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Abstract 

No finite sample is sufficient to  determine the density, and therefore the entropy, 
of a signal directly. Some assumption about either the functional form of the 
density or about its smoothness is necessary. Both amount to a prior over the 
space of possible density functions. By far the most common approach is to 
assume that the density has a parametric form. 

By contrast we derive a differential learning rule called EMMA that optimizes 
entropy by way of kernel density estimation. Entropy and its derivative can then 
be calculated by sampling from this density estimate. The resulting parameter 
update rule is surprisingly simple and efficient. 

We will describe two real-world applications that can be solved efficiently and 
reliably using EMMA. In the first application EMMA is used to  align 3D models 
to complex natural images. In the second application EMMA is used to detect 
and correct corruption in magnetic resonance images (MRI). Both applications 
are beyond the scope of existing parametric entropy models. 

1 Introduction 

Information theory is playing an increasing role in unsupervised learning and visual processing. 
For example, Linsker has used the concept of information maximization to produce theories of 
development in the visual cortex (Linsker, 1988). Becker and Hinton have used information theory 
to  motivate algorithms for visual processing (Becker and Hinton, 1992). Bell and Sejnowski have 
used information maximization to solve the "cocktail party" or signal separation problem (Bell 
and Sejnowski, 1995). In order to simplify analysis and implementation, each of these techniques 
makes specific assumptions about the nature of the signals used, typically that the signals are 
drawn from some parametric density. In practice, such assumptions are very inflexible. 
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In this paper we will derive a procedure that can effectively estimate and manipulate the entropy 
of a wide variety of signals using non-parametric densities. Our technique is distinguished by is 
simplicity, flexibility and efficiency. 

We will begin with a discussion of principal components analysis (PCA) as an example of a simple 
parametric entropy manipulation technique. After pointing out some of PCA's limitation, we will 
then derive a more powerful non-parametric entropy manipulation procedure. More significantly, 
we will show that the same entropy estimation procedure can be used to tackle several difficult 
visual processing problems. Finally, we will demonstrate the strength of this method on two 
real-world applications. 

1.1 Parame t r i c  En t ropy  Est imation 

Typically parametric entropy estimation is a two step process. We are given a parametric model 
for the density of a signal and a sample. First, from the space of possible density functions the 
most probable is selected. This often requires a search through parameter space. Second, the 
entropy of the most likely density function is evaluated. 

Parametric techniques can work well when the assumed form of the density matches the actual 
data. Conversely, when the parametric assumption is violated the resulting algorithms are in- 
correct. The most common assumption, that the data follow the Gaussian density, is especially 
restrictive. An entropy maximization technique that assumes that data is Gaussian, but operates 
on data drawn from a non-Gaussian density, may in fact end up minimizing entropy. 

The popularity of the Gaussian is based on three considerations: (1) finding the Gaussian that 
fits the data best is very easy, (2) the entropy of the Gaussian can be directly calculated from 
its variance, and (3) an affine transformation of a Gaussian random variable remdins Gaussian. 
The entropy of a Gaussian density is 

1 
h(X) = -EX [log g,~, (x - p)] = - log 2e74~ 

2 

where g+(x-p) is the Gaussian density with variance 1,6 and mean p and Ex[.] is the expectation 
over the random variable X .  It is well known that given a sample A, the most likely Gaussian 
density has as its mean the mean of A and as its variance the variance of A. As a result, if 
we assume that a random variable is Gaussian, its empirical entropy is proportional to the log 
of sample variance. More simply, when the data is a assumed Gaussian, maximizing entropy is 
equivalent to  maximizing variance. 

1.2 Example: Pr inc ipa l  Components  Analysis 

There are a number of signal processing and learning problems that can be formulated as entropy 
maximization problems. One prominent example is principal component analysis (PCA). Given 
a random variable X I  a vector v can be used to define a new random variable, Y, = X . v with 
variance Var(Yv) = Ex [(X . v - Ex (X  . v))']. The principal component 6 is the unit vector for 
which Var(Y;) is maximized. 

In practice neither the density of X nor Yv is known. The projection variance is computed from 
a sample A of points from X ,  

where VarA(Y,) and EA[.] are shorthand for variance and mean evaluated over the sample A. 
Oja has derived an elegant on-line rule for learning 6 when presented with a sample of X (Oja, 
1982). 
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Under the assumption that X is Gaussian is is easily proven that Yc has maximum entropy. 
Moreover, in the absence of noise Y,j contains maximal information about X.  I-Iowever, when X 
is not Gaussian Yi, is generally not the most informative projection. 

