [26, 27]. These proposals
succeeded in creating networks that exhibited sequential state transitions, but the energy paradigm
could not be applied to these cases as occasionally the network traveled up the energy surface.
Another proposal introduced noise into the dynamics for enabling transitions out of a memory basin
of the energy surface [28, 29, 30, 31, 32, 33]. The energy paradigm applied to these models revealed a
lowering of the energy barrier between states as more noise is added to the system. Without theoretical
insights obtained from the application of the energy paradigm, the modifications needed to improve
sequence capacity could not be found. As a result, extant sequence networks have capacity much
lower than the number of neurons. Developing an energy principle for temporal memory networks
will enable memory researchers to develop networks that are capable and aligned with experimental
data. It will also enable artificial intelligence researchers to develop capable external memory stores.

Our work extends the energy paradigm to temporal memories by allowing the energy surface to
change slowly with time. This approach was previously proposed experimentally in [34] and some
computational properties studied in [35]. In contrast to the classical energy paradigm, the memories
in the dynamic energy networks can lose or gain stability over time, resulting in stability in two
timescales. In short timescales, the current memory is always stable, with the energy function
guaranteeing convergence and robustness to noise. In longer timescales, the energy surface changes
to create a new minimum, destroying the current minimum. The network state changes in response,
resulting in stable transitions between memory states. Our analysis of the proposed dynamic energy
network shows that (1) The network’s dynamical behavior is well characterized by the short-timescale
energy functions assembled piecemeal for long-timescale dynamical behavior, (2) The energy function
provides a precise analytic computation for the time required to escape from a stable memory state and
the conditions necessary to exhibit memory transitions, (3) The network capacity scales exponentially
in the number of neurons, significantly outperforming existing sequence memory networks, (4) The
network populations have biological implications, showing strong behavioral correlations to the
activity of cells found in human episodic memory experiments. The new paradigm thus enables the
development of biologically relevant sequence memory networks with improved storage capacity.

Our work also provides theoretical insights into current approaches to sequence memory modeling.
Notably, we extend our earlier work on sequence memory [34] with theoretical analysis about
dynamical behavior, and rigorous claims of dense capacity. Another approach used in [36] has similar
multiple-timescale dynamics where the sequences are learned from the stimulus and the transitions
are governed by successive bifurcations. A more recent work [37] introduced a similar softmax
function with asymmetric synapses for dense capacity in a discrete network without using the energy
arguments. Our work reveals that the successive bifurcations hypothesized by [36] are due to the
change in stability of the energy landscape, and the capacity increase observed by [37] may be due to
separating the memory contributions to the energy functions.

2 Results

2.1 Exponential Dynamic Energy Network (EDEN)

To develop dynamic energy networks with exponential capacity, we incorporated a slow-changing
signal that interacts asymmetrically with an exponential capacity static energy network introduced
in prior research [21]. The resulting model is a system of interacting neurons with slow and fast
timescale neural populations. The slow timescale population modulates the energy surface for the
fast timescale population resulting in a system with a temporally varying energy function.

Mathematically, our model is a two-population neural network. The first population consists of a
feature layer (input/output layer) represented by the vector v and a hidden layer represented by the
vector h. There are N neurons in the feature layer and P neurons in the hidden layer (one for each
memory that needs to be stored in the network). This two-layer organization of the fast networks is
primarily motivated by a recent general theory of energy-based networks [13]. The feature and hidden
layer make the fast timescale population and are part of the exponential capacity static energy network.
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Figure 2: Simulation of EDEN reveals robust transitions between memory states and the
existence of local energy functions: EDEN is simulated to store and retrieve a simple sequence of 5
MNIST digits in numeric order. A The global energy surface with both slow and fast populations
of EDEN shows the neural state traversing a valley of the energy surface with occasional energy-
increasing regimes. B. The dynamical behavior of the memory overlaps of the fast population
(mv

µ = 1
N

∑N
i=1 viξ

(µ)
i ) of EDEN and the analysis of the first principal component (PC1) of the time

evolution of its fixed points show the fast population (blue cross) converging to the instantaneous
minimum of short-timescale energy functions (red circles). The short-timescale energy minimums
are modulated by the slow population. As the slow population approaches the current state of the
fast population, the energy minimum switches to the sequentially connected memory. Over time,
these short-timescale energy changes slowly so that the fast population has sufficient time to relax
at its instantaneous minimum. The long-timescale dynamical behavior of the network can then be
assembled from the short-timescale behaviors.

In the fast population, the hidden layers are instantaneous (very fast) enabling rapid information
transfer and follow the state of the art practices in developing energy networks. The interaction
between the feature neuron i and the hidden neuron µ is symmetric and is represented by the synaptic
weight ξiµ. The vector obtained by ξ

(µ)
i for a fixed µ and i ∈ {1, 2, . . . N} is the µth stored memory

(energy minimum) of the system. We analyze the network in the paper under the assumption of
Rademacher distributed memory patterns - Pr

[
ξ
(µ)
i = +1

]
= Pr

[
ξ
(µ)
i = −1

]
= 1/2.

The population of slow neurons represented by the vector s is the continuous delay signal from the
feature neurons. Therefore, there are N delay neurons. This slow signal retains information about
the previous memory state with a characteristic dynamical timescale - Td. We consider the case
when the timescale of the slow neurons is higher compared to the feature neurons (Td ≫ Tf ). This
timescale difference enables the existence of short timescale energy functions. The neurons in the
slow population interact with the hidden layer neurons through the synapses represented by the vector
ξ(µ−1). For simplicity, we assume the memories are arranged in a single long circular sequence with
ξ(µ−1) → ξ(µ) for µ > 1 and ξ(P ) → ξ(1), where P is the number of memories in the sequence to
be stored. For exponential memory capacity scaling, the softmax activation function is used for the
hidden layer. The evolution of the resultant network is given by the following set of mathematical
equations with Latin characters indexing the feature and slow neurons, and the Greek characters
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Figure 3: Escape Time Characteristics of EDEN under different parameter regimes: (left) The
analysis of the escape times (in Tf units) of EDEN under different parameter settings shows two
different dynamic regimes. When the coefficient ratio αs/αc > 1, EDEN has static memories where
the dynamic behavior converges to one of the stored memories without any transitions. When the
coefficient ratio αs/αc < 1, EDEN has memory transitions. (right) We take 4 sample cross sections
of the phase diagram, shown by the colored horizontal lines on the left. The average time required to
escape a memory state is characterized by the timescale (Td/Tf ) and the coefficient (αs/αc) ratios.
The analytical escape times (the solid lines) computed from the energy function show good agreement
with the experimental values (the points) with a mean absolute error of 5.96Tf units.

indexing the hidden layer neurons.

