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Time series analysis with nonlinear delay differential equations (DDEs) reveals nonlinear as well

as spectral properties of the underlying dynamical system. Here, global DDE models were used to

analyze 5 min data segments of electrocardiographic (ECG) recordings in order to capture

distinguishing features for different heart conditions such as normal heart beat, congestive heart

failure, and atrial fibrillation. The number of terms and delays in the model as well as the order of

nonlinearity of the model have to be selected that are the most discriminative. The DDE model

form that best separates the three classes of data was chosen by exhaustive search up to third order

polynomials. Such an approach can provide deep insight into the nature of the data since linear

terms of a DDE correspond to the main time-scales in the signal and the nonlinear terms in the

DDE are related to nonlinear couplings between the harmonic signal parts. The DDEs were able to

detect atrial fibrillation with an accuracy of 72%, congestive heart failure with an accuracy of 88%,

and normal heart beat with an accuracy of 97% from 5 min of ECG, a much shorter time interval

than required to achieve comparable performance with other methods. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4811544]

Cardiovascular diseases are the main cause of deaths

worldwide and a major cost in health care. Better diagno-

sis methods are much needed. Here, delay differential

equations (DDEs) are used to discriminate short (5 min)

electrocardiography (ECG) data segments. This method

does not require any preprocessing of the data, is per-

formed on the time series themselves, is computationally

fast, and could be the basis for a real time diagnostic sys-

tem. DDEs reveal non-linear properties as well as spec-

tral properties of the data. A DDE relates a differential

and delay embedding in a complex manner to extract dis-

tinctive dynamical properties of the underlying dynami-

cal system. DDE analysis is a time domain tool that

combines aspects of nonlinear dynamics, Fourier analy-

sis, and higher-order statistics.

I. INTRODUCTION

In global vector field reconstruction,1–4 the recorded

data are used to generate a model, whose dynamical behavior

is equivalent to the original system. Equivalence is not

required for our data analysis method. Nonetheless, the iden-

tification technique provides a global model that captures

some essential features of the underlying dynamics.

The techniques introduced here are based on Delay

Differential Equations (DDEs). DDEs are a generalization of

ordinary differential equations (ODEs) with time delays.

DDEs have to be used to describe the underlying dynamics

in particular physical and biological processes. Such proc-

esses are typically characterized by a delayed reaction (see

Driver5 for a list of examples). Delays also have an impor-

tant role in analyzing ECG data.6

Solving even the simplest linear DDE _xðtÞ ¼ axðt� sÞ
is complicated (see, e.g., Ref. 7) and not within the scope of

this paper. We do not seek DDEs that predict time series but

rather global DDE models that capture distinguishing fea-

tures of data for different heart conditions such as normal

heart beat, congestive heart failure, and atrial fibrillation.

The question whether an ECG is best modeled by a linear or

non-linear process is directly related to the structure selec-

tion of the DDE: Is a linear DDE sufficient or are non-linear

terms needed? How many terms, how many delays and what

kind of non-linearity should be used?

DDEs can be seen as a flavor of a autoregressive (AR)

model or an autoregressive moving average (ARMA)

model8–11 where the time series on the left side of the equa-

tion is replaced by the derivative. Lately delay systems have

been used in the context of reservoir computing (RC).12–15

RC is a recently introduced, bio-inspired, machine-learning

paradigm for processing empirical data that is mimicking

neuronal networks. A DDE in this context is the simplest

nonlinear delay system with a singular node.

A motivation for DDE analysis of non-linear data comes

from embedding theory in non-linear time series analysis.

An embedding converts a single time series into a multidi-

mensional object in an embedding space (Whitney,16

Packard et al.,17 Takens,18 and Sauer et al.2). The recon-

structed attractor reveals basic properties (dimension,

Lyapunov spectrum, and entropy) of the true attractor of the

system. It allows valuable information to be obtained about

the dynamics of the system without having direct access to

all the systems variables.