2 Estimating Entropy with Parzen Densities 

We will now derive a general procedure for manipulating and estimating the entropy of a random 
variable from a sample. Given a sample of a random variable X I  we can construct another 
random variable Y = F ( X ,  v). The entropy, h(Y), is a function of v and can be manipulated 
by changing v. Since there is no direct technique for finding the parameters that will extremize 
h(Y) we will search the parameter space using gradient descent. The derivation assumes that 
Y is a vector random variable. The joint entropy of a two random variables, h(W1, Wz), can be 
evaluated by constructing the vector random variable, Y = [Wl, w2IT and evaluating h(Y). 

Rather than assume that the density has a parametric form, whose parameters are selected using 
maximum likelihood estimation, we will instead use Parzen window density estimation (Duda 
and Hart, 1973). In the context of entropy estimation, the Parzen estimate has three significant 
advantages over maximum likelihood: (1) it can model the density of any signal provided the 
density function is smooth; (2) since the Parzen estimate is computed directly from the sample, 
there is no search for parameters; (3) the derivative of the entropy of the Parzen estimate is 
simple to compute. 

The form of the Parzen estimate constructed from a sample A is 

where the Parzen estimator is constructed with the window function R(.) which integrates to 1. 
The Parzen density is an unbiased estimate for the density of a signal perturbed by random noise 
with density R(.). In our subsequent analysis we will assume that the Parzen window function 
is a Gaussian density function. This will simplify some of our subsequent analysis, but it is not 
necessary. Any differentiable function could be used. Another good choice is the Cauchy density. 

Unfortunately evaluating the entropy integral 
00 

h(Y) a -Ev[log P*(Y, A)] = - 1 logP*(y, a)dy 
-00 

is inordinately difficult. This integral can however be approximated as a sample mean: 
h(Y) a h*(Y) r -EB[log P*(Y, A)] (3) 

= -EB [log EA [R(YA - YB )I1 (4) 
where EB[ ]  is the sample mean taken over the sample B. The sample mean converges toward 
the true expectation a t  a rate proportional to 1 / m  ( N B  is the size of B). To reiterate, two 
samples can be used to estimate the entropy of a density: the first is used to estimate the density, 
the second is used to estimate the entropy1. We call h*(Y) the EMMA estimate of entropy2. 

One way to extremize entropy is to use the derivative of entropy with respect to v. This may be 
expressed as 

'Using a procedure akin to leave-one-out cross-validation a single sample can be used for both 
purposes. 

'EMMA is a random but pronounceable subset of the letters in the words "Empirical entropy Ma- 
nipulation and Analysis". 
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where 

D+(Y) 5 yT$J-'Y 
and g+(y) is a multi-dimensional Gaussian with covariance $J. Wy(ylr y2) is an indicator of the 
degree of match between its arguments, in a "soft" sense. It will approach one if yl is significantly 
closer to ya than any element of A. To reduce entropy the parameters v are adjusted such that 
there is a reduction in the average squared distance between points which Wy indicates are 
nearby. 

2.1 Stochastic Maximization Algorithm 

Both the calculation of the EMMA entropy estimate and its derivative involve a double summa- 
tion. One summation is over the points in sample A and another over the points in B. As a 
result the cost of evaluation is quadratic in sample size: O(NA NB). While an accurate estimate 
of empirical entropy could be obtained by exhaustively sampling the data, a stochastic estimate 
of the entropy can be obtained with much less computation. This is especially critical in entropy 
manipulation problems, where the derivative of entropy is evaluated many hundreds or thou- 
sands of times. Without the quadratic savings that arise from using smaller samples entropy 
manipulation would be impossible. 

We have proven that a gradient ascent procedure using a stochastic version of EMMA will 
converge to  solutions that are near maximum (or minimum) of entropy (Viola, 1995). The proof 
assumes that the Parzen estimate will converge to the true density. 

2.2 Estimating the Covariance 

In addition to the learning rate A,  the covariance matrices of the Parzen window functions 
densities g+ are important parameters of EMMA. These parameters may be chosen so that they 
are optimal in the maximum likelihood sense. For simplicity, we assume that the covariance 
matrices are diagonal, $J = DIAG(a:, u;, . . .). Following a derivation almost identical to the one 
described in Section 2 we can derive an equation analogous to (5), 

where [yIk is the kth component of the vector y. The optimal, or most likely, $J minimizes 
h*(Y). In practice both v and $J are adjusted simultaneously; for example, while v is adjusted 
to  maximize h*(Y,), $J is adjusted to minimize h*(Y,). 