Tf
dvi
dt

=
P∑

µ=1

ξ
(µ)
i

exp(hµ)∑
ν exp(hν)

− vi ,

hµ = αs

N∑
i=1

ξ
(µ)
i vi + αc

N∑
i=1

ξ
(µ−1)
i si ,

Td
dsi
dt

= vi − si .

(1)

The interaction strength coefficient for the self-memory interaction is αs and for cross-memory inter-
action is αc. The self-memory interactions connects a memory with itself (ξ(µ) with ξ(µ)), stabilizing
the current memory of the network. The cross interactions drive the asymmetric interactions (ξ(µ−1)

with ξ(µ)) which causes state transitions. This dynamical system of interacting neurons has the
following energy function for the fast population (Appendix B).

(2)E(v) =

N∑
i=1

(vi)
2

2︸ ︷︷ ︸
state energy

− 1

αs
. log

(
P∑

µ=1

exp

(
αs

N∑
i=1

ξ
(µ)
i vi + αc

N∑
i=1

ξ
(µ−1)
i si

))
︸ ︷︷ ︸

interaction energy

.

The first term represents the state energy of the network, and the second term represents the interaction
energy from the synapses. The interaction energy now contains additional terms for the slow
population compared to the energy function of a typical Hopfield-type network. The interaction
energy from the fast population generates minima near a similar memory (defined as the memory with
the most overlap mv

µ), while the slow population generates minima near the sequentially connected
memory. The dynamical behavior of the overall system is characterized by the relative strengths of
these two interaction terms. With the network’s dynamics defined, we now analyze how its behavior
differs from that of static energy networks.
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Figure 4: Exponential Sequence Memory Capacity of EDEN: The plot shows the fixed point
capacity in the log10 scale for EDEN simulated with different αc = α (with αs = 0.999α) compared
with the reference network when small errors (δ < 10−3) are tolerated. The analytic curves are
shown as solid lines and experimental values as points. The reference network capacity scales linearly
with the asymptotic rate of O(N) (dotted orange line), while EDEN scales exponentially with the
asymptotic rate O(γN ) in the number of feature neurons. The exponent base is higher than the
limit (γ > 2), enabling EDEN to reach the available capacity limits of 2N (dotted blue line) in the
asymptotic limit of the number of neurons.

2.2 Energy Dynamics

Conventionally, an energy function precludes any temporal memory behaviors, as the dynamic
requirements of temporal memories conflict with the convergent dynamics found in systems with
an energy function. However, this argument assumes that the energy function that characterizes
the behavior of a system is constant. The theoretical analysis of EDEN reveals that the long-term
dynamical behavior of the network can be well explained piecemeal by short-term energy functions.

To analyze how the dynamics of the energy change with the introduction of the slow population, we
take the time derivative of the energy function from Equation 2 along the dynamical trajectory of the
system. The dynamical evolution of the energy function after separating the two timescales is shown
below (see Appendix B for the full derivation).

(3)
dE

dt
= −Tf

∑
i

(
dvi
dt

)2

︸ ︷︷ ︸
fast timescale (F )

− αc

αs

∑
i,µ

exp(hµ)∑
κ exp(hκ)

ξ
(µ−1)
i

dsi
dt︸ ︷︷ ︸

slow timescale (S)

.

The two terms of Equation 3, which we label by F and S separate the contributions of the fast and
slow timescales. Excluding the S term, the fast population will have one of two possible behaviors.
When the sign of F is negative, the population converges to a single stable state corresponding to the
minimum of the energy function. When the term is 0, the system moves in an iso-energetic (states
that have the same energy) trajectory without convergence. In this paper, we focus only on the case
of convergent behavior. We find that the case of non-convergence does not arise in the simulations.

The slow population influences the second term, S. When the slow timescale is longer compared to
the fast timescale (under the condition that Td ≫ Tf ), which we assume in the paper, the network
exhibits a non-increasing energy function and the effect of S is effectively negligible. The analysis
reveals two roles the slow population plays in the network dynamics: (1) The slow dynamical nature
helps to stabilize the dynamics of the fast population on the energy surface, enabling it to converge to
a memory state (2) The asymmetric interactions of the slow population changes the energy surface to
create new minima and destroy old minima, inducing memory transitions. These two functions result
in a network with stable transitions between memories.

In our numerical simulations, we consider settings of the slow timescale to be high enough for the
slow neurons to change sufficiently slowly for the energy function to characterize the dynamics but
not so high as to prevent the system from exhibiting state transitions in a reasonable time. Figure 2
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shows the energy function behavior of EDEN and the dynamic behavior of the feature to memory
overlaps mv

µ =
∑

i ξ
(µ)
i vi. The analysis reveals that although a single energy function does not

characterize the global temporal behavior of the network, the local behavior is well described by
short-timescale energy functions. Analysis of the fixed points of the energy surface predicts when an
instability leads to memory transition and governs where each memory transitions to next. A global
behavioral characterization can then be obtained piecemeal from these local characterizations.