There are two basic embeddings: delay and derivative

embeddings. For a delay embedding, the time series itself

and its delayed versions are used to construct the embedding;

for the derivative embedding the time series and its
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successive derivatives are used. Judd and Mees19 introduced

the idea of non-uniform embeddings for time series with

components of multiple time-scales. DDE analysis then

relates aspects of the different embeddings: the derivative of

the time-series is related to functions of non-uniformly

delayed versions of that time series.

DDE data analysis can be also seen as a novel way of

combining Fourier analysis and higher-order statistics in a

time domain framework. The relationship between frequency

analysis and analysis of frequency and/or phase couplings in

the time domain is poorly understood (see, e.g., Refs.

20–24). The linear terms of a DDE correspond to the main

frequencies in the signal. For n independent frequencies in a

signal a linear DDE with 2 n–1 terms is needed to describe

such data. The nonlinear terms in the DDE are related to

nonlinear couplings between the harmonics. DDEs can also

be expanded in a Yule-Walker-like way25,26 and the DDE

coefficients then can be rewritten as functions of dynamical

higher-order data correlations. These dynamical higher-order

data correlations are generalizations of Nth order data

moment functions such as, e.g., the auto-correlation (2nd

order moment) and the bi-correlation (3rd order moment).

The paper is organized as follows: Sec. II shows the connec-

tion between DDEs and classical Fourier analysis and higher

order statistics (HOS). In Sec. III, good classifiers for ECG

data are found via DDE analysis. Section IV is the

discussion.

II. DELAY DIFFERENTIAL EQUATIONS AND
TIME-DOMAIN FREQUENCY ANALYSIS

DDE analysis is done in the time domain on the time-

series themselves and not in the frequency domain. The

DDE framework combines linear and non-linear information

from the data in a complex and not easily understandable

way. To gain some insight in the meaning of the different

terms of a DDE, we show the correspondence of the linear

terms to the main time-scales or frequencies in the signal

and how the non-linear terms contain information about non-

linear couplings.

A. Linear DDEs

The simplest linear DDE is

_x ¼ axs ; (1)

where xs ¼ xðt� sÞ. Solving this equation in general is non-

trivial (see, e.g., Ref. 7) and beyond the scope of this paper.

However, looking at special solutions can lead to understand-

ing the terms in a DDE as used here for detection/classifica-

tion purposes. A special solution of Eq. (1) is (see Ref. 7)

xðtÞ ¼ cosðxtÞ ; a ¼ ð�1Þnx ; s ¼ p ð2n� 1Þ
2x

; (2)

where n 2N. The coefficient a is proportional to the fre-

quency and the time delay s is inversely proportional to the

frequency. For a signal with a frequency f and x ¼ 2pf the

delay is then

s ¼ ð2n� 1Þ
4 f

: (3)

The delay is inversely proportional to the frequency and the

coefficient a is directly proportional to the frequency.

A special solution of the linear DDE

_x ¼
XN

i¼1

aixsi
(4)

is

xðtÞ ¼
X2N�1

k¼1

cosðxktÞ ; si ¼
pð2n� 1Þ

2xj
; (5)

where n 2N are arbitrary integers and all delays si are

related to one of the frequencies. The expressions for the

coefficients a are more complicated than in Eq. (2) and each

depends on all the frequencies in the signal.

Equations (4) and (5) imply that we need a DDE with

2N–1 linear terms to describe a harmonic signal with N fre-

quencies. If we consider Eq. (1) and a sum of three harmon-

ics, xðtÞ ¼
P3

i¼1 cosðxitÞ, Eq. (1) cannot be solved

analytically. To estimate the value of the coefficient a we

expand Eq. (1) as a Yule-Walker-like equation:25,26 We mul-

tiply both sides of Eq. (1) with xs and apply the expectation

operator hFðtÞi � limT!1
1
T

Ð T
0

FðtÞ dt

� �
and get

a ¼ h _x xsi
hx2

si
: (6)