3 Principal Components Analysis and Information 

As a demonstration, we can derive a parameter estimation rule akin to principal components 
analysis that truly maximizes information. This new EMMA based component analysis (ECA) 
manipulates the entropy of the random variable Y, = X . v under the constraint that Ivl = 1. 
For any given value of v the entropy of Y, can be estimated from a sample of X as: 
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where $ is the variance of the Parzen smoothing function. Moreover we can estimate the deriva- 
tive of entropy: 

where y~ = X A  . v and yg = XB . v. The derivative can be decomposed into parts which can be 
understood more easily. Ignoring the weighting function Wy6-' we are left with the derivative 
of some unknown function f (Y,): 

d 
--WU) = C C ( Y B  - YA)(XB - XA) dv (9) 

8 A 

= NBNAEB[EA[(YB - YA)(XB - XA)]] . ( l o )  

What then is f (Y,)? The derivative of the squared difference between samples is: 

So we can see that 
f(yu) = NBNAEB[EA[(YB - Y A ) ~ ] ]  

is the expectation of the squared difference between pairs of trials of Y, . 

Recall that PCA searches for the projection, Y, , that has the largest sample variance: V a r ~  (Y, ) = 
EA[(yA - EA[yA])2]. Interestingly, f(Y,) is precisely twice the sample variance. Without the 
weighting term Wy$-', ECA would find exactly the same vector that PCA does: the maximum 
variance projection vector. However because of Wy the derivative of ECA does not act on all 
points of Y, equally. Points that are very far apart are forced no further apart. Another way 
of interpreting (ECA) is as a type of robust variance maximization. Points that might best be 
interpreted as outliers, because they are very far from the body of other points, play a very small 
role in the minimization. This robust nature stand in contrast to PCA which is very sensitive to 
outliers. 

For densities that are Gaussian, the maximumentropy projection is the first principal component. 
In simulations ECA effectively finds the same projection as PCA, and it does so with speeds that 
are comparable to Oja's rule. ECA can be used both to find the entropy maximizing (ECA-MAX) 
and minimizing (ECA-MIN) axes. For more complex densities the PCA axis is very different 
from the entropy maximizing axis. To provide some intuition regarding the behavior of ECA we 
have run ECA-MAX, ECA-MIN, Oja's rule, and two related procedures, BCM and BINGO, on 
the same density. BCM is a learning rule that was originally proposed to explain development 
of receptive fields patterns in visual cortex (Bienenstock, Cooper and Munro, 1982). More 
recently it has been argued that the rule finds projections that are far from Gaussian (Intrator 
and Cooper, 1992). Under a limited set of conditions this equivalent to finding the minimum 
entropy projection. BINGO was proposed to find axes along which there is a bimodal distribution 
(Schraudolph and Sejnowski, 1993). 

Figure 1 displays a 400 point sample and the projection axes discussed above. The density is a 
mixture of two clusters. Each cluster has high kurtosis in the horizontal direction. The oblique 
axis projects the data so that it is most uniform and hence has the highest entropy; ECA-MAX 
finds this axis. Along the vertical axis the data is clustered and has low entropy; ECA-MIN 
finds this axis. The vertical axis also has the highest variance. Contrary to published accounts, 
the first principal component can in fact correspond to the minimum entropy projection. BCM, 
while it may find minimum entropy projections for some densities, is attracted to the kurtosis 
along the horizontal axis. For this distribution BCM neither  minimizes nor maximizes entropy. 
Finally, BINGO successfully discovers that the vertical axis is very bimodal. 
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Figure 1: At left: A scatter plot of a 400 point sample from a two dimensional density. Included 
are the output of PCA (vertical axis), ECA-MAX (oblique axis), ECA-MIN (vertical), BCM 
(horizontal) and BINGO (vertical). 

4 Applications 

EMMA has proven useful in a number of applications. We will briefly describe two here. The 
first application finds the alignment between a three dimensional model and an image using 
mutual information. While this problem has been of interest for over 30 years, progress has 
been hampered by the sheer complexity of the relationship between an object and its image, 
which involves the object's shape, surface properties, position, and illumination. For example, 
changes in illumination can radically alter the intensity and shading of an image. Though the 
human visual system can use shading both for recognition and image interpretation, most existing 
computer vision systems cannot. 