2.3 Escape Time Characterization of EDEN

To determine the variety of dynamical behaviors exhibited by EDEN, we analyzed how its parameters
- the timescales (Td, Tf ) and the interaction strength coefficients (αc, αs), influence the escape time
- the time the network spends in a memory state before transitioning to the next. To formalize the
average escape time, we define that the network state at some time v(t) is in a memory state µ if
µ = argmaxν

∑
i ξ

(µ)
i vi(t), that is, if the µth memory has the maximum overlap with the network

state compared to all other memories. Formally,

te(µ) = max
{
t : µ = argmax

ν

∑
i

vi(t)ξ
(ν)
i

}
, (4)

when v(0) = ξ
(µ−1)
i , s(0) = ξ

(µ−2)
i . The average escape time is defined as the time the network

stays in a memory state µ averaged across all the memories. Computing the escape time for nonlinear
dynamical systems like EDEN is a significant challenge. However, since we have access to the
system’s energy function, we compute escape time analytically using the time required for the
energy function to change minima from a memory state ξ(µ−1) to a memory state ξ(µ). The escape
time is obtained by evaluating the time taken for the energy contribution of ξ(µ−1) to be lesser
than ξ(µ) when the network initially starts at ξ(µ−1) and eventually transitions to ξ(µ). That is,
exp

(
αs

∑
i ξ

(µ−1)
i vi + αc

∑
i ξ

(µ−2)
i si

)
< exp

(
αs

∑
i ξ

(µ)
i vi + αc

∑
i ξ

(µ−1)
i si

)
. We obtain

the following analytic expression for the expected escape time, assuming the effect of transients in
the fast population is negligible (details in Appendix D) and that the transitions are Markovian. These
assumptions are reasonable, as in the slow timescale limits we consider in the paper, the memory
transients are observed to be almost instantaneous relative to the amount of time spent in a memory
state (in Figure 2) and the time spent is enough for the network history to decay. The average escape
time has the analytic expression given below.

⟨te⟩ = −Td
Tf

ln

(
1−

√
αs

αc

)
(5)

The phase diagram in Figure 3 constructed from the analytic escape time shows that the ratio of
coefficients αs

αc
uniquely determines the emergence of two different regimes in the dynamical behavior

of EDEN. In the static memory regime, when αs

αc
> 1, the cross-interaction strength is weaker than

the self-interaction strength, resulting in infinite escape time and EDEN exhibiting the dynamical
behaviors of a static energy network. For αs

αc
< 1, the cross-interaction strength is greater, and

EDEN enters the dynamic memory regime. The coefficient fraction and the slow-fast timescale ratios
define the escape time in the dynamic memory regime. The escape time is sufficiently high for larger
timescale ratios to observe stable transitions, making it ideal for storing memory sequences. On
the other hand, reducing the slow timescale parameter results in noisy dynamics between memories
characterized by short escape times. Ensuring that the coefficients are close to the phase transition
boundary enables the resulting network to exhibit stable transitions with a long time spent in memory
states.

2.4 EDEN has exponential capacity

Now that we have a network that follows an energy function, we evaluate how well the capacity
guarantees of the exponential static energy networks translate to the dynamic case. For simplicity,
we compute the capacity for networks at the phase change boundary αs

αc
→ 1. The networks at the

transition boundary have infinite escape time, resulting in the slow population completely forgetting
the previous memory state at the transition point. This enables precisely defining the slow population’s
state at the transition point. For a network at the phase boundary, the fixed point capacity is defined as
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the maximum number of memories that can be stored as a function of the size of the state space (N )
of the networks. As an added nuance, this ignores the number of hidden neurons in the framework.
This follows extant definitions of capacity. Minor errors are allowed in the retrieved memory, with ϵ
defining how close the fixed point is to the target memory state and δ defining the rate of tolerable bit
errors. Mathematically, the capacity is defined as

C(N, ϵ, δ) = max
{
P ∈ N : Pr

[
vi(te) · ξ(µ)i ≥ 1− ϵ

]
≥ 1− δ

}
(6)

with,

v(0) = ξ(µ−1), and s(0) =

√
αs

αc
ξ(µ−2) (7)

The factor
√

αs

αc
for the slow population was obtained by solving for its state analytically during state

transition (Equation 24 in the Appendix). We then compare the fixed point capacity of EDEN with
the following reference network.

(8)


Tf

dvi
dt

=
(
αs

∑
µj

ξ
(µ)
i ξ

(µ)
j σ(vi) + αc

∑
µ,j

ξ
(µ)
i ξ

(µ−1)
j si

)
− vi ,

Td
dsi
dt

= vi − si .

where the nonlinearity σ is defined as

(9)σ(x) =


−1 x < −1

x −1 ≤ x ≤ 1

1 x > 1

Minor variations of this reference network have been previously studied as multiple timescale models
of sequence memory [26, 36, 38], making it suitable as a proxy for existing multiple timescale
sequence networks. The notable difference between the reference network and EDEN is the absence
of a hidden layer and the softmax activation function. As a result, the reference network has linear
interaction between the neurons in the memory layer.

The analytic form for the capacity of the network is obtained from a given N, ϵ, δ as (details in
Appendix E.2.2)

(10)CEDEN = k(ϵ, δ)

(
exp(αr) exp(α)

cosh(αr) cosh(α)

)N−1

,

where k is a constant independent of N in the large N limit. The capacity is exponential in the
number of neurons with the asymptotic rate of O(γN ), where γ = exp(αr) exp(α)

cosh(αr) cosh(α) . The maximum
capacity possible for a network with N neurons is 2N , and the exponent γ > 2 for most choices of α
suggests that EDEN reaches the maximum possible capacity in the large N limits. The capacity of
the reference network is similarly obtained as

(11)Cref(N, ϵ, δ) = N
ϵ2δ

ln(N)

The capacity of the reference network is only linear in the number of neurons. For large N , the
asymptotic capacity is O(N), which is only linear in the number of neurons. The analytic results are
compared against simulations of networks with N ∈ {10, 12...35} in Figure 4. The results show an
exponential improvement in the scaling behavior of EDEN when compared to the reference network.
Further, EDEN approaches the available limit of 2N memories for higher settings of α. Due to
computational constraints, the maximum number of memories to be stored was limited to < 106.

8



A Time cell like behavior of 

hidden neurons
B Ramping behavior of 

delay neurons

Figure 5: The EDEN neural populations shows behavioral similarity to cells observed in human
episodic memory experiments: A The heatmap of the hidden layer neuron activity ordered by
time shows time-sensitive behavior analogous to the time cells observed in human episodic memory
retrieval experiments of [39]. B The slow layer neurons ramp up their activity until it reaches the
current memory which in turn induces the transition to the next memory. Rather than an instantaneous
drop in their activity, the slow layer slowly ramps down to stabilize the feature layer state on the next
memory. This ramp up and ramp down activity is analogous to the activity of ramping cells observed
in episodic memory experiments [39].