The numerator in Eq. (6) looks like a “dynamical” version of

the autocorrelation function hx xsi and it can be rewritten as

delay derivatives of the autocorrelation function in the case

of a bounded stationary signal,

h _xxsi ¼ lim
T!1

1

T

ðT

0

_xxs dt

¼ lim
T!1

1

T
½xxs�T0 � lim

T!1

1

T

ðT

0

x
dxs

dt
dt

¼ lim
T!1

1

T

ðT

0

x
dxs

ds
ds

¼ d

ds
hxxsi : (7)

For xðtÞ ¼
P3

i¼1cosðxitÞ, the expressions in Eq. (6) are

h _x xsi ¼
x3 6¼xj� 1

2

X3

i¼1

sinðxisÞxi;

h _x xsi ¼
x3¼xj� 1

2
x2sinðsx2Þ � 2x1sinðsx1Þ;

h _x xsi ¼
x3¼xj� 1

2
x1sinðsx1Þ � 2x2sinðsx2Þ;

hx2
si ¼

x3 6¼xj 3

2
;

hx2
si ¼

x3¼xj 5

2
; j ¼ 1; 2 :

(8)
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The coefficient a in Eq. (6) is a smooth function

with singularities at x3 ¼ xi, i¼ 1,2. Therefore estimating

a numerically can be used as a time domain frequency

detection tool: To detect the two frequencies in the signal

D¼ cosðx1sÞ þ cosðx2sÞ (f1 ¼ 31 Hz; f2 ¼ 69 Hz;x¼ 2pf )

the term cosðx3sÞ was added for a range of frequencies

f3 ¼ x3

2p. In Fig. 1, we estimated the coefficient a numerically

by a singular value decomposition (SVD) algorithm27 and

then computed the least square error

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ð _x� a xsÞ2

q
for

Eq. (6) for Dþ cosðx3sÞ with f3 varying from 0 to 150 Hz.

The delay was 10 dt, where dt¼ 1
fs

with a sampling rate

fs ¼ 1000 Hz. The two singularities at the two frequencies

f1 ¼ 31 Hz and f2 ¼ 69 Hz are clearly visible in both plots.

The choice of a different delay would change the shape of

curve (see Eqs. (7) and (8)). The error q¼ j _x� h _x xsi
hx2

s i
xsj is

nonzero since Eq. (6) is not an exact solution.

The possible advantages for the use this time-domain

frequency analysis tool are that it can be applied for short

time series and for sparse data: a can be estimated for the set

of all points for which the derivative can be computed and

the delayed point exists. Missing points can be left out.

The method is also fairly noise insensitive. In Fig. 2, we

added to the signal white noise g with a signal-to-noise ratio

of SNR¼�10 dB which is more noise than signal. We then

did the same numerical experiment as we did in Fig. 1: we

estimated the coefficient a numerically by a singular value

decomposition (SVD) algorithm and then computed the least

square error for Eq. (6) for Dþ cosðx3sÞ with f3 varying

from 0 to 150 Hz. Again, the two singularities at the two fre-

quencies f1 ¼ 31 Hz and f2 ¼ 69 Hz are clearly visible in

both plots (Fig. 2).

B. Nonlinear DDEs

In real world data, various frequency components do not

always appear completely independently of one another.

Those non-linear interactions of frequencies and their phases

(e.g., quadratic phase coupling) cannot be detected by a

power spectrum, the Fourier transform of the autocorrelation

function (second-order cumulant), since phase relationships

and frequency couplings of signals are lost. Such couplings

are usually detected via higher order spectra or bispectral

analysis.28–35 The bispectrum or bispectral density is the

Fourier transform of the third-order cumulant (bicorrelation

function). Consider the signal xðtÞ ¼ A1cosðx1tþ u1Þ þ
A2cosðx2tþ u2Þ which is passed through a quadratic nonlin-

ear system hðtÞ ¼ b x2ðtÞ where b is a non-zero constant. On

the output of the system, the signal will include the harmonic

components: ð2x1; 2u1Þ; ð2x2; 2u2Þ; ðx1 þ x2;u1 þ u2Þ,
and ðx1 � x2;u1 � u2Þ. These phase relations are called

quadratic phase coupling (QPC). Since we are here interested

in the couplings of frequencies we will consider the special

case of quadratic frequency coupling (QFC) when the phases

are zero (u1 ¼ u2 ¼ 0): For a signal xðtÞ ¼ cosðx1tÞ
þ cosðx2tÞ þ cosðx3tÞ frequency coupling occurs when x3

is a multiple of one of the frequencies or of the sum or differ-

ence of the two frequencies.