4.1 3-D Model Alignment 

The mutual information between object normals and image intensities can be used to evaluate 
the alignment of a 3D object and an image. In general mutual information is closely related 
to predictability. By maximizing mutual information we are choosing an alignment that makes 
the image most easily predictable from the model. More concretely, an alignment associates the 
intensities from the image with points on the surface of the object3. For most realistic images 
there is a functional relationship between the surface normal at a point and the observed intensity. 
This relationship is determined by the surface reflectance and the illumination, it is known as 
a reflectance map. Even though there may be a different reflectance map for each object and 
image, there will be mutual information between the normals of the model and the intensities 
of the image. As a result, the mutual information is insensitive to changes in illumination and 
surface properties. 

This approach is unique in that it compares 3D object models directly to raw images; no pre- 
processing or edge detection is required. Using EMMA a gradient ascent alignment procedure 
can be defined that adjusts object pose until the mutual information between image and object 
is maximized. EMMA based alignment is surprisingly efficient, requiring between 10 and 60 

3This is much like the texture mapping operation from computer graphics. 
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Figure 2: Left: A typical image. Center: A rendering of a model derived from a cyberware 
scan in an incorrect pose. Right: The same model in the pose obtained by optimizing mutual 
information. The optimization proceeds over the space of 3D rotations and translations. 
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X Component Normal X Component Normal 

Figure 3: A scatter plot the intensity of the video image versus the x component of the surface 
normal from the model (a single value of the y component is used). At left the image and model 
are misaligned. At right they are aligned. 

seconds on a Sparc 10. The same approach has been applied to a number of different alignment 
problems (see (Viola and Wells, 1995) for a complete description). 

Figure 2 shows an example image and renderings of two different poses for a 3D model. The 
rendered images, which have been constructed using a model for lighting and reflectance, are 
included for visualization only; they are not used as part of the algorithm. Figure 3 shows 
part of the joint density of normals and intensities for two different alignments. While these 
distributions would be difficult to  model parametrically, EMMA can estimate mutual information 
and its derivative. We are aware of no other technique that can effectively solve this problem. 

4.2 MRI Processing 

In the second application EMMA is used to process magnetic resonance images (MRI). An MRI 
is a 2 or 3 dimensional image that records the density of tissues inside the body. In the head, as 
in other parts of the body, there are a number of distinct tissue classes including: bone, water, 
white matter, grey matter, and fat. In principle the density of pixel values in an MRI should be 
clustered, with one cluster for each tissue class. In reality MRI signals are corrupted by a bias 
field, a multiplicative offset that varies slowly in space. The bias field results from unavoidable 
variations in magnetic field (see (Wells I11 et al., 1994) for an overview of this problem). 

Because of clustering an uncorrupted MRI should have relatively low entropy. Corruption from 
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Figure 4: At left: A slice from an MRI scan of a head. Center: The scan after correction. Right: 
The density of pixel values in the MRI scan before and after correction. 

the bias field perturbs the MRI image, increasing the values of some pixels and decreasing others. 
The bias field acts like noise, adding entropy to the pixel density. We use EMMA to find a low- 
frequency correction field that when applied to the image, makes the pixel density have a lower 
entropy. The resulting corrected image will have a tighter clustering than the original density. 

Figure 4 shows an MRI scan and a histogram of pixel intensity before and after correction. 
The difference between the two scans is quite subtle: the uncorrected scan is brighter a t  top 
right and dimmer a t  bottom left. This non-homogeneity makes constructing automatic tissue 
classifiers difficult. In the histogram of the original scan white and grey matter tissue classes are 
confounded into a single peak ranging from about 0.4 to 0.6. The histogram of the corrected 
scan shows much better se~ara t ion  between these two classes. For images like this the correction u 

field takes between 20 and 200 seconds to compute on a Sparc 10. 

5 Conclusion 

We have demonstrated a novel entropy manipulation technique working on problems of significant 
complexity and practical importance. Because it is based on non-parametric density estimation 
it is quite flexible, requiring no strong assumptions about the nature of signals. The technique 
is widely applicable to problems in signal processing, vision and unsupervised learning. The 
resulting algorithms are computationally efficient. 
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