3 Biological Relevance

Episodic memory is the human ability to remember when and what happened during specific events
through an autobiographical recall of information [40]. Episodic memory is evaluated in humans
using list recall tasks [41, 42, 43]. As an essential component of cognition, the role of brain cells
in supporting episodic memory is an important question. Experimental studies in human episodic
memory have identified time cells and ramping cells in the hippocampus and entorhinal cortex as
playing a role in encoding and retrieving episodic memories [39]. Time cells activate in a sequence
corresponding to the order of the events being recalled and are hypothesized to encode the temporal
information of the recalled memory. Ramping cells also activate to the timing of memories but
show only a gradual increase or decrease in activity encoding time in longer timescales. With
our theoretical setup for retrieving sequential memories, we can analyze the retrieval aspect of the
list recall task. Our findings show that the fast hidden neuron population and the slow population
show behavioral characteristics similar to those of the time cells and ramping cells observed in
neurobiological experiments supporting episodic memory. This indicates that the EDEN architecture
may be used to develop theories and simulate neurons for evaluating episodic memory in the brain.

Figure 5 shows the behavioral correlations between the two populations of neurons in EDEN and the
cells found in human episodic memory experiments. Specifically, the dynamic nature of EDEN’s
hidden neurons lines up sequentially like time cells, reacting to the timing of the stimulus during
memory retrieval. The slow neuron population in EDEN shows a gradual rise and fall in activity,
analogous to the ramping cells, encoding the timing context during the retrieval of memories. Our
theoretical analysis of EDEN shows that the slow population helps stabilize the retrieved memory
on the energy surface and directs the transition between retrieved memories. Moreover, the time it
takes for memories to shift from one state to another in EDEN is influenced by the ramping cells’
timing and the strength of their connections to other neurons. The theoretical insights from EDEN
suggest that ramping cells may play a role in stabilizing and directing transitions in addition to simply
encoding temporal information as hypothesized from experiments. The time cells, on the other hand,
being the fast population only react to the state of the slow population and play a role in identifying
and arranging the retrieved memories in time.

4 Discussion

The Hopfield-Amari networks and the energy paradigm have provided foundational knowledge of
neural networks. However, addressing the diverse behaviors found in neural networks, it is imperative
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to evolve the energy paradigm beyond its traditional roots of static memory retrieval. We suggest
EDEN as a model that takes a step in this direction by introducing slow-timescale dynamics with
asymmetric memory interactions to the energy function, creating a new dynamic energy paradigm.
The results point to the enhanced capacity and understanding enabled by the new dynamic energy
paradigm. With these results, we posit that the network and theory could shed light on other temporal
characteristics of human memory experiments. In addition to the potential impact on neuroscience,
the simulations suggest that dense memory may be used in AI applications requiring robust, high-
capacity sequence memory storage and retrieval. The proposed energy paradigm provides a universal
framework for memory computations in static and dynamic cases. Further, the biological relation of
EDEN provides a path for analyzing the episodic memory experiments in a tractable framework that
will inform future studies on memory. In future studies, we plan to generalize the energy networks
further to complex, realistic sequences and dynamic working memory settings.

Limitations. As a theory of dynamical behavior of a non-linear system, we make key assumptions
that simplify our mathematical analysis. (1) The synaptic strengths of the neuron interactions are
fixed and does not vary during training, in actual biological systems synaptic strengths can change
due to short and long term potentiation effects and consolidation (2) The timescales of symmetric and
asymmetric interactions are separate - this allows use to treat the asymmetric part as slowly evolving
and change the energy function of the symmetric network is response. In human brains, there are
different timescales for information processing but the timescales may not be perfectly separated as a
distinct slow population of asymmetric connections and fast population of symmetric population, (3)
Binary memory - we assume Rademacher distributed patterns for theoretical exposition following
related works in the field, although the theory can be similarly worked out for other distributions (4)
Markovian State Transition - in deriving our capacity bounds, we assumed that the network spends
enough time in a memory state that the historical trajectory information is lost and the state transitions
are purely Markovian in nature. Further, the capacity bounds we formulated shows how the maximum
number of memories (number of hidden neurons) scales with the number of visual neurons following
previous results in the field. The number of hidden neurons required for storage however grows only
linearly in the number of hidden neurons.
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A Methods

In the paper, we analyze EDEN using the theoretical framework of non-linear dynamical systems
and some new tools obtained by extending the concept of energy functions to the temporal case. The
simulations were coded in Python and run in the Unity supercomputing cluster. The github repo for
running the capacity experiments can be found at https://github.com/arjunkaruvally/EDEN_torch.
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A.1 Simulations

For all numerical simulations of network state dynamics, we used the Euler integration procedure
with a step size of 0.01. The memories in EDEN are defined as random binary vectors with each
dimension of the memory in the model drawn from the Rademacher distribution Pr

[
ξ
(µ)
j = +1

]
=

Pr
[
ξ
(µ)
j = −1

]
= 1/2. The similarity between the population activity and each memory is evaluated

using the average overlap (Mattis magnetization) of the neural activity with each of the stored
memories, defined as mx

µ = 1
N

∑N
j=1,j ̸=i ξ

(µ)
j xj where ξ(µ)j is the µth memory in the system and N

is the number of feature neurons. x can be either the state of the feature neurons or the slow population.
These memories are organized as long cyclic sequence episodes: ξ(1) → ξ(2) → . . . ξ(P ) → ξ(1).
The input cue to the system is the memory ξ(1), which is initialized as the feature layer state. The
slow population is initialized to 0.

For Figure 2, 3, 5, the simulations were run with N = 100, αs = 0.98, αc = 1.0, Tf = 1.0, and
Td = 20.0. The code for the simulations is available in the repository: anonymous repo

A.1.1 Fixed point analysis

We used a fixed point finding algorithm to find the fixed points of the energy surface for the fast
population at each time step [44]. The algorithm uses an iterative process to find the fixed points of
the energy surface evaluated from a given position on the energy surface. Starting from the neuron
state on the energy landscape, the state is updated to follow the direction of the energy gradient till no
more updates are possible, indicating convergence to a fixed point on the energy surface.