A simple DDE with one non-linear term,

_x ¼ a xs1
xs2
; (9)

cannot be solved analytically, but as shown for the linear

case in Sec. I, it can be expanded as a Yule-Walker-like

equation:25,26 We multiply both sides of Eq. (9) with xs1
xs2

and apply the expectation operator and get

a ¼ h _x xs1
xs2
i

hx2
s1

x2
s2
i : (10)

The numerator h _x xs1
xs2
i in Eq. (10) looks like a dynamical

version of the bicorrelation36 hx xs1
xs2
i. It can be rewritten as

delay derivatives of the moments in the case of a bounded

stationary signal,

FIG. 1. Error q and coefficient a for the linear DDE _x ¼ a xs with s ¼ 10 dt
vs. frequency f3 for the signal xðtÞ ¼ cosðx1tÞ þ cosðx2tÞ þ cosðx3tÞ with

f1 ¼ 31 Hz and f2 ¼ 69 Hz (x ¼ 2pf ).

FIG. 2. Error q and coefficient a for the linear DDE _x ¼ a xs with s ¼ 10 dt
vs. frequency f3. White noise g was added to the signal: D ¼ cosðx1tÞ
þ cosðx2tÞ þ g, where the signal-to-noise ration SNR¼�10 dB and f1
¼ 31 Hz and f2 ¼ 69 Hz (x ¼ 2pf ). The coefficient a and error q were then

plotted for xðtÞ ¼ D þ cosðx3tÞ with f3 varying between 0 and 150 Hz.
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h _xxs1
xs2
i ¼ lim

T!1

1

T

ðT

0

_xxs1
xs2

dt ¼ lim
T!1

1

T
½xxs1

xs2
�T0 � lim

T!1

1

T

ðT

0

x
d

dt
ðxs1

xs2
Þdt ¼ lim

T!1

1

T

ðT

0

x
dxs1

ds1

xs2
dt

þ lim
T!1

1

T

ðT

0

xxs1

dxs1

ds2

dt ¼ d

ds1

hxxs1
xs2
i þ d

ds2

hxxs1
xs2
i : (11)

For xðtÞ ¼ cosðx1tÞ þ cosðx2tÞ þ cosðx3tÞ, the bicorrelation is only non-zero when x3 is a multiple of one of the frequencies

or of the sum or difference of the two frequencies. In these cases, the expressions for the dynamic bicorrelation are

h _x xs1
xs2
i ¼x3¼x1þx2 1

4
ðx1ð�sinðs2x16s1x2Þ � sinðs1x16s2x2Þ þ sinð6s2x2 � s1ðx16x2ÞÞ

þ sinð6s1x2 � s2ðx16x2ÞÞÞ þ x2ð�sinðs2x16s1x2Þ � sinðs1x16s2x2Þ
þ sinðs2x1 � s1ðx16x2ÞÞ þ sinðs1x1 � s2ðx16x2ÞÞÞÞ;

h _x xs1
xs2
i ¼x3¼2xi 1

4
ðxisinððs1 � 2s2ÞxiÞ � xisinðð2s1 � s2ÞxiÞ � 2xisinððs1 þ s2ÞxiÞÞ;

h _x xs1
xs2
i ¼

x3¼xi
2 1

8
xi sin

1

2
ðs1 � 2s2Þxi

� �
� sin

1

2
ð2s1 � s2Þxi

� �
� 2sin

1

2
ðs1 þ s2Þxi

� �� �
; i ¼ 1; 2:

(12)

and for the denominator of Eq. (10)

x2
s1

x2
s2
¼x3 6¼xi 1

8
ðcosð2ðs1 � s2Þx1Þ þ 4 cosððs1 � s2Þðx1 � x2ÞÞ þ cosð2ðs1 � s2Þx2Þ þ 4 cosððs1 � s2Þðx1 þ x2ÞÞ

þ 4 cosððs1 � s2Þðx1 � x3ÞÞ þ 4 cosððs1 � s2Þðx2 � x3ÞÞ þ cosð2ðs1 � s2Þx3Þ þ 4 cosððs1 � s2Þðx1 þ x3ÞÞ
þ 4 cosððs1 � s2Þðx2 þ x3ÞÞ þ 18Þ;

x2
s1

x2
s2
¼x3¼x1

2 cosð2ðs1 � s2Þx1Þ þ 2 cosððs1 � s2Þðx1 � x2ÞÞ þ
1

8
cosð2ðs1 � s2Þx2Þ þ 2 cosððs1 � s2Þðx1 þ x2ÞÞ þ

25

4
;

x2
s1

x2
s2
¼x3¼x2 1

8
cosð2ðs1 � s2Þx1Þ þ 2 cosððs1 � s2Þðx1 � x2ÞÞ þ 2 cosð2ðs1 � s2Þx2Þ þ 2 cosððs1 � s2Þðx1 þ x2ÞÞ þ

25

4
:

(13)

The coefficient a in Eq. (10) is only non-zero for QFC fre-

quencies. We therefore can use this equation to detect non-

linear couplings in the time domain in the same way as we

used the linear DDE Eq. (6) to detect frequencies.

Fig. 3 shows how non-linear terms can detect frequency

couplings. For xðtÞ ¼ cosðx1tÞ þ cosðx2tÞ þ cosðx3tÞ
(x ¼ 2pf ) where the frequencies f1 and f2 were 31 Hz and

69 Hz, respectively, and f3 was varied from 0 to 150 Hz. For

each f3 we estimated the coefficient a numerically by a sin-

gular value decomposition (SVD) algorithm27 and then com-

puted the least square error

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ð _x � a xs1

xs2
Þ2

q
for Eq. (9).

The nonlinear coefficient a (top plot in Fig. 3) is only non-

zero when there is QFC and is zero otherwise. The least

square error (bottom plot in Fig. 3) shows a slope with spikes

when there is QFC as well as at the 2 frequencies f1 and f2.

Equation (9) can therefore be used to detect QFC. Since

the coefficient a in Eq. (10) is not an exact solution of Eq.

(9), the error (lower plot in Fig. 3)) is q ¼ j _x � a xs1
xs2
j. For

all values of f3 that are different from any coupling cases

(sum or multiples of the two other frequencies) it should be

q ¼ _x since a¼ 0 for all non-coupling values of f3.

Numerically a will never be exactly zero, but a small value.

Therefore, the error is q ¼ j _x � h _x xs1
xs2
i

hx2
s1

x2
s2
i xs1

xs2
j. hx2

s1
x2
s2
i has

a spike when f3 is equal to f1 and f2 and h _x xs1
xs2
i has spikes

for QFC cases. Therefore the error (lower plot in Fig. 3))

shows bumps for QFC cases and the frequencies. The delays

s1;2 only change the shape of the error function.

In this section, we wanted to show the connection of

DDEs to spectral analysis: Delays connected to linear terms

in the DDE relate to frequencies (see Eqs. (6)–(8) and Fig. 1)

and delays connected to non-linear terms in the DDE relate

to couplings between those frequencies (see Eqs. (10), (12),

(13), and Fig. 3). Here, we are not aiming to interpret these

plots quantitatively. Different delays would only change the

shape of the curves, but not the fact that there are spikes for

the frequencies in the linear case and spikes for the fre-

quency couplings in the non-linear case. Therefore, any arbi-

trary choice of delays will give the same qualitative

behavior.