A.2 Capacity Experiments

To evaluate capacity, we ran simulations to estimate the probability of errors in retrieving single
bits

(
Pr
[
vi(te) · ξ(µ)i ≥ 1− ϵ

])
for the fixed point error rate ϵ = 10−3. For each neuron setting

N ∈ {10, 12, ...32} and the number of memories from P ∈ {1, 2...2N}, the probability is estimated
using Monte Carlo simulations. 100 seeds of memory initializations were taken with the memories
sampled without replacement to avoid confusion in the retrieved memory sequence. After evaluating
the single-bit error probability, the maximum number of memories to be stored is computed for an
error rate of δ = 10−3. The precise setting of ϵ and δ contribute only linearly to the exponential
capacity [45, 37].

B Energy Function Dynamics

The introduction of asymmetric synapses to the symmetric Hopfield network means that the standard
energy minimization argument does not hold for EDEN. However, we find here that under sufficiently
slow-changing asymmetric interactions the energy argument is valid in short-timescales. To illustrate
this, we analyze the derivative of the energy function with respect to time to uncover how the energy
function behaves along the dynamic trajectory of the system

(12)
dE

dt
=
∑
i

vi
dvi
dt

− 1

αs

∑
i,µ

(
zµ∑
ν zν

(
αsξ

(µ)
i

dvi
dt

+ αcξ
(µ−1)
i

dsi
dt

))

(13)
dE

dt
=
∑
i

vi
dvi
dt

−
∑
i,µ

zµ∑
ν zν

ξ
(µ)
i

dvi
dt

+
αc

αs

∑
i,µ

zµ∑
κ zκ

ξ
(µ−1)
i

dsi
dt

(14)
dE

dt
=
∑
i

dvi
dt

(
vi −

∑
µ

zµ∑
ν zν

ξ
(µ)
i

)
+

αc

αs

∑
i,µ

zµ∑
κ zκ

ξ
(µ−1)
i

dsi
dt
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dE

dt
= −

∑
i

Tf
(
dvi
dt

)2

+
αc

αs

∑
i,µ

zµ∑
κ zκ

ξ
(µ−1)
i

dsi
dt

(15)

The energy function dynamics splits into two terms - one term, which is always negative (analogous
to the case of standard Hopfield networks), and the other term, which depends on the rate of change
of the slow signal. In the adiabatic limit of the slow signal, the negative term dominates and the
network dynamics always converge on the energy surface.

C Slow Population Dynamics

The slow population dynamics is a linear ODE, which can be solved exactly analytically under the
fast vi assumptions

Td
dsi
dt

= vi − si (16)

dsi +
1

Td
si dt =

1

Td
vi dt (17)

Use integrating factor exp
(

t
Td

)
(18)exp

(
t

Td

)
dsi +

1

Td
exp

(
t

Td

)
si dt =

1

Td
exp

(
t

Td

)
vi dt

d

(
si exp

(
t

Td

))
=

1

Td
exp

(
t

Td

)
vi dt (19)

Integrate both sides ∫ t

t0

d

(
si exp

(
t

Td

))
=

1

Td

∫ t

t0

exp

(
s

Td

)
vi(s) ds (20)

[
si exp

(
t

Td

)]t
t0

=
1

Td

∫ t

t0

exp

(
s

Td

)
vi(s) ds (21)

(22)si(t) exp

(
t

Td

)
= si(t0) exp

(
t0
Td

)
+

1

Td

∫ t

t0

exp

(
s

Td

)
vi(s) ds

(23)si(t) = si(t0) exp

(
t0 − t

Td

)
+

1

Td

∫ t

t0

exp

(
s− t

Td

)
vi(s) ds

Without the input signal s, the network is a continuous-time version of exponential static memory
[21] and hence has the same capacity guarantees. For analytical simplicity, we assume circularly
connected memories where ξ(µ−1) → ξ(µ), µ > 1 and ξ(P ) → ξ(1), where P is the total number of
memories. We assume that the transition is instantaneous in the slow timescale Td, and neglect the
effect of transients in the slow population. Without any loss of generality, when the network state
starts at state ξ(2), the slow population state has two components - the previous memory state ξ(1)

and the current memory state ξ(2). We assume that Td ≫ Tf , so the transient states are negligible. λ
is a factor that controls to what extent the previous state is reflected in the slow population before the
transition occurs. The λ is computed analytically in Appendix D.

si(t) = λ ξ
(1)
i exp

(
− t

Td

)
+ ξ

(2)
i

(
1− exp

(
− t

Td

))
(24)
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D Escape Time

To ease the computation of the escape time in relation to the parameters of the network, we scale the
timescale of the network dynamics by the substitution t′ = t Tf . This removes Tf from the dynamical
equations and replaces its effect as the timescale ratio τ = Td/Tf . The slow population dynamics for
the rescaled system is

Td
Tf

dsi
dt

= vi − si (25)

and has the following analytic form for the trajectory.

si(t) = λ ξ
(1)
i exp

(
− t

τ

)
+ ξ

(2)
i

(
1− exp

(
− t

τ

))
(26)

To compute average escape time, we consider the two memory contributions C2, C3 on the energy
function, for the sequence transition ξ(1) → ξ(2) → ξ(3) and analyze for the transition ξ(2) → ξ(3).
That is, vi = ξ

(2)
i and si(t) = λ ξ

(1)
i exp

(
− t

τ

)
+ ξ

(2)
i

(
1− exp

(
− t

τ

))
, where λ is the coefficient of

the contribution of ξ(1)i to the delayed state before transition to ξ(µ)i2

(27)C2 + C3 = exp

(
αs

∑
i

ξ
(2)
i vi + αc

∑
i

ξ
(1)
i si

)
+ exp

(
αs

∑
i

ξ
(3)
i vi + αc

∑
i

ξ
(2)
i si

)

Substituting vi = ξ
(2)
i and si(t) = λ ξ

(1)
i exp

(
− t

τ

)
+ ξ

(2)
i

(
1− exp

(
− t

τ

))
C2 + C3

= exp

(
αs

∑
i

ξ
(2)
i ξ

(2)
i + λαc

∑
i

ξ
(1)
i ξ

(1)
i exp

(
− t

τ

)
+ αc

∑
i

ξ
(1)
i ξ

(2)
i

(
1− exp

(
− t

τ

)))

+exp

(
αs

∑
i

ξ
(3)
i ξ

(2)
i + λαc

∑
i

ξ
(2)
i ξ

(1)
i exp

(
− t

τ

)
+ αc

∑
i

ξ
(2)
i ξ

(2)
i

(
1− exp

(
− t

τ

)))
(28)