III. DDE ANALYSIS OF ECG DATA

In Sec. II, we showed how linear terms of a DDE relate

to the time scales or frequencies in the signal and the non-

linear terms relate to non-linear couplings of those time
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scales or frequencies. Any DDE can be expanded in a Yule-

Walker-like way and the coefficients will then be combina-

tions of dynamical data correlations.

A DDE can also be interpreted as generic non-uniform

embedding. Such a generic non-uniform embedding (the

DDE model) unfolds timescales for the linear terms and cou-

plings between frequencies for the non-linear terms as a

spectrogram unfolds frequencies and higher order statistics

(HOS) unfolds the couplings between frequencies. DDEs

and spectral analysis are connected as we showed in the pre-

vious section. They are just operating in two different

domains, the time domain and the spectral domain.

A DDE is a nonlinear extension of a non-uniform

embedding with linear and/or nonlinear functions of the

timeseries. Therefore, it can be tailored to the dynamics.

HOS would have to be extended to a network of all possible

HOS moments combined with linear spectral analysis to do

the same. Therefore, a DDE is the simpler approach.

The structure or model form of the DDE and the delays

for classification of heart data were in this section selected

by an exhaustive search.

A. Data

We analyzed 24 h data from 15 young healthy persons

in normal sinus rhythm (NSR) (ECG sample frequency:

128 Hz) of 15 congestive heart failure (CHF) patients (ECG

sample frequency: 250 Hz) as well as of 15 subjects suffering

from atrial fibrillation (AF) (ECG sample frequency:

128 Hz) selected from the Physionet database.37 Table I lists

the files. The first five subjects of each group were used for

the CHAOS Controversial Topics in Nonlinear Dynamics “Is

the Normal Heart Rate Chaotic?” (http://physionet.org/

challenge/chaos). The other ten subjects from each group are

randomly selected records from the same databases.

B. Supervised structure selection

Typically, a nonlinear delay differential equation has the

form

_x ¼ f ðai; xsj
Þ ¼ a1 xs1

þ a2 xs2
þ a3 xs3

þ � � � þ ai�1 xsn

þ ai x2
s1
þ aiþ1 xs1

xs2
þ aiþ2 xs1

xs3
þ � � �

þ aj�1 x2
sn
þ aj x3

s1
þ ajþ1 xs1

2xs2
þ � � �

�

� � � þ al xm
sn
; (14)

where x ¼ xðtÞ and xsj
¼ xðt� sjÞ. The DDE Eq. (14) has n

delays, l monomials with coefficients a1; a2; :::; al, and a

degree m of nonlinearity. By a k-term DDE, we mean a DDE

with k monomials selected from the right-hand side of Eq.

(14). Although quite flexible, as for any global modeling

technique, there is a significant gain in accuracy by carefully

selecting the structure of the model.38–40 By structure selec-

tion or model learning, we mean retaining only those mono-

mials that make the most significant contribution to the data

dynamics. An equally important task is to select the right

time-delays, since they are directly related to the primary

time-scales and non-linear couplings between them of the

dynamics under study.

Lainscsek et al.40 used a genetic algorithm to find a sin-

gle DDE model for the classification of Parkinson movement

data. Here, we want to do an exhaustive search of models

and delays and find the models and delays that best separate

classes of data. To do so we look at all possible polynomial

DDE models

FIG. 3. Error and coefficient a for the nonlinear DDE _x ¼ a xs1
xs2

with

s1 ¼ 5 dt and s2 ¼ 11 dt vs. frequency f3 for the signal xðtÞ ¼ cosðx1tÞ
þ cosðx2tÞ þ cosðx3tÞ with f1 ¼ 31 Hz and f2 ¼ 69 Hz (x ¼ 2pf ).

TABLE I. ECG data used. The three conditions are normal sinus rhythm

(NSR), congestive heart failure (CHF), and atrial fibrillation (AF). The data

were downloaded from the PHYSIONET database.37
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_x ¼ a1 xs1
þ a2 xs2

þ a3 x2
s1
þ a4 xs1

xs2
þ a5 x2

s2
þ a6 x3

s1

þ a7 x2
s1

xs2
þ a8 xs1

x2
s2
þ a9 x3

s2
; (15)

with some of the ai equal to zero. Only models with up to

three terms were considered. If the analysis did not give sat-

isfactory results we added additional delays, increased the

order of non-linearity and/or used DDEs with more than

three terms. There were 5 one-term models, 18 two-term

models, and 32 three-term models.