The energy minima is characterized by the competition between the two memory contributions. Now,
we take the ansatz that the transition occurs when the energy contribution to the minima C2 < C2.
Since exp is a monotonic function, this can be written as

(29)
αs

∑
i

ξ
(2)
i ξ

(2)
i + λαc

∑
i

ξ
(1)
i ξ

(1)
i exp

(
− t

τ

)
+ αc

∑
i

ξ
(1)
i ξ

(2)
i

(
1− exp

(
− t

τ

))
< αs

∑
i

ξ
(3)
i ξ

(2)
i + λαc

∑
i

ξ
(2)
i ξ

(1)
i exp

(
− t

τ

)
+ αc

∑
i

ξ
(2)
i ξ

(2)
i

(
1− exp

(
− t

τ

))

At the large N limit, the terms
∑

i ξ
(µ)
i ξ

(µ)
i ∼ N (0, σ) for µ ̸= ν can be approximated by a normal

distributed random variable. Let ϵi ∼ N (0, σi) and ϵ1 =
∑

i ξ
(1)
i ξ

(2)
i , ϵ2 =

∑
i ξ

(3)
i ξ

(2)
i , ϵ3 =∑

i ξ
(2)
i ξ

(1)
i

αs N+λαc N exp

(
− t

τ

)
+αc ϵ1

(
1−exp

(
− t

τ

))
<αs ϵ2+λαc ϵ3+αc N

(
1−exp

(
− t

τ

))
(30)

(31)αs+λαc exp

(
− t

τ

)
+αc

ϵ1
N

(
1−exp

(
− t

τ

))
<αs

ϵ2
N

+λαc
ϵ3
N

+αc

(
1−exp

(
− t

τ

))
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(32)exp

(
− t

τ

)(
λ+ 1− ϵ1

N

)
αc < αs

( ϵ2
N

− 1
)
+ αc

(
1 + λ

ϵ3
N

− ϵ1
N

)
Let r = αs

αc

(33)exp

(
− t

τ

)(
λ+ 1− ϵ1

N

)
< r

( ϵ2
N

− 1
)
+
(
1 + λ

ϵ3
N

− ϵ1
N

)

(34)exp

(
t

τ

)
>

(
λ+ 1− ϵ1

N

)
r
(
ϵ2
N − 1

)
+
(
1 + λ ϵ3

N − ϵ1
N

)
Applying ln function on both sides

(35)t > τ

[
ln
(
λ+ 1− ϵ1

N

)
− ln

(
r
( ϵ2
N

− 1
)
+
(
1 + λ

ϵ3
N

− ϵ1
N

))]

The time to escape is written as a random variable

(36)te = τ

[
ln
(
λ+ 1− ϵ1

N

)
− ln

(
r
( ϵ2
N

− 1
)
+
(
1 + λ

ϵ3
N

− ϵ1
N

))]

For large N , the expected escape time using the delta method to approximate the log of random
variable as normal distributed is obtained as

⟨te⟩ = τ

[
ln(λ+ 1)− ln(1− r)

]
(37)

Now that we have the time to escape, we compute the slow signal s at the transition point:

(38)si(t) = λ ξ
(1)
i exp

(
− te

τ

)
+ ξ

(2)
i

(
1− exp

(
− te

τ

))
Substituting the equations for escape times,

(39)si(t) = λ ξ
(1)
i

(
1− r

λ+ 1

)
+ ξ

(2)
i

(
1−

(
1− r

λ+ 1

))

(40)si(t) = λ ξ
(1)
i

(
1− r

λ+ 1

)
+ ξ

(2)
i

(
λ+ r

λ+ 1

)
At transition,

(41)
λ+ r

λ+ 1
= λ

λ =

√
αs

αc
(42)

Therefore, before transition, the delay signal will be

(43)si(t) =
√
rξ

(2)
i + ξ

(1)
i (1−

√
r)

This computation of λ seem to generate confusions. So, we have decided to provide a detailed
reasoning. For a transition ξ(1) → ξ(2), λ is a factor quantifying the extend to which the previous
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state ξ(1) is present in the slow population when the state transition occurs. Using the Markovian
assumption, we assume that ξ(P ) is negligible in the slow population when the transition occurred".
We perform our analysis just after the transition ξ(1) → ξ(2) happened where the “old" pattern is
indeed ξ(1). The escape time we compute is for the state transition ξ(2) → ξ(3). Now, the definition
of λ is used again as before but on the transition ξ(2) → ξ(3) similar to above, except now the “old"
pattern is ξ(2).

An alternate way to think about λ is by imagining a factor corresponding to a memory in the slow
variable that increases as the network stays in a meta-stable memory state. Now, this factor ideally
would reach 1 asymptotically over time, while any "old information" exponentially decays to 0 at
which point the fast variable escapes the memory state. Instead of exactly 1, we use a factor λ and
compute what this is based on the parameters we have in our model. A sanity check is to verify if
the factor at escape time in the most ideal Markovian case is very close to 1, which we indeed find
in our analysis. For perfect sequential transitions,

√
r → 1. This guarantees that the old memory is

completely lost when the transition occurs and the accurate next state is retrieved. Now, to compute
the analytical escape time:

⟨te⟩ = τ

[
ln
(√

r + 1
)
− ln(1− r)

]
(44)

⟨te⟩ = τ

[
ln
(√

r + 1
)
− ln(1− r)

]
(45)

⟨te⟩ = −Td
Tf

ln

(
1−

√
αs

αc

)
(46)

E Capacity

There is a rich literature analyzing the capacity of energy-based networks like Hopfield networks.
The capacity is defined as the scaling relationship between the number of dimensions in the state
space of the network (the number of feature neurons) and the maximum number of memories that
can be stored. It is typical to assume that minor errors are allowed as long as the error does not scale
with the number of neurons. We follow the analysis introduced by Petritis [45] and recently used in
[37]. Recall that capacity is defined as the maximum number of memories that can be stored such
that each dimension of the fixed point encounters an error of ϵ with a probability δ. Mathematically,

C(N, ϵ, δ) = max
{
P ∈ N : Pr

[
vi(te) · ξ(µ)i ≥ 1− ϵ

]
≥ 1− δ

}
(47)

Typically, vi(te) requires solving a system of non-linear dynamical equations. Since we have access
to the analytic energy function of the system, we compute the fixed point of the energy function at te
and use it as the proxy for the network state at that time.