Tables II and III list all these models. Note that e.g.

the DDE models _x ¼ a1 xs1
þ a2 xs1

xs2
and _x ¼ a1 xs2

þ a2 xs1
xs2

are the same with exchanged delays s1 and s2.

Therefore, only the first of these two models were used. All

such redundant DDE models were omitted. There were only

two linear DDEs (model 1 and 5) while all others are non-

linear. Seven of the DDEs had only one delay (models 1, 2,

4, 7, 9, 17, and 30) and nine models were symmetric (models

3, 6, 16, 22, 23, 25, 43, 52, 53) with two interchangeable

delays.

C. Data analysis

The data were analyzed without filtering and no artifacts

were removed from the data. The downloaded NSR and AF

data were sampled at 128 Hz, but the CHF data were

sampled at 250 Hz. To use the same DDE with the same

delays for all data, the NSR and AF data were up-sampled

using the MATLAB function resample41 with the default

options. Throughout this paper, we use 5 min non-

overlapping data windows for our analysis. Each window

was re-normalized to zero mean and unit variance to be able

to compare data of different origin.

For the model selection task, we have to choose a classi-

fier, select training data, select a classification tool, and do

some cross-validation to take the small number of subjects

into account. In this manuscript, we chose seven different

classifiers and tested the performance of each separately.

Those classifiers were: (1) NSR vs. AF vs. CHF, (2) NSR vs.

AF, (3) NSR vs. CHF, (4) AF vs. CHF, (5) NSR vs. (AF and

CHF), (6) AF vs. (NSR and CHF), and (7) CHF vs. (NSR

and AF). As training data we selected one 5 min data win-

dow every 20 min (e.g., for a 20 h recording of one subject

60 5 min data windows were used). We used a repeated ran-

dom sub-sampling validation42 where we trained on 10 sub-

jects of each group and tested on the remaining 5 subjects of

each group. This was repeated 300 times with each subject

equally often used as training and testing subject. As classi-

fier we used singular value decomposition (SVD).27 As mea-

sure of performance we use Cohen’s kappa j43–46 which can

be computed directly from the confusion matrix.47 A confu-

sion matrix (also known as matching matrix, contingency ta-

ble, or error matrix) is a specific table layout that allows

visualization of the performance. Each column of the matrix

TABLE II. One- and two-term models. An “x” denotes that the term a? is

nonzero. The different types of models are: “L”—linear, “S”— symmetric,

“1”—single delay DDE. All other DDEs are non-linear and have two non-

interchangeable delays. To save space in the table xsi
was written in the short

form xi.

TABLE III. Three term models. An “x” denotes that the term a? is nonzero.

The different types of models are: “L”—linear, “S” —symmetric, “1”—sin-

gle delay DDE. All other DDEs are non-linear and have two non-

interchangeable delays. To save space in the table xsi
was written in the short

form xi.
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represents the instances in a predicted class, while each row

represents the instances in an actual class.

The random sub-sampling validation gives 300 values

for Cohen’s kappa for each model and each set of delays. To

choose the best model we searched the highest minimum of

the mean of the 300 values for each classifier. The best mod-

els and delays for the seven classification tasks are listed in

Table IV.

To test the performance of the classifiers in Table IV,

we computed for each of the 7 models the 300 SVD-weights

from the training data and then took the mean of those

weights. These weights were then applied to the whole data

set. Fig. 4 shows the computed features for all data for all

seven classification tasks. The corresponding Cohen kappa

values as well as the areas under the ROC curves are listed

in Table IV. The separating hyperplanes between the

conditions were selected by SVD. In Fig. 4, the distance d
from these hyperplanes are shown. NSR is best separated

from the 2 diseases (j ¼ 0:96� 0:99). All other classifiers

were also quite good.