E.1 Reference Network

The reference network is defined by the following equations:
Tf

dvi
dt

= αs

∑
µj

ξiµ ξjµ σ(vi) + αc

∑
µ,j

ξiµ ξjµ−1 sj − vi ,

Td
dsi
dt

= vi − si .

(48)

The energy function for this network is given as:

Eref(v) =

∑
i v

2
i

2
− 1

2αs

∑
µ

(αs⟨ξ(µ), σ(v)⟩+ αc⟨ξ(µ−1), s⟩)2 (49)
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Without loss of generality, the fixed point of the energy surface at the point of transition ξ(2) → ξ(3)

is given by
v∗i = αs

∑
µ,j

ξ
(µ)
i ξ

(µ)
j v∗j + αc

∑
µ,j

ξ
(µ)
i ξ

(µ−1)
j sj(te)

v∗i = αs

∑
µj

ξ
(µ)
i ξ

(µ)
j v∗j + αc

∑
µ,j

ξ
(µ)
i ξ

(µ−1)
j ξ

(2)
j

We then quantify the probability for the failure of a single bit by computing the following probability,
where vi(te) = v∗i :

Pr
[
vi(te) · ξ(3)i < 1− ϵ

]

(50)v∗i · ξ(3)i = α

2(N − 1) +
∑
µ̸=3

ξ
(µ)
i ⟨ξ(µ), v∗i ⟩+

∑
µ̸=3

ξ
(µ)
i ⟨ξ(µ−1), ξ(2)⟩


Let α = 1

2(N−1) to simplify the effect of the discontinuity

= 1 +
1

2(N − 1)

∑
µ̸=3

ξ
(µ)
i ξ

(3)
i

(
⟨ξ(µ), ξ(3)⟩+ ⟨ξ(µ−1), ξ(2)⟩

)
Introduce the random variable χ

χ =
1

2(N − 1)

∑
µ̸=3

ξ
(µ)
i ξ

(3)
i

(
⟨ξ(µ), ξ(3)⟩+ ⟨ξ(µ−1), ξ(2)⟩

)
Since ξ

(µ)
i ’s are Rademacher distributed, the r.v can be simplified as

χ =
1

2(N − 1)

∑
i=1

∑
µ̸=3

R
(µ)
i +

∑
ν ̸=3

R
(ν)
i


Here, R(µ)

i , R
(ν)
i are Rademacher distributed random variables. The probability of single bit failure

is reformulated in the new random variable as:

Pr[ |χ|≥ ϵ ]

The moments of χ is then computed to find the bounds on the failure probability.

E.1.1 Moments

First Moment (Mean) Note the the distribution is symmetric around the origin, which gives the first
moment as

E[χ] = 0

4.2 Second Moment (Variance)

V[χ] =
(N − 1)

4(N − 1)2
V

∑
µ

R
(µ)
i +

∑
ν ̸=3

R
(ν)
i


V[χ] =

1

4(N − 1)
V

∑
µ

R
(µ)
i +

∑
ν ̸=3

R
(ν)
i


V[χ] =

2(P − 1)

4(N − 1)
V
[
R

(µ)
i

]

V[χ] =
(P − 1)

2(N − 1)
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Bounds of chi

Chebyshev’s inequality

Pr[|χ|≥ ϵ] ≤ V[χ]
ϵ2

Pr[|χ|≥ ϵ] ≤ (P − 1)

2(N − 1) ϵ2

Using our definition of capacity, we obtain

(P − 1)

2(N − 1) ϵ2
= δ

Solving for P , we obtain
P = 1 + 2δϵ2(N − 1)

which is linear in the number of neurons. For constant error rates, ϵ and δ, the capacity has an
asymptotic scaling of O(N) in line with prior classical Hopfield Network bounds.

E.2 EDEN

We follow a similar approach for EDEN and set αc = rαs = rα. The fixed point of EDEN is given
as

v∗i =
∑
µ

ξ
(µ)
i σ(α(r⟨ξ(µ), v∗⟩+ ⟨ξ(µ−1), ξ(2)⟩))

Let Z =
∑

ν ̸=3

exp(α(r⟨ξ(µ),ξ(3)⟩+⟨ξ(µ−1),ξ(2)⟩))
exp(α(1+r)(N−1))

1− v∗i (te) ξ
(3)
i =

Z

1 + Z
−
∑
µ̸=3

ξ
(µ)
i ξ

(3)
i

exp
(
α(r⟨ξ(µ), ξ(3)⟩+ ⟨ξ(µ−1), ξ(2)⟩ − (r + 1)(N − 1))

)
1 + Z

(51)

There are two random variables in the quantity of interest. The first Z is a sum of many terms, and
we replace the sum with its mean for easier computation. The mean field approximation becomes
valid in large P limits which we consider in the paper.

Z =

∑
ν ̸=3

∏
j ̸=i exp

(
αr ξ

(ν)
j ξ

(3)
j

)
exp

(
α ξ

(ν−1)
j ξ

(2)
j

)
exp(α(r + 1)(N − 1)))

introduce an r.v x
(µ)
j = ξ

(µ)
j ξ

(3)
j ∼ Rademacher and y

(µ)
j = ξ

(µ)
j ξ

(2)
j ∼ Rademacher

Z =

∑
ν ̸=3

∏
j ̸=i exp

(
αr x

(µ)
j

)
exp

(
α y

(µ)
j

)
exp(α(r + 1)(N − 1)))

E[Z] =

(
E
[
exp
(
αrx

(µ)
j

)]
E
[
exp
(
αy

(µ)
j

)])(N−1)

exp(α(r + 1)(N − 1)))

E[Z] = (P − 1)

(
cosh(αr)

exp(rα)

cosh(α)

exp(α)

)(N−1)

The Z is then replaced with the mean value. Also define a new parameter βx = cosh(x)
exp(x)

χ = 1−v∗i (te) ξ
(3)
i =

(P − 1)(βαrβα)
(N−1) −

∑
µ̸=3 ξ

(µ)
i ξ

(3)
i

∏
j ̸=i

exp
(
αr ξ

(ν)
j ξ

(3)
j

)
exp(αr(N−1))

exp
(
α ξ

(ν−1)
j ξ

(2)
j

)
exp(α(N−1))

1 + (P − 1)(βαrβα)(N−1)

(52)
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We compute the expectation and variance to characterize the distribution of χ. When computing
the expectation, the second term does not contribute to the expectation due to the symmetry of the
distribution.