The model quality was also assessed by computing the

area under the receiver operating characteristic (ROC)

curves A0 (see Fig. 5).

TABLE IV. Best DDE models selected for the seven classification tasks.

The kappa values j reported here were computed directly from the confu-

sion matrices.47 The area under the ROC curve A0 can only be computed for

the 6 binary classifiers. A0 was computed from the ROC curves in Fig. 5.

The units of the delays are time steps ds ¼ 1
fs
, where fs is the sampling

frequency.

FIG. 4. Distances d from the separating hyperplanes for all 5 min data win-

dows for all 15 subjects for the three conditions (left plots) for the best DDE

models reported in Tab. IV. The mean value for each subject is shown as a

black line. The histograms of these plots are shown on the right column.

Blue refers to NSR, red to AF, and green to CHF. The black horizontal lines

indicate the separating lines between the conditions selected by SVD. The

vertical lines separate the subjects.
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A receiver operating characteristic (ROC), or simply

ROC curve,48–51 is a graphical plot which illustrates the per-

formance of a binary classifier system as its discrimination

threshold is varied. It is created by plotting the fraction of

true positives out of the positives vs. the fraction of false

positives out of the negatives at various threshold settings.

An A0 above 0.5 indicates classification performance above

chance. In Fig. 5, all curves for the classifiers NSR vs. AF,

NSR vs. CHF, AF vs. CHF, NSR vs. (AF,CHF), AF vs.

(NSR,CHF), and CHF vs. (NSR,AF) are shown and A0 is for

all binary classifiers above 0.92, which is excellent. Normal

heart rate is better distinguishable from the two diseases: A0

is above 0.97 for NSR vs. AF, NSR vs. CHF, and NSR vs.

(AF,CHF).

SVD is a simple classification tool. Performance could

be easily improved by using a more sophisticated classifier

such as support vector machine. Here, we wanted to empha-

size on the results from the DDE analysis rather than best

performance, which is already excellent.

IV. DISCUSSION

We analyzed 24 h ECG data from healthy subjects and

patients with either atrial fibrillation or congestive heart fail-

ure downloaded from the PHYSIONET database.37 These data

were analyzed using delay differential equations (DDEs).

First, we made a connection between DDEs in the time do-

main and spectral analysis tools such as Fourier analysis and

higher-order statistics. We then used the outputs of DDE

models with a maximum of three terms to build good classi-

fiers for the three conditions. For 5 min data windows of the

ECG data from 2 electrodes we were able to separate the

three heart conditions with high accuracy.

In other studies using the same dataset, separation of the

three heart conditions was only achieved using all of the data

for each subject;52–54 in comparison, we only needed 5 min

of data from each condition. In our analysis, we needed non-

linear terms in the DDE models to separate the three heart

conditions. Non-linear methods were also better at

distinguishing the data classes in Refs. 52 and 53. We found

that a purely non-linear model with three non-linear terms

was needed for the classification of NSR vs. AF vs. CHF, but

a model with two linear and only one nonlinear term was

needed for distinguishing CHF from NSR and AF in Refs.

54 and 55. This is consistent with other studies showing that

CHF is a more regular heart condition.

We have thus shown that the three heart conditions are

dynamically different (different DDE models are selected for

the different classifiers), that the three heart conditions have

different characteristic time-scales (different delays are

selected for the different classifiers), and that non-linear

models are needed for classification. In other studies, the

same dataset was used to determine whether the heart rate is

more chaotic in normal subjects, but this remains an open

question.

Our analysis shows that a DDE can be considered a

generic nonuniform embedding: “non-uniform” because the

delays should reflect the dominant time-scales of the dynam-

ical system and “generic” because it is a combination of a

delay and a derivative embedding. The models combine

functions of delayed versions of the signal with the deriva-

tive of the signal. A DDE model can unfold dynamical struc-

tures that are relevant for a single time series and the

underlying dynamical system, which may be unknown as in

the ECG.
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