E[χ] =
(P − 1)(βαrβα)

(N−1)

1 + (P − 1)(βαrβα)(N−1)

The independence of dimensions and memories guarantees that the covariance is 0 for the second
term, resulting in the variance.

V[χ] =
(P − 1)(β2αrβ2α)

(N−1)

(1 + (P − 1)(βαrβα)(N−1))2

The general distribution of χ is complicated, but it is symmetric around its mean. We, therefore, use
moment matching to approximate the distribution of χ using Gaussian distribution.

E[χ] = µ =
(P − 1)(βαrβα)

(N−1)

1 + (P − 1)(βαrβα)(N−1)

V[χ] = σ2

σ =

√
(P − 1) (β2αrβ2α)

(N−1)
2

1 + (P − 1)(βαrβα)(N−1)

χ ∼ N (µ, σ2)

Pr[χ ≤ ϵ] = Φ(
ϵ− µ

σ
) = 1− δ

Here, Φ is the Gaussian CDF which does not have a closed-form expression, but it can be approxi-
mated analytically by

Φ(
ϵ− µ

σ
) ≈ exp(2kx)

(1 + exp(2kx))
k =

√
2

π
x =

ϵ− µ

σ
.

E.2.1 In the large N limit, δ → 0

For a given error tolerance ϵ > 0, the success rate (given by 1− δ) approaches 1.

1− δ =

[
1 + exp

(
2k

(
P (βαrβα)

(N−1)(ϵ− 1) + ϵ√
P (β2αrβ2α)(N−1)/2

))]−1

Using the property that ϵ ≪ 1,

=

[
1 + exp

(
2k

(
−P (βαrβα)

(N−1) + ϵ√
P (β2αrβ2α)(N−1)/2

))]−1

(53)
=
[
1 + exp

−2k
√
P

(
cosh(αr) cosh(α)√
cosh(2αr) cosh(2α)

)(N−1)


exp

(
2k

ϵ√
P

(β2αrβ2α)
−(N−1)/2

)]−1

Now, taking the limit N → ∞ since αr, α > 0,
(β2αrβ2α)

−1 > 1

and β2αrβ2α → ∞ when N → ∞

=

1 + exp

−2k
√
P

(
cosh(αr) cosh(α)√
cosh(2αr) cosh(2α)

)(N−1)
−1

also, cosh(αr) cosh(α)√
cosh(2αr) cosh(2α)

> 1,∀α, r > 0 so taking N → ∞ gives

δ = 0

Q.E.D
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E.2.2 EDEN has exponential capacity

a =
√
(β2αrβ2α) and b = βαrβα√

(β2αrβ2α)

b

a
=

βαrβα

β2αrβ2α

(54)exp

(
−2k

√
P

(
βαrβα√
β2αrβ2α

)(N−1)
)
exp

(
2k

ϵ√
P

(β2αrβ2α)
−(N−1)/2

)
=

1− δ

δ

(55)−2k
√
P

(
βαrβα√
β2αrβ2α

)(N−1)

+ 2k
ϵ√
P

(β2αrβ2α)
−(N−1)/2

= ln

(
1− δ

δ

)

(56)−2k
√
P

(
βαrβα√
β2αrβ2α

)(N−1)

+ 2k
ϵ√
P

(β2αrβ2α)
−(N−1)/2

= ln

(
1− δ

δ

)

(57)P +
√
P

1

2k
ln

(
1− δ

δ

)(√
β2αrβ2α

βαrβα

)(N−1)

− ϵ

(βαrβα)(N−1)
= 0

which is a quadratic equation in
√
P and can be solved to obtain

(58)

√
P =

1

2k
ln

(
δ

1− δ

)(√
(β2αrβ2α)

βαrβα

)N−1

+

√√√√[ ln( 1−δ
δ

)
2k

]2 [√
(β2αrβ2α)

βαrβα

]2(N−1)

+
4ϵ

(βαrβα)N−1

Let c =
(

βαrβα

β2αrβ2α

)(N−1)

(59)P =

(
1

βαrβα

)N−1
(

1

2k
√
c
ln

(
δ

1− δ

)
+

√√√√1

c

[
ln
(
1−δ
δ

)
2k

]2
+ 4ϵ

)
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims of the abstract include (1) introduce the dynamic energy
surface model (discussed in Reults Exponential Dynamic Energy Network) (2) Analysis
of the escape times and the two phases of behavior in Section Results/Escape Time Char-
acterization of EDEN (3) Analysis of memory capacity in Results/EDEN has exponential
capacity (4) Biological Relevance analyzed in Section 3 - biological relevance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper is about quantifying the dynamical behaviors, and the capacities
and limitations of EDEN.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results are in the main paper, with high level proofs. Detailed
proofs are present in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The high level experiment summary is in the main text and details are described
in the Methods section of the Appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data is generated synthetically and the code is in the supplementary
materials. it will be publicly available if the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: High level descripitions are in the main text and details are provided in the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The analytic results are evaluated on the average deviation from predictions.
Error bars are not reported as the theory is primarily about the mean behavior.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments are simple and does not require anything more than a regular
computing system.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research introduces a new computational model and this does not use
human subjects for the experiments. We do not create any data and use only publicly
available datasets or standard synthetic benchmarks. There is no societal concerns we are
aware of as this is a relatively small scale study on a computational research question.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: The study is performed and impacts only the academic community interested
in conducting further research in SSMs. The work is primarily foundational in creating a
new computational algorithm for existing models.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper uses publicly available data that is identified as risk free and typically
used in conducting academic research.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The code and data are publicly released as open source software. the code
bases we used for compiling our code is attributed to the respective authors.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: A README is available on how to install, test and use the code base we
release.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: we do not use this experimental protocol.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: The experiments we do does not use human subjects and do not require IRB
approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM was not used in formulating the research. Only use of LLMs was in
editